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The decay of a polarized muon is studied in the case of the general four-component neutrino theory with
the most general parity-nonconserving interaction. A three-parameter formula for the decay-electron dis-
tribution is obtained as a generalization of the Michel formula for an unpolarized muon. This general formula
is examined to determine to what extent the observed spectrum enables one to decide whether any particular
theory is correct or not. It is seen, among other things, that by the observation of the muon decay spectrum
alone one cannot test the validity of the two-component neutrino theory. To facilitate a possible accurate
experimental test of the two-component neutrino theory, the radiative correction for the decay of a polarized
muon is worked out to the lowest order in n. Although the correction is rather complicated, it can still be
expressed approximately by the three-parameter formula mentioned above. It is found, in particular, that
the corrected Michel parameter for the two-component theory is 0.706 when a neutrino and an antineutrino
are emitted in the final state, which is 6% smaller than the value 0.75 predicted by the simple theory.

1. INTRODUCTION

HE suggestion of Lee and Yang' on the possible
nonconservation of parity in weak interactions

has been verified beyond doubt by the observation of
strong left-right asymmetry of secondary particles in
the processes such as the P decay' and the vr-p-e decay. '
Lee and Yang, ' Salam, ' and Landau' have proposed
independently that the strong violation of parity con-
servation in these reactions in which the neutrino
participates could be explained if one assumes that the
neutrino always violates the parity conservation be-
cause of its intrinsic nature. That such a theory of the
neutrino, called the two-component theory, is possible
within the frame work of relativity, has been known for
a long time' but has not attracted any attention be-
cause of its failure to conserve parity. It is quite interest-
ing that the new experimental evidence seems to imply
the existence of just such a particle.

Predictions of the two-component theory are in
general much 'more specific than those of the ordinary
theory of the neutrino. Thus many of its consequences
are subject to direct experimental confirmation. Al-

though evidence available so far is strongly in favor of
this theory, more detailed work will be required before
a definite conclusion is obtainable about the validity of
the two-component theory.

As an attempt in this direction, two separate con-
siderations are presented in this paper concerning the
predictions of two-component theory on the muon
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decay process. The first is how much information one
can derive from the study of the experimental spectrum
of muon decay. For this purpose, the muon decay spec-
trum is discussed in Sec. 2 in the case of the general
four-component neutrino theory with the most general
parity-nonconserving interaction. The decay spectrum
of a completely polarized muon can be described by a
set of three parameters when the mass of the electron
is neglected, in close analogy with the one-parameter
formula of Michel for an unpolarized muon. Usually
there are infinitely many possible choices of decay
coupling constants for given values of these parameters.
Thus one can find various four-component interactions
which give exactly the same decay spectrum as that of
the two-component theory. This argument is inde-
pendent of whether the two neutrinos in the final state
are identical or not. One cannot therefore tell more than
whether the two-component theory is consistent or not
by looking at the shape of the decay spectrum alone.

Secondly the accuracy of the predictions of the two-
component theory of muon decay is improved by taking
the eGect of the radiative correction into account. This
correction wouM be necessary for the precise comparison
of theory and experiment since the radiative correction
is not at all insignificant in this particular case, being of
the order of

n/1n(p/fs)]'= (137)—'&(28.4, (].1)

rather than n itself, where p and m are the masses of
muon and electron, respectively. Detailed calculation
shows that its effect on the shape of the decay spectrum
is, to the lowest order in n, about +10% for the lower
rnomenta of electron and —4% at the upper end. With
the inclusion of the radiative correction, the accuracy
of the corrected theoretical spectrum will be better
than 1% over the whole range of electron momentum.
Qualitatively speaking, the radiative correction has a
tendency to shift the electron spectrum to the low-

L. Michel, Proc. Phys. Soc. (London) A63, 514 (1950).
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momentum side. Although the corrected spectrum is a
rather complicated function of the electron momentum,
it can still be approximated by a three-parameter for-
mula given in Sec. 2. It is found, in particular, that the
corrected Michel parameter for the two-component
theory is 0.706 instead of 0.75 predicted by the simple
theory.

p~s+ v+ v) (2.1)

2. MUON DECAY SPECTRUM IN THE GENERAL CASE

Let us first derive the spectrum of muon decay for
the case of the four-component neutrino theory and
examine the predictions of the two-component theory
in the light of the former.

