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Variational Calculations of Dipole Polarizabilities of Helium-Like Ions*
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The dipole polarizabilities of a number of helium-like ions are calculated by a variational procedure,
using the analytic ground state wave functions calculated for these ions by Green, Mulder, Lewis, and
Woll. Our values agree well with those obtained by Sternheimer by a numerical solution of the first-order
Schrodinger equation in the presence of an electric field. The basis for the convergence of our variational
procedure is discussed along with its advantages and disadvantages relative to Sternheimer's procedure.

Comparison is also made with experimental values of the polarizabilities. For helium, our value (0.218 A )
is within 7% of the experimental value (0.204 A'). For the iona Li+, Be++, 8+++, the agreement is only
fair. The diamagnetic susceptibilities are also calculated in order to test the accuracy of the ground state
wave functions. The agreement of our values here with the experimental ones is very good.

INTRODUCTION They used perturbed wave functions of the form

&~IPOLE polarizabilities of free atoms and ions have
been determined by a variety of methods per-

taining to the gaseous, liquid and solid states. A brief
but adequate review of the various methods has been
made recently by Sternheimer. ' Tessman, Kahn, and
Shockley' have obtained values of polarizabilities for
a large number of ions in ionic crystals from refractive
index data in solid state. Values of polarizabilities
deduced from data on solid and liquid states cannot be
considered as representative of free ions by virtue of
the presence of water of hydration molecules around
the ions in solution, and the possibility of some covalent
binding between the cations and the anions in the ionic
crystals. Theoretical values of the polarizabilities of the
free ions are therefore best compared with the values
obtained from spectroscopic term defect data. This
procedure for estimating polarizabilities of ions was
first proposed by Born and Heisenberg' and later used
by Mayer and Mayer4 for a number of ions. Stern-
heimer' has recently made a recalculation of the dipole
polarizabilities of some of these ions taking into con-
sideration the eGects of the quadrupole polarizabilities
of the ions.

Among the earlier theoretical procedures employed
in the calculation of the polarizabilities is the variational
procedure used by Hasse' and AtanasofI' for the helium

atom. These authors used, for the ground state of the
helium atom, a Hylleraas wave function o(Nr r rr s),rs
where r~ and r2 are the distances of the two electrons
from the nucleus and r12 is the interelectron distance.

tto(rr, rs, rts) f &+&Lzif(ri, rs,rrs)+~sf(rr, rs, r12)1},

where E is the applied 6eld, Zl and Z2 are effective
charge parameters involved in the Hylleraas7 wave
functions and f(r&,r&,r») is an analytic expression
involving parameters which are obtained by minimizing
the perturbation energy to the second power in E.
AtanasoG obtained a value of the polarizability within
5% of the experimental value by this method.

Sternheimer' has obtained the dipole polarizabilities
(denoted henceforth by ae) of the helium-like ions by
solving the 6rst-order Schrodinger equation involving
the perturbation due to an electric field. For the ground
state wave functions, he used analytic Lowdin functions
which di6er little from those of Green et a/. ' which we
use. However, in his earlier work. , in order to avoid
excessive calculations, he made use of an approximation
which briefly is the following. Since the Lowdin wave
functions involve the sum of a number of hydrogenic
terms, an analytic solution is no longer possible for the
perturbed Schrodinger equation. Sternheimer assumed
the solution of the perturbed equation to be the sum of
the analytic solutions obtained by using separately the
various hydrogenic terms in the ground state wave
functions. Recently he has recalculated the polariza-
bilities without his earlier approximation, i.e., by solving
the perturbed Schrodinger equation numerically. For
Be++ and 8+++, he finds the value of e& to be nearly
the same by both procedures. For Li+ the approximate
method gives a result about 5% larger than the detailed
numerical solution, while for He and H, the e~ are
about 6% and 20% larger, respectively, than the
values obtained by the numerical solution.

In our calculations we adopt a variational procedure
which resembles that of Hasse, ' Atanasoff, ' and
Buckingham' and is identical with the procedure em-

ployed recently by Bersohnro to calculate shielding (and
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antishielding) of nuclear quadrupole moments of ions
in crystals. Thus the perturbed wave function employed
for each electron is taken to be of the form

No+NoHr(n+Pr+yr'),

where B~ is the perturbation Hamiltonian for each
electron in the electric field and r is the electron distance
from the nucleus. The quantities rr, p, y are variation
parameters obtained by minimizing the energy to the
second power in the field. The motivation for these
calculations was twofold. First, we wanted to test the
convergence and accuracy of Bersohn's'0 variational
procedure when applied to the dipole polarizabilities.
Secondly, we wanted to compare the results of the
variational calculation with Sternheimer's' results.
Further, since Sternheirrier's recent values were then
not available, we wanted to calculate O.d without the
earlier approximation made by Sternheimer by a pro-
cedure which would riot require any extensive compu-
tational eGort. It is gratifying that our values agree
quite well with Sternheimer's revised values.

