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reported that experiments with low-energy electrons
(less than 0.6 Mev) result in defects stable at room
temperature (i.e., vacancies and interstitials separated
by more than the capture radius) at electron energies
which are not likely to displace the germanium atoms
by more than a few lattice spacings.

E. Confirmation of the Theory

The theory of diffusion-limited chemical reactions
developed here and in the preceding paper provides a
satisfactory description of a large portion of the anneal-
ing data discussed here. The data which are not Gtted
adequately appear to scatter considerably owing to
experimental error, but may indicate that some of the
assumptions outlined in Sec. VI are not satisfied. The

present annealing problem does not provide a complete
test of some aspects of the theory because the competi-
tion of many A's for each of the 8's and vice versa does
not appear to be important and, therefore, a less general
theory might suf5ce. However, it does appear safe to
conclude on the basis of the present work that the
application of diffusion theory to the kinetics of certain
reactions in the solid state leads to satisfactory results.
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A theoretical treatment is given of two dispersion phenomena in the field-etfect experiment: (1) dispersion
arising from the finite time required to generate minority carriers, and (2) relaxation of the fast surface
states. It is shown that the in-phase part of the field-e&ect mobility is given (for an n-type semiconductor)
by tsFa= ts, +A/(1+ca'rP) —B/(1+co'rP), wh—ere (ru/2s) is the frequency of the applied field, A and B
are constants, and rj. and v2 are characteristic times, all four quantities being functions of the body resis-
tivity, surface potential, and of the densities, energy levels, and capture cross sections of the fast states.
Under certain conditions, r& is equal to the fundamental decay-mode lifetime of the sample, while v2 is
expected to be much shorter, and depends primarily on the cross sections and the position of the state level
in the gap. A comparison of the theory with recent experimental results of Montgomery shows (1) that
reasonable agreement can be obtained, and (2) that the presence of any significant number of states in the
region close to the center of the gap is unlikely.

1. INTRODUCTION

HE Geld-eGect experiment is the observation of a
change in the conductance of a thin slice of

material, caused by the application of an external
electric Geld normal to its surface. Such an eQect was
looked for in metals around the turn of the century,
and the failure to detect it was discussed by Thomson. '
Since the volume density of electric carriers may be
many orders of magnitude less in a semiconductor
than in a metal, a fresh attempt at the Geld-eGect
experiment was made by Shockley and Pearson' some
ten years ago, using the high-purity silicon then
available for the erst time. A modulation of conductance
was indeed found, but the magnitude of the eGect was
less than expected. One possible reason for this was
suggested by Bardeen': the semiconductor surface has
on it electronic trapping levels, which tie up most of

' J. J. Thomson, The Corpsssoltor Theory of fretter (Constable
and Company, London, 190/), p. 80.

s W. Shockley and G.~L. Pearson, Phys. Rev. 74, 232 (1948).' J. Bardeen, Phys. Rev. 71, /1/ (1947).

the induced charge in localized sites ("surface states").
Since then, many experiments have condrmed the truth
of Bardeen's suggestion. Montgomery and Brown4 have
studied the field-e6ect experiment in germanium, as a
function of the height of the surface space-charge
barrier. Brattain and Garretts ' have brought the
field-effect experiment into reconciliation with a parallel
line of work —the study of surface photovoltage and
surface recombination. ' It is now fairly well established
(1) that there are two classes of surface states on
germanium and silicon, distinguished by having relaxa-
tion timess of the order of a second or greater (the
"slow states"), or a microsecond or less (the "fast

4H. C. Montgomery and W. L. Brown, Phys. Rev. 98, $165
(19SS);103, 865 (1956).

I W. H. Brattain and C. G. B. Garrett, Bell System Tech. J.
35, 1019 (1956).

6 C. G. B. Garrett and W. H. Brattain, Bell System Tech. J.
BS, 1041 (19S6).

~W. H. Brattain and J. Bardeen, Bell System Tech. J. 32,
1 (1953).