In the general case of the four-component theory, the
muon decay process,

The parameter 8 determines the shape of the cos8
dependent part of the spectrum and plays a role similar
to that of the Michel parameter p. It is related to the
coupling constants by

where
8 = (3b'+6c')/( 3a'—+4b'+14c'),

a =gsgi +gi gs +gIgs +gs gi',
gVgA +gA gV +gAgV +gV gA

C =gTgT +gT gT

(2.8)

(2.9)

Finally, $ is defined by

$= (3a' 4b—' 14—c')/(a+4b+6c), (2.10)

and characterizes the magnitude of the cos8 dependence
of the electron distribution.

In many cases, it will be the integrated spectrum,

is described by the Fermi interaction

a'= P*[g'(lb.rA) (1b.r4„)
+g''(k. l'A") (0.1'n f.)j+H c, (2 2)

E(x,8)dQ=
I'dÃ

dg (2.11)

where F; stands for the five Dirac matrices'

and "H.c."means "Hermitian conjugate. "For a muon
at rest with its spin completely polarized, the electron
distribution is given by the three-parameter formula":

dS(x,8) =A {3(1—x)+2p(-,'x —1)
—

P cos8[(1—x)+2h(4x —1)$)x'dxdQ, (2.4)

the electron mass being neglected compared with its
momentum. " The parameter x is the electron mo-

mentum measured in terms of the maximum electron
momentum, 8 is the angle between the electron momen-

tum and the spin direction of muon, and

1+x+x' —3x'+8bx'
Q(x) =

3 (1+x+x' —3x')+ 8px'
(2.13)

The three parameters in the formula (2.4) are func-
tions of ten complex numbers, However, it is not difFi-

cult to find some of their characteristic features. We
note that the inequalities

and
0(p& $

(2.14)

(2.15)

(2.16)

that is conveniently compared with experiments. One
finds from (2.4) that

$(x,8) =-,'A [1—4x'+3x4+ (8/3) p(x' —x4) $
X[1—$Q(x) cos8j, (2.12)

where

where

A =
I I (a+4b+6c),(
(3X2'Xx4~

(2 5) always hold because of la'I ~a lb'I «» Ic'I ~c.
All relations before (2.15) are also valid in the case

of emission of two identical neutrinos:

P~e+ V+ V. (2.17)
(2.6) In this case, we have in addition the following

simplification:

(2.18)I /gv= gr= gr =gA =0.

(2.19)~=0, ~'=0,

a= Igsl'+ Igs'I'+ Igi'I'+ Igi''I',

b=
I gv I'+

I gv'I'+
I gA I'+

I
gA'I'

c= lgTI'+ lgT'I'.

The quantity p is the Michel parameter defined by

p= (3b+6c)/(a+4b+6c); (2.7) This implies that

~ For the definition of the y~'s used in this paper, see R. P.
Feynman, Phys. Rev. 76, 769 (1949).

'0 All formulas in this paper are written in the form appropriate
for the description of the p —e decay. Formulas for the p+ —e+

decay are obtained by changing the signs of the cos8 terms in
(2.4), (2.12), (3.3), etc.

"After this work was completed, a preprint of a paper by
C. Bouchiat and L. Michel )Phys. Rev. 106, 170 (1957)j became
available to us, in which a formula equivalent to our Eq. (2.4)
has been derived.

and thus (2.15) and (2.16) are superseded by the
stronger relations

0&p& —', and 0~
I pl ~3—(8/3)p. (2.20)

If one decomposes f, into two parts as follows:

(2.21)
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where

9 =2(1+75)4", X=9(1—75)k., (222)

it is easy to see that, for diferent neutrinos, the 5, T,
and P interactions contain only cross terms of q and.

x, while the t/' and A interactions have no cross term.
Since the two-component neutrino theory can be re-
garded as a special case of the general theory where f„
satisfies

gv = —gv, gx =—gx (2.24)

Thus, in the two-component theory, the electron dis-
tribution (2.4) is reduced to

dX(x,8) =-,'Al 3—2x+$ cos8(1—2x)]x'dxdQ, (2.25)

when one uses (2.24) and puts gs=gr=gJ =gs'=gr'
=g~'=0. It corresponds therefore to a special case of
the general theory where

p=8= 43.