where f(r) is a variational function which must be
adjusted to give a minimum value for the energy. When
the ground state is an S state, we have go=go'/V2,
where

fo'=Nr(e z'+Ce sz")

is a function of r only. The quantities Z, k, and C have
been tabulated by Green, Mulder, Lewis, and Woll. '
g is the normalization factor. One may then write

where

We must now choose a suitable f(r). Equation (8)
may also be written

Thus we want to hand a function f(r) which resembles
the quotient function V2$&'/qko' as closely as possible.
In general, then, we write

I. VARIATEONAL PROCEDURE

As mentioned in the introduction, the procedure used
is analogous to that employed in the calculation of the
shielding of nuclear quadrupole moments by core elec-
trons in ions. The net Hamiltonian for an atomic
electron, in the presence of the electric field due to a
unit positive point charge at a distance E. from the
nucleus, may be written as

H=Ho+Ht,
where

v2$t'/qko'e+ "I'=P; C;L; (r)e "
which can be rewritten as

(10)

where the p; are a complete set of functions" and the

C; are parameters to be adjusted, using the variation
principle. As pointed out by Shull and Lowdin" the
functions L;(r)e ",where the L;(r) are Laguerre poly-
nomials, form a complete "discrete" set of functions. We
therefore use the expansion

Ho= —7'+ Vo,.

H & 2r cos—8/Rs. ——

(2)
Now the Laguerre functions" are actually polynomials
in powers of r, so, in place of (11),we use the following
form for Pt'.

Atomic units are used throughout the calculations.
The polar coordinates r, 8 of the core electron are taken
with respect to the nucleus as origin, and the line

joining the neighboring charge and the nucleus is taken
as the s axis (8=0). Vo refers to the zero-order self-
consistent atomic potential, in which the electron moves
and Ht is the perturbation term. Denoting by fo the
ground state wave function for the electron and by f,
the perturbed wave function, then by the usual first-
order perturbation theory, one obtains

(Ho —&o)fr=—(Hr —K)go,

where Eo is the ground state energy and Ej is the first-
order perturbation energy,

lf'r'= (1/V2)A"r(a+Pr+V r '+ .), (12)

where o., p, y, etc., are variation parameters to be
adjusted to give a minimum energy in the presence of
the electric field. To make use of a complete set of
functions, we should rigorously have an infinite number
of terms in Eqs. (11) and (12), but it has been found
that terms beyond yr' may be excluded, since these
terms produce a negligible change in the energy, and
hence in the polarizability.

It is clear from Eqs. (4), (6), and (12) that the
s-electron can be excited only to the p-state by the
perturbation Hi. The perturbed energy to second order
in the field (i.e., involving no powers of 1/R higher

Sternheimer obtained P& by solving Eq. (4). We calcu-
late fr by a variational procedure by taking

fr = foHr f(r), —

"P. A. M. Dirac, Quanfum 3Iechueks (Oxford University
Press, ¹wYork, 1956), third edition.

~ H. Shull and P. O. Lowdin, J. Chem. Phys. 23, j.362 (1955)."The authors are grateful to Professor R. Sersohn for pointing
out the relation between our variation procedure and the pro-
cedure employed by Shull and Lowdin (reference 12) in obtaining
a convergent series expansion for helium agog orbitals.
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TABLE I. Results pf variational calculation of dipole polarizabilities of He-like ions.

Ion

He

Be+

3.04667
0.81887
0.72737

0.393925
0.16360
0.16146

0.148757
0.066399
0.066238

0.077268
0.035701
0.035585

0.047297
0.022243
0.022176

0.67159
0.72478

0.18642
0.18984

0.10781
0.10822

0.075281
0.075697

0.057907
0.058213

—0.0055758

—0.0010555

—0.0002 103

—0.00029527

—0.00027814

(This work)

10.99
14.88
14.88

0.184
0.218
0.218

0,0262
0.0305
0.0305

0.00707
0.00812
0.00813

0.00265
0.00303
0.00303

Polarizability ad (AI)
(Sternheimer) a

13.4

0.224

0.0307

0.00825

0.00306

(Experimental)

0.204

0.0235

0.0059

0.0029

a Recent revised values obtained by R. Sternheimer (private communication).

than 1/R4) is given by

&=&s+&AI&~A)+2QoI&~If~&+Q~l&s —&sly) (1»
It may be seen from Eqs. (3) and (7) that