I.e., times for readjustment of state population, by interchange
of charge with whichever band is the more accessible.
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states"), and (2) that the fast states are also the states
responsible for surface recombination.

For some time, the idea has been current that, if one
could carry out the Geld-eGect experiment at a high
enough frequency, one could. "outwit" the fast states,
and obtain the full eRect, in which every induced charge
adds to or subtracts from the conductance of the slice
by one electronic carrier. Recently Montgomery' "has
reported measurements of the Geld eRect at frequencies
up to 50 Mc/sec, using the Aigrain method, " which
determines the real (in-phase) part of the conductivity
modulation. His experiments do indeed show dispersion
in the last decade of frequency, which is very reasonably
associated with relaxation of the fast states. The experi-
ments also show dispersion in the range where the
frequency is comparable with the reciprocal of the
minority-carrier Glament lifetime. The interpretation
of this eRect, Grst given by Brown, 4" is this. Let us,
for the moment, assume that there are no surface
states. Now, if the body minority carrier is present in
excess at the Geld-free surface, a small charge induced
by the applied Geld must appear as a change in the
surface excess of this carrier. This change must arise
from a Bow of minority carriers from the bulk to the
surface or vice versa. At the frequencies in question,
however, there is not time for these minority carriers to
be supplied or taken up by thermal generation or
recombination. Therefore, to preserve space-charge
neutrality in the bulk, an equal number of majority
carriers must leave or enter the sample via its ohmic
contacts. Similar language may be used to describe
the situation in which fast states are present.

The present paper oRers a theoretical treatment of
both dispersion phenomena. The object of the calcula-
tions is to present general expressions for the in-phase
part of the fi, eld effect mobility-,

'' which is defined as
the ratio of the change in surface conductivity to the
induced charge density. The method will be to write
down expressions for the rates of capture of carriers
from the conduction and valence bands by the surface
states, and match this to the rates at which carriers
diRuse towards the surface from the interior, allowing
for the accumulation of holes and electrons in the space-
charge region. In this way we implicitly allow for the
creation and annihilation of carrier-pairs through the
surface states (surface recombination).

The calculations will be carried out for a single
surface trapping level, having the properties of the
traps considered in the Shockley-Read theory. " Of
course, since it is not usually possible to account even

' H. C. Montgomery (to be published).
"H. C. Montgomery and B.A. McLeod, Bull. Am. Phys. Soc.

Ser. II, I, 53 (1956).
"Aigrain, Lagrenaudi, and Liandrat, J. phys. radium 13,

587 (1952).
'~ Garrett, Brattain, Brown, and Montgomery, Proceedings of

the 1956 Philadelphia Meeting oe the Physics of Semiconductor
Surfaces (University of Pennsylvania Press, Philadelphia, 1956).

"W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

for the low-frequency field-eRect data in terms of a
single surface level, 4' we must not expect the agree-
ment between the present theory and Montgomery's
results to be good over the entire range of surface
potential. Properly, we ought to carry out the calcula-
tions taking into account at least a pair of levels,
one high and one low in the gap'; possibly we should
even generalize still further, and consider a continuous
spectrum of levels. ' However, it will turn out that the
algebra involved is already complicated enough with
a single trapping level. Should future developments
demand a consideration of the more general case, it
should be possible to proceed by a straightforward
extension of the arguments to be given below, with
no additional difBculties in principle.

where g& is the density of traps on the surface.
Another condition to be satisGed is that of overall

charge balance. Let Z be the total charge density
(expressed in electrons/cm') outside the semiconductor
surface, consisting of the sum of the charge associated
with slow states (assumed independent of time in what
follows) and the field term (eesE/4s e). Also let I'„and
F stand for the surface excesses" of holes and electrons.
Then

(I'„I' ) Egft—,=Z— (4&

Now we must bring in the transport of carriers across
the space-charge region, and from the space-charge
region into the interior. Taking the second topic Grst,
it should be noted that it would be perfectly possible
to set the equations up in ambipolar form, but that it
is algebraically simpler to work the problem out for a
moderately extrinsic semiconductor, so that the trans-
port of added carriers through the bulk may be con-
sidered by evaluating the rate of diRusion of minority
carriers. We shall therefore choose the semiconductor

'4 C. G. B. Garrett and W. H. Brattain, Phys. Rev. 99, 376
(1955).