The parameter $ is then reduced to

g= (gvga*+gagv*)/(Igvl'+ Igal ).
It obviously satis6es the relation

(2.26)

(2.27)

(2.28)

The equalities and inequalities derived above lead us
to various conclusions, some of which are given in the
following:

(a) H the observed spectrum does not satisfy some
of the relations (2.14), (2.15), and (2.16), it would
indicate that our Hamiltonian (2.2) is inadequate for
the description of muon decay. If the condition (2.20)
is not satisfied, the emission of two identical neutrinos
(2.17) is ruled out.

(b) If lpl)1, the two-component neutrino theory
must be abandoned.

(c) As is seen from (2.12), the asymmetry of the
integrated spectrum is described by —$Q(x). Using
(2.14) and (2.15), one easily finds that

$(1+x+x'—3x')+8$5x'
le( ) I

= (2.29)
3(1+x+x' —3x') +8px'

for any x in the range (0,1). Thus the magnitude of the
asymmetry cannot exceed 1, which is trivial since the
decay spectrum must be non-negative for all energies
and angles of the emitted electrons.

(d) Equation (2.29) shows that the integrated asym-
rnetry at the upper end (x=1) of the spectrum is

I $8I/p whose maximum value is 1. The asymmetry of
the complete integral spectrum is given by -',

I pl. Thus,

(2.23)

only the t/' and A interactions are possible for non-
identical neutrinos. ' Equation (2.23) further requires
that

if the two-component theory is correct, this asymmetry
cannot exceed the value ~3. It is noteworthy that a much
larger asymmetry of the integrated electron distribution
is possible in the general case than is permitted in the
two-component theory. If p=38, the integrated spec-
trum shows no momentum dependence as is obvious
from (2.29). In particular, the asymmetry is &1 for aB
x if )=&3.However, p=8=0 in this case.

(e) The two-component theory predicts p= b= ~3,

0~
I Pl ~1. However, exactly the same prediction can

be made in the general theory if one chooses a suitable
set of coupling constants. In fact, it is immediately
seen from (2.7) and (2.8) that

u= 2c, and a'= 2c' (2.30)

are the necessary and sufhcient conditions for this
purpose. Since the muon decay spectrum is completely
characterized by the three parameters p, h, and P, this
implies that it is impossible to distinguish the two-
component theory from the four-component theory by
looking at the muon decay spectrum if the latter
satisfies (2.30). Thus the experimental verification of
the spectrum (2.25) by itself does not unambiguously
select the two-component neutrino theory.

(f) The above argument is based on the possibility
of an arbitrary choice of u and a' only if (2.30) is
satis6ed. It is interesting to notice that the theory is
not completely determined even if one assumes p= 5= 43,

and a= a'=0. In this case we obtain

gv=gx =0&I (2.32)

which is required when the two neutrinos emitted are
identical. The other requirements of (2.18) are already
satisfied by the assumption c=0. In this case we obtain

S= —(g~'g~*+g~g~'*)/(I gv'I'+
I g~ I'). (2.33)

Thus, exactly the same spectrum as that of the two-
component neutrino theory of Lee and Yang is ob-
tained if one assumes identical neutrinos in the muon
decay and a=c=O. The maximum polarization )=&1
is attained by the choice

gV ~gA (2.34)

As was shown by Lee and Yang, 4 such a picture is not
possible if there is only one spin state for the neutrino
field (p=5=0 in this case). Insofar as the two spin
states are accessible for the neutrino, however, there is
nothing to prevent the existence of such a case. Obvi-
ously it does not matter whether the neutrino is de-
scribed by the Dirac theory or the Majorana theory.

gVgA +gA gV +gAgV +gV gA

Ig~f'+ I
g~'I'+ lg~ I'+ lg~'I'

If one assumes (2.24), this $ of course reduces to (2.27)
of the two-component theory. Of particular interest is
the case
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3. RADIATIVE CORRECTION IN THE TWO-
COMPONENT THEORY

In this section we shall consider the effect of the
radiative correction in the two-component theory of
muon decay. The interaction Hamiltonian will now be

II=B'+H", (3.1)

&"=e4„v,M,+el.vA &,. (3.2)

Since the radiative interaction does not alter the prop-
erties of neutrinos, we have to consider only the V and
A terms of H'. Thus the decay spectrum including the
radiative correction can be written as

, rdN„(x,H) = ,'A 3 2x+ -f(x)— —
2m

(g) In the general case of two identical neutrinos,
the inequality

3 (3—4p) ~ P(3—48) ~ —3 (3—4p) (2.35)

is obtained from (2.7), (2.8), (2.10), and (2.19). This
relation may be useful for the test of consistency of the
assumption (2.17). In particular, it is seen that p=43

means 8=4. Thus, if the experiment finds p=4 but
8/4, the theory of identical neutrinos (including the
Majorana theory) must be ruled out together with the
two-component theory.