Also, since Es does not involve a, P, or y when mini-
mizing the net energy E with respect to a, p, and p,
one need only consider the second order terms

&s= 2Q slKIA)+(0 ~ I
&o—&oI &~) (14)

By using Eqs. (2), (3), (6), and (7), it may be shown
that

(r")= "ys"r"r'dr. (16)

Minimizing Es with respect to n, p, and y successively,
one obtains three simultaneous linear equations in 0.,
p and p. The coefficients in these equations involve
expectation values of r" over the radial parts of the
ground state function. Using Eq. (7) for Ps', one obtains

(
(I+2)! cs(m+2)! 2c(I+2)!

(r")=1P + + (17)
I (2z) "+' (2ks) "+'

I (k+1)sj"+'

The values of (r") for the various He-like ions are
calculated from this expression using values of c, k, and
z tabulated by Green, Mulder, Lewis, and Moll. The
solutions of the requisite simultaneous equations then
yield n, p, y, which, when substituted into Eq. (14),
give Zs in terms of 1/R'. Since there are two electrons
in the is state in the ground state configuration of

8
Z,= I

sas+4 P&r&+ 5~&r')+SP~(rs&+SP'&~)
3E.4

+(»/2)~'&")- (")-P(+&-v&"H, (»)
where

He-like ions, the net perturbation energy for the ion is
equal to 282. Equating this to n&E',"where 8= 1/E'
is the field due to the point charge at the position of the
nucleus, the polarizability e& is then given by

«xg
——2EgR4,

where Es is given by (15).The quantity az, as given by
Eq. (18), is in atomic units and the conversion factor
(0.529)' is necessary to convert to A'. To test the
convergence of the variational calculations, values of O, g

were obtained by using one, two, and three parameters
in (12), starting with a.

II. RESULTS AND DISCUSSION

The results of our calculations are tabulated in
Table I. For comparison, experimental values and.
Sternheimer's calculated values are also included. The
experimental values for Li+, Be++, and 8+++ are those
obtained by Sternheimer from spectroscopic term defect
data; for helium the value is that of Herzfeld and
tA'olf, " as obtained from their optical refractivity
measurements on helium gas after extrapolation of
their measurements down to zero frequency.

Several points are to be noted in Table I:
1. The convergence of the variational calculation is

excellent for all ions. The introduction of two param-
eters n, p causes a considerable change from the value
of n~, using a single parameter n alone, but the use of
the additional parameter p causes very little change in
a&. A similar behavior was noted in I for quadrupole
polarizabilities. The very good convergence of the vari-
ational calculation shows that a reliable value of a~

'4 The energy of the atom in the electric 6eld is taken as a&E
and not a&E'/2, because the unit of energy in atomic units is a
Rydberg (=ss/2ao, so=Bohr radius).

'~ K. P. Herzfeld and K. L. Wolf, Ann. Physik 76, 71 and 567
(1925).
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FIG. 1. Polarizability ud versus eRective nuclear charge Z'.

~'Quadrupole polarizability calculations for other ions than
those in I will soon be completed.

'7 Refer to Eq. (15) in reference 1.

may be obtained provided the ground state wave
function is correctly known.

2. The agreement between our calculated values and
those of Sternheimer is quite good except for the H
ion, where there is a difference of about 10%. Since
both his and our methods have been used for extensive
calculations on dipole and quadrupole polarizabilities
of ions, " it would be meaningful to discuss here the
relative merits of the two procedures. In our calculations
we use in (12) a variational function of the form of (6)
for I&', which directly involves the ground state wave
function No'. Our calculated N~', and hence ed, will
therefore include the error present in the approximate
ground state wave function used. In Sternheimer's
procedure, the ground state wave function occurs on
the right hand side of the differential equation" he
solves for u~'. It probably will not be as dependent on
the accuracy of No' therefore, and most likely would
lead to a more accurate result. Our procedure involves
only a knowledge of the expectation values of diGerent
powers of r over the ground state wave function and
once these are known, one need only solve a set of
linear equations in e, P, and 7 to obtain the polariza-
bilities. Also these same expectation values may be
used for an estimation of quadrupole polarizabilities
and Sternheimer antishielding factors, y„, for nuclear
quadrupole moments, as discussed in Sec. I. Stern-
heimer's procedure requires the numerical solution of a

diGerential equation for each ion. Apart from the longer
computational eGorts necessary, his method also is
susceptible to cumulative errors due to rounding oG
and due to the use of finite intervals in the process of
solving the diGerential equation. This could be the
reason that our value of o.~ is somewhat nearer the
experimental value than his for the helium atom.
However, by using high-speed computing machines,
errors due to rounding oG can be reduced to a great
extent, and then Sternheimer's method would be
inherently more accurate than ours.