(h) The above arguments of course do not reduce at
all the strong possibility that the two-component theory
is the correct description for the neutrino. It only
stresses a logical difFiculty in deriving such a conclusion
from the study of muon decay alone. It is in fact
necessary to study other phenomena to settle the ques-
tion. To produce a highly polarized muon from the x-p
decay, for instance, a rather special kind of parity-
nonconserving decay interaction is required and the
two-component theory would be the simplest solution
to such a problem.

where $ is given by (2.27), the effect of this term would
be even smaller when

l gl is close to 1 as is observed.
Because of this, we shall neglect this term completely
in the following discussion.

The quantities f(x) and h(x) represent the radiative
corrections to the isotropic and cosH terms of (2.25),
respectively. The function f(x) was obtained previously
by Behrends, Finkelstein, and Sirlin, " and h(x) has
been evaluated by making use of the same method.
Their explicit forms are given in the Ap'pendix. Nu-
merical values of (n/27')x'f(x) and (n/2')x'h(x) are
listed in columns 1 and 3 of Table I.

Both f(x) and h(x) consist of radiative corrections
due to the virtual photon emission and the inner
bremsstrahlung. Since the Fermi-type interactions are
unrenormalizable in general, it is expected that the
virtual emission of photons gives divergent results even
if the ordinary renormalization of the mass and charge
is carried out. It is interesting to notice that in the cases
of t/' and A interactions, which are the only cases of
interest to us, all ultraviolet divergences to order n can
be removed by the renormalization of charge and mass
of the muon and electron. Thus the two-component
neutrino theory is distinguished from the general case
by its finite radiative correction to the muon decay.

The infrared divergence due to the emission of low-

frequency virtual quanta is of course cancelled by that
of the real emission. The correction terms f(x) and
h(x) are therefore finite and unambiguous for 0 (x(1.
The divergence of these functions at x=0 is not real.
It occurs simply because we have neglected the electron
mass, which is certainly justifiable for x 0.1.The case
x=1 corresponds to the emission of an electron with
maximum momentum. This is a singular con6guration
in which the emission of real quanta is prohibited by
the conservation law of energy. As a result, the infrared
divergence of the virtual photon is not canceled at

TABLE I.Radiative corrections to the isotropic and cos8 terms of
the muon decay spectrum and related functions.

+g cosH 1—2x+—h(x)
2'

—x2f(x)2'
X102

—F(x)2'
X102

—x~h(x)2'
X10~

—H (x)2'
X102

0» Cx)

Q (x)

m| —x~
+6) 'x'dx—dQ, (3.3)

~ x l

t'~1 —P~ (3.5)

where one neglects terms of higher order than 0. and

m/p, and where

e= (la~ I'—Ig»l')/(Ig~ I'+ Igv I') (3 4)

The last term, which was neglected before since m(&p,
is included here since m/II. n Its actual mag. nitude,
however, is only about a quarter of the radiative cor-
rection even if one assumes that /=1. Since l is re-

stricted by

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
0.99
1.0

~ ~ ~

0.718
1.1/8
1.660
2.109
2.457
2.627
2.535
2.050
0.829—0.528-3.752
~ ~ ~

2.9/3
2.886
2.697
2.414
2.036
1.577
1.065
0.543
0.077—0.230—0.253—0.116
0

~ ~ ~

—0.070—0.108—0.203—0.393—0.686—1.062—1.441—1.631—1.083
0.115
3.532
~ ~ ~

3.260
3.238
3.186
3.097
2.923
2.604
2.083
1.329
0.390
0.490—0.665—0.339
0

1..0028
1.0033
1.0040
1.0047
1.0050
1.0049
1.0047
1.0040
1.0029
1.0016
1.0011
1.0002

'~ Behrends, Finkelstein, and Sirlin, Phys. Rev. 101,866 (1956).
In Table I of this reference, there is a numerical error in the value
of the radiative correction for the vector case at x=0.95. We are
thankful to Dr. K. M. Crowe for kindly pointing this out to us.
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x=1, and f(x) and h(x) diverge there logarithmically.
This divergence can be easily removed if one remembers
that the energy resolution in actual measurements
cannot be in6nitely sharp. "Here we shall simply leave
it as it is since it does no harm to the total probability
of muon decay.

The isotropic and cos8 terms of the differential spec-
trum (3.3) are plotted in Figs. 1 and 2 together with the
corresponding terms without radiative corrections. The
radiative correction reduces the magnitude of the elec-
tron distribution in the neighborhood of the upper end
of the spectrum by about 4% but enhances it in most
other regions. This may be interpreted as the result of
a shift of the electron distribution to the low-energy
side, part of the electron energy being lost in the form
of a radiation. In the lowest energy region, the increase
is quite large percentagewise, but its absolute magnitude
is small. Some aspects of the corrected spectrum (3.3)
will be discussed in the following.

(a) Msche/ parameter. We shal—l first discuss the
effect of radiative correction to the decay spectrum of
an unpolarized muon. This has been discussed before
for the general case" but we shall repeat it here in a
slightly different manner. For an unpolarized muon,
the electron distribution without the radiative correc-
tion is given by

aX(x) =4sAL3(1 —x)+2p('sx —1)jx'dx. (3.6)

p is 4 in the two component theory. When the radiative
correction is included, the spectrum is no longer
describable by such a simple formula. The shape of the
corrected curve in Fig. 1 indicates, however, that it
could still be approximated with sufhcient accuracy by

0.8—

Og I I I I I I I I

0.2 0.4

04

FIG. 2. The cose part of the muon decay spectrum in the two-
component neutrino theory. The solid curve represents the un-
corrected spectrum (6=0.75) for the emission of a neutrino and an
antineutrino. The dashed curve is obtained by including the e6ect
of the radiative correction to the solid curve.

a Michel formula (3.6). To see whether this is the case
or not, it is more convenient to study the quantity

3—2x+ (n/2s. )f(x) (3 7)

rather than the spectrum (3.3) itself. If one neglects
the last term, this is a linear function of x. Our concern
is how well one can approximate (3.7) by a linear func-
tion. The function (3.7) is plotted against x in Fig. 3.
As is seen immediately, (3.7) is close to a straight line
for 0.3&x&0.95. When one fits this curve to the
Michel formula in this range, the value of p is found to
be

p=0.706, (3.8)

0.6—

04-

which is about 6%%uo smaller than the uncorrected value. "
It must be noted that this procedure is not unambiguous
and the result depends slightly on the momentum range
chosen. "The result (3.8) seems to be in fair agreement
with the observed result. "

0.2—

0.2 0.4
X

0,6 I.O

FIG. 1. The isotropic part of the muon decay spectrum in the
two-component neutrino theory. The solid curve represents the
uncorrected spectrum (p =0.75) for the emission of a neutrino and
an antineutrino. The dashed curve is obtained by including the
effect of the radiative correction to the solid curve.

"See reference 12 for more detailed discussion about this.

'4The value 0.727 for p given in reference 12 was based on a
slightly different definition LKq. (28a) of reference 12j. There,
the experimental data was to be compared with a modi6ed spec-
trum LEq. (28c) of reference 12].Here we suggest that the data
be 6tted with the uncorrected Michel formula (3.6) and compare
the value of p thus determined with (3.8). The de6nition of p
in the two cases is not identical and thus leads to different nu-
merical values. But of course both methods of comparing theory
and experiment are equivalent.

~~ If one uses the data up to the upper end of the spectrum, the
resulting p would be even smaller than the value (3.8). But the
parameter p would then lose its good physical meaning. If it is not
convenient to neglect the data very close to the end of the spec-
trum for experimental reasons, it would be necessary to return to
the original formula (3.3). It must be noted, however, that the
procedure of Sec. 3 is restricted to the case where only the V and
A interactions are present in the muon decay. For the more general
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3.0

2.0

I l0 product of these considerations, we find immediately
the radiative correction to the asymmetry parameter P
and the coupling constant ~gv~'+ ~g~~'. lt is found
that ( is increased by 0.3% while the correction to the
coupling constant is +3%. We can therefore neglect
the correction to the asymmetry parameter completely
in our discussion. The correction to the coupling con-
stant has no observable eGect as far as we are concerned
with the muon decay only. The results of this paragraph
can also be derived from the consideration of E„(0,8)
of (3.13).