The agreement between our results and the experi-
mental ones for positive ions is not very good, as seen
in Table I. These experimental values, however, are
estimated from spectroscopic term-defect data and not
as much reliance should be placed on them as the
directly measured value for the helium atom. AtanasoG'
has calculated the value of a~ for helium, using the
Hylleraas ground state wave function and a complicated
variational function mentioned in the introduction. He
obtained a value within 5% of experiment. Since he
included r~~ terms both in the ground state and the
perturbed state wave function, his procedure took
direct account of spatial correlation eGects between the
electrons. But since our value, using a simpler wave
function without spatial correlations, is within 7%%u~ of
experiment, it may be concluded that these eQects do
not lead to any large error in o.~ for helium. For the
positive ions, Li+, Be++, and 8+++, the spatial corre-
lation effects would be expected to be smaller and
therefore more reliance may be placed on these calcu-
lated values of nd than on the experimental values
tabulated in Table I. For each of the positive ions, the
values of n& shown are the mean of a fairly wide range
of values obtained by Sternheimer from spectral term-
defect data for various states of a valence electron
outside the closed shell. For the H ion, on the other
hand, the correlation eGects are likely to be more
important. There is no experimental value available to
confirm this. Shull and Lowdin" have recently proposed
a set of ground state wave functions for the helium-like
ions where spatial correlation is included by making the
two electrons move in two separate hydrogenic orbitals
with diGerent Z factors. It would be interesting to
investigate the change in the values of 0,~ for these ions
using the Shull and Lowdin ground state wave functions.

3. To obtain additional information on the correct-
ness of Green, Mulder, Lewis, and Wolls' wave func-

tions, which were employed in our calculations, they
were used to estimate the diamagnetic susceptibilities
of the He-like ions. Van Vleck" gives the following
expression for the molar diamagnetic susceptibility, viz. ,

5.664' 10'o(r')

"H. Shull and P. O. Lowdin, J. Chem. Phys. 25, 1035 ($956)."J.H. Van Vleck, Theory of E/ectric and Magnetic Suscepti-
bilities (Oxford University Press, New York, 1932), p. 206.
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where (r') is in cm'. The values of y .q obtained from
this equation are tabulated in Table II. In the third
column of this table are shown the values of X,l

calculated by Pauling, using screened hydrogen-like
wave functions. In the fourth column, the experimental
values of x,l for He and Li+ are listed. Hector and
Wills obtained the value for He by direct measurement
on helium gas which may be considered accurate, while
the wide range of values of X,l for Li+, obtained by
various authors, are from susceptibility measurements
on Li salts and salt solutions. Our value of g, l for He
agrees very well with Hector and Wills' experimental
value, but Pauling's value is somewhat smaller. There
is a better agreement between Pauling's values and
ours for the positive ions, indicating the validity of
Pauling's approximation of screened hydrogen-like
orbitals for these ions, and its poor validity for the
helium atom and H ion. In addition, it is to be noted
that the evaluation of y, l involves the ground state
wave functions only, whereas in calculating the dipole
polarizability, use is also made of the perturbed wave
function in the presence of the electric field. If the
departure of our value of ad from experiment be mainly
ascribed to the neglect of correlation effects, then the
very good agreement with experiment (within 2%%u~) of

the calculated value of X,l for helium, as compared to
the less satisfactory result for nz (7% diGerence),
indicates that correlation effects are more important in

TABLE II. Calculated values of x oq compared with those of
Pauling's and the experimental values.

Ion Our results
&O' Xymoi

Pauling's value Experimental values

H
He
Li+
Be++
B+++

—14.49—1,873—0.7073—0.3674—0.2249

—8—1.54—0.63—0.34—0.21

—1.88—0.2 to —1.3

the perturbed state than in the ground state of the
helium atom.

4. One anal conclusion may be drawn from our
calculations. In Fig. l are plotted the values of nd as a
function of the eGective charge Z' on the ions. The
very rapid alteration in a& with change in Z indicates
that the electronic polarizabilities in ionic crystals will

depend very sensitively on the presence of any covalent
bonding between adjacent ions. Since the presence of
covalency decreases the effective positive charge on
the cations, the electronic polarizabilities of cations
would be smaller in the solid than in the free state.
The opposite would be expected for anions.

The authors are very grateful to Professor E.I..Hahn
for his keen interest in this work. We are also grateful
to Dr. R. M. Sternheimer for very helpful communi-
cations Iand for informing us of the results of his
revised"-:calculations.