(d) Forward backwa-rd asymmetry. In —the experi-
ment of Garwin, Lederman, and Weinrich, it is the
forward-backward asymmetry of the integrated spec-
trum that is directly measured. In the case of no
radiative correction, one finds from (2.12) that

1' (x,e) =—A (1—2x'+x )Li —)Q(x) cos8), (3.11)

where

I.O—

1 (1+x+x +3xs)
Q(*)=-I

3 ( 1+x+x'—x' )
(3.12)

)

0.2
I

0.4
l I

0.6
X

I l

OJS l.0

FIG. 3. The function 3—2x+ (n/2x) f(x) is evaluated for several
values of x (open circles). The solid straight line represents the
function 3—2x and the dashed straight line is a linear approxima-
tion to 3—2x+(cx/2m. )f(x). The value at x=0.95 lies precisely on
the dotted line. Because of an oversight, it has been omitted from
the figure.

(b) Paranseter b.—The same considerations as above
may be applied to the cos0-dependent term of (3.3).
It is found that the curve for the function

1—2x+ (n/2s)h(x) (3.9)

is very close to a straight line for 0.2 &x &0.9 but devi-
ates appreciably from it for 0.9&x&1. The parameter
6 determined from the straight part is

8=0.74', (3.10)

which differs from the uncorrected value by only 0.5%.
Since the one-parameter approximation of the cos8
term is not very good at the upper end of the spectrum,
it may not be as useful as that for the isotropic term. "

(c) Correctiols fo $ and ~gv~'+ ~gz~'.—As a by-

discussion, it is necessary to compute radiative corrections to the
cases of the 5, T, and P interactions, too. These corrections have
so far been calculated only for the isotropic terms of the decay
spectrum. (See reference 12.)

"Sargent, Rinehart, Lederman, and Rogers, Phys. Rev. 99,
885 (1955). gote added in proof. —More recent p values are 0.67
~0.05 obtained by L. Rosenson (to be published) and 0.68~0.02
by K. M. Crowe ef al. (Bull. Am. Phys Soc. Ser. II., 2, 206
(1957)). These values already include the effect of radiative
corrections and are to be compared with the uncorrected value
p=0.75 to test the validity of the two-component theory. W. F.
Dudziak and R. Sagane are also measuring the p value (private
communication). If the p value were smaller than 0.75 as is sug-
gested by these measurements, it would be a serious di%culty for
the two-component theory, at least in its simplest form. .

X,(x,s.) 1+&Q,(x)
R„(x)=

1V,(x,0) 1—$Q„(x)

X(x,a-) 1+$Q(x)
E(x) =

1V(x,0) 1—&Q(x)

(3.15)

(3.16)

respectively. As is seen from Table I, the ratio Q„(x)/
Q(x) is almost constant taking values between 1 and
1.005 for all x. Accordingly, Z„(x)/R(x) varies in the
range between 1 and 1.01. Thus as far as the forward-
backward asymmetry of the integrated spectrum is
concerned, it would be good enough for practical pur-
poses to neglect the eGect of the radiative correction
completely. This is because the integrated radiative
corrections F(x) and H(x) behave in a similar manner
as functions of x, and thus the major part of the radia-
tive effect is canceled out when taking the ratio (3.15).

is a function which increases from 3 to 1 monotonically
as x increases.

The integrated distribution including the radiative
correction is obtained from (3.3):
X„(x,fl) =-;a@—2eyx+( /2 )F(x)]

XLi —fQ, (x) cos9j, (3.13)
with

1 )1+2x'—3x'+ (n/2a. )H(x) i
Q.(*)=-I (3.14)

3 & 1 2x'+x4+(n/—2rr)F(x) )
F(x) and H(x) are the functions derived from f(x) and
h(x) by integration. Their explicit forms are given in
the Appendix. Numerical values of (a/2m)F(x) and
(n/2a. )H(x) are listed in columns 2 and 4 of Table I.

The forward-backward asymmetry of the integrated
spectrum, with and without the radiative correction,
is given by



p, DECAY KITH PARITY NONCONSERVING INTERACTIONS 599

rPg(x), (4.1)

where Q(x) is defined by (2.13) and r represents the
effective percent polarization of a muon at the moment
of decay. In the experiment of Garwin et at. ,

' the asym-
metry parameter P=——, is observed when positrons of
range) 8 g/cm' are detected. Assuming that this corre-
sponds to x=0.5, one obtains from (2.13)

«I (I = (33+»)/I 33+2+
I

{4.2)

Since rg1 in any case, {4.2) gives the lower bound to

4. DISCUSSION

The two-component neutrino theory gives much more
dehnite predictions than the general four-component
theory concerning the reactions in which the neutrino
participates. Thus it gives a decay spectrum which is
completely determined in the case of an unpolarized
muon and depends only on one parameter $ when it is
polarized. If a detailed measurement reveals that the
observed spectrum does not agree with the theoretical
curve, or the shape parameters p and 5, within experi-
mental accuracy, there is no doubt that the two-
component theory, at least in its simplest form, has to
be rejected. If the experiment reproduces the theoretical
spectrum of this model, however, it is not an unam-
biguous proof of the two-component theory as was
mentioned in Sec. 2.

So far we have discussed the spectrum of muon decay
assuming that the muon spin is completely polarized.
Since the polarization will not necessarily be complete
in the actual circumstances, the measured asymmetry
parameter F of the integrated 1+8 cos9 distribution
will have to be compared with

f(x) =2(3—2x)u(x)+(6 —6x) lnx

(1-x)
+ L(5+17x—34x') (ra+lnx) —22x+34x'),

3x2

h(x) =2(1—2x)u(x)+ (2—6x) lnx

(1—x)
+ —(—1—x—34x') (ar+lnx)

3x2

(A.1)

t., ln(1 —t)
I(x)= d~, I.(1)= —&/6,

Jo

o) = ln(p/m) =5.332.

(A.4)

(A.S)

F(x) and H(x) are functions obtained by integrating
2x'f(x) and —6g'h(x) over an interval (x,1). They
read as follows:

F(x)= (1—2x'+x4)v(x)+2I I.(1)—I.(x)3
+2x(2—g) (x lng)'+ (1—g)F, (g)

+x lnxF2(x)+ (1—x) ln(1 —x)F3(x), (A.6)

II (x) = (1+2x'—3x4)e(x)+10I I.(1)—I.(x))
+2x(—2+3x) (x lnx)'+ (1—x)H i(x)

+x lnxH2(x)+ (1—x) ln(1 —x)H3(x), (A.7)

4(1—x)'
3+'Ig—+32x' — ln(1 —x), (A.2)

g
where

u(x) =oP+co(-', —2 ln2)+2 ln2 —3

+1nxL3 ln(1 —x) —lnx —2 ln2j

+ (2~—1—1/x) ln(1 —x)+I.(1)—2I.(x), (A.3)

3&
I ~I »7/33=0. 52 (4.4)

must hold whatever the values of p and 5 are. In par-
ticular, if p=6= 4, it follows from (4.3) that

1&
I pI &13/17=0.76. (4.5)

Obviously our information about g is restricted essen-
tially by the lack of information on r. It is quite
important to determine accurately the degree of po-
larization of the muon at the instant of its decay for
the further development of the muon decay theory.

APPENDIX

The explicit forms of the functions f(x) and h(x)
which are encountered in (3.3) are as follows:

I gI & (33+8')/I33+ 24~1.

Making use of the relations (2.14), (2.15), and (2.16),
one finds that

where

p(g) = 2LaP+~ (2 —2 ln2)+ 2 ln2 —3j
+6 lnx ln(1 —x)+2I.(1)—4I.(x),

F,(x) =-', ln2(5+5x+Sx' —3x')
—is(o (14+12x+18x'—20x')

+ (1/36) (422+ 104x+275x' —255x'),

F,(x) = 6 (16—6x+40x' —19x')+4 ln2 (2x' —x'),

F g(x) = (4v —2) (1+x+x' —x')
—-', (2S+25x—11x'—3x')

IIi(x) =-', ln2(1+x+x'+9x')
—i3(u (10+4x—2x'+ 60x')

+—,', (254—92x+41x'+ 243x'),

H, (g) =
6 (24+ 18x—80x'+ 57x')

+4 ln2 (—2x'+3x')

H3(x) = {4u—2) (1+x+x'+3x')
—

6 (101—43x+65x'+ 9x')

(A.8)