2. FUNDAMENTAL EQUATIONS

We shall use the notation of Garrett and Brattain. ' "
We suppose that there is, on the surface, a trapping
level characterized by„;Shockley-Read parameters" C„,
C~, pi, and tsi, and let p„e., and f~ stand for the (time-
dependent) concentrations of holes and electrons at
the surface, and the (time-dependent) trap-filling
factor. Then the rate U,„of capture of electrons by
the traps is

U,„=C„I(1—fg)ts, —f&Ni],

while the rate U,„ofcapture of holes by the traps is

U. =C
I f~p (1—f~)pi—j.

The diRerence between these is the rate of filling
of the traps:

U.„—U,„=1V,df,/dt, (3)
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to be extrinsic e-type, so that holes are the minority
carriers. We further introduce a quantity 8, de6ned as
the geometric mean shift of the quasi-Fermi levels for
holes and electrons near the surface, measured in units
(kT/e). The minority-carrier current I„away from
the surface, at a point just below the space-charge
region, may now be related to 8 by solving the diftusion
equation for minority-carrier transport below the
surface, taking into account whatever boundary condi-
tions are appropriate to the problem (see Sec. 4). In
general we shall 6nd that, for small-signal ac conditions,

I„=Z8,

where Z will usually be a complex function of the
frequency, lifetime, etc. :

Z= Z'+iz".
We turn lastly to the transport of carriers across the

space-charge region. Firstly, it should be said that we
are not primarily interested in transit-time eGects in
this paper, largely because their consideration presents
severe analytic problems. It is also convenient to
neglect recombination in the space-charge region.
With these two assumptions, the hole and electron
currents across the space-charge region may be treated
as solenoidal. Their magnitudes are also sufFiciently
small for one to be able to assume that the change in
quasi-Fermi levels for holes and electrons across the
space-charge region may be neglected. Thus 8 can
stand indifferently for the geometric mean shift of the
Fermi levels, either at the surface itself, or at a point
just below the space-charge region. One may also
assume, as in the dc case, that 1 „and F„are functions
of the two independent variables 8 and F, the difference
in electrostatic potential across the space-charge region,
measured in units (k2'/e). Finally we may write down
the last fundamental equation:

U,~+I~+dr ~/dt =0. (7)

The next stage of the analysis will be to look for
sinusoidally-varying solutions of Eqs. (1) through (7).
It will be convenient to evaluate the time-dependent
solution for the two variables 8 and Y. The amplitude of
variation of Z will be supposed suKciently small for
the problem to be linear. Thus, if we write

a=be'"' i=a+pa", F=Fo+Ye'"' Y= Y'+it", (8)

z=zo+ pe'"' (9)

3. DEVELOPMENT OF THE ac SOLUTION FOR
THE VARIABLES 6 AND Y

Equations (1) through (7) suKce to determine the
small-signal ac solution for the geometric mean shift
of Fermi levels b and the variation in surface potential

the object of the next stage in the analysis will be to
determine 6', 8", V', and F"as real multiples of 0..

P. The "induced charge" (the ac part of Z) is supposed
to be as shown in Eq. (9).

Subtracting (2) from (1), using (3), and then substi-
tuting for fi from (4), we have

(c„/E,)Lp, —r,+r„yz)N, —(r,—r„—z)~,7
—(Cn/&~) I:(rn—r-—z)P.—P s

—r.+r-+z)Pi7

=—(r,—r„)-—z. (10)
dt dt

Again, from (2) and (7), using (4), we find:

(c„/x,)I (r„—r„—z)p,—(r,—r„+r„+z)p,7

r, —I—,. (—11)
ct

We next write

(BPs'i f BPs)i
p.=p"+I I a+I

( M r &BY

)Be,) )Be,)
o+ I I B+

I

E Mlr (BY) p

(Br~) f'Brs, )r.=r.p+I I a+I
& BB &r (BY) p

(Br„) ts BIr.=r.o+I I a+I
E BB)r &BY) p

where the partial differentials are functions of the
surface potential Y and of the bulk resistivity, and may
be written down by use of the standard theory of the
surface space-charge region. " Inserting the above
expressions, and approximating for small-signal condi-
tions at a frequency (pi/2pr), we get, from (10),

(Bps) (BBs)
C fol I

—C.(1—fo) I

E BB r E aa

1
t Cp C~, ~

—

t Br,q t Br„~+—
I +

1Vi ~ fo 1 fo) - ( BB ) r —3 Bb]r-'
fBry't

E BB ) r & BB ) r
t'BPsl f arts'i

+ C.fol I

—C-(1—fo) I(BY) p (BY) p

1 pC,pi C„li ~ par, y )ar q+—
I +

Es( fp 1 fp) &BY) p
&—BY) p

+~
. &BY)p &BY)o

1 (Ci,pi C~iti l
(13)

Xi & fo 1 foi—
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and, from (11),

(Bp,) c„p (Br„i (Br„)
C.fol I +( BB ) r X(fp. E BB ) r ( BB ) r

Bs—= —x,Qz" f (1—f )—E, ' (r„—r.)
BY

Br„
+z'+i vol I

+z"
EBB)r

(Bp,p C~pi (Br„p (Br„p+ c.fol I+ I I
—

l I

LBY) o Ngfp (BY) o (BY) o

(Br„)
I

c pi
+~l I ( Y= — 0, (14)

& BY') pl 1Vgfp

B' 86+$$
e'+oP

O', X)—|'
cP+oP

(15)

e'+oP

Y" Or —e8
6'+8'

Here the script letters 8,, S, . . . denote the following
expressions:

1 B
+=—&8 fo(1—fo) —— (r„—r„) (se~+Z')

3(g BY

B BF~ BF„BF„BI"„—~z" (r„—r„)+~'
BY '. B6 BY BY B5.

where fp is the mean (zero-field) value of the 6lling
factor fi

The coefficients in Eqs. (13) and (14) may be
simpli6ed by making use of certain relations. One
knows, for example, that the equilibrium 6lling factor
fp is equal to m, o/(e, p+Ni), and that p,pe, p

——pili ——e;o.
One also knows that, to the 6rst order in 8, e,=)—'n;e~

X(1+Iib) and P,=he, e r(1+ii '8), where Ii= (Np/e, ),
so that the differentials (Bp,/BY), (Bp,/Bb), (Be,/BY)
and (Be,/BB) may be written down. Proceeding in this

way, and separating into real and imaginary parts by
(8) and (9), we may arrive at the solutions of (13)
and (14):

— Br„Br„-
+(uC„(1—fp)e, X

BY B8

Br„Br„-
a)C„—fpp, Ii ' +

BY B6 ~

BF„BF„BI"„BF„
+(pQ —,(17)

BY Bb Bb BY

t —=aP(BI',/BY),

0=+(uC—~foP, ipQ(Br„/BY),

Q(s—e;+Z') z~p—
"

uP (—Br„/Bb),

(Ig)

(19)

(2O)

( pp+~p) C, C„
S=

C„(p,+pi)+C„( I+n )i
(22)

and also a frequency 0, which, it will turn out, is closely
connected with the higher-frequency relaxation process:

Q= I C.(I,+Ni) yc„(p,+pi))/X(. (23)

This concludes the working of this section. The
complexity of the above results may look a little
forbidding. There is no simple approximation to Eqs.
(15) to (23) that is of general usefulness throughout the
frequency range of interest. However, it will usually
be true that the frequencies characterizing the two
dispersion effects ("lifetime" and the relaxation. of the
fast states) are sufficiently different for one to be able
to treat them separately, using a diferent approxima-
tion to (15) to (23) for the discussion of each. This
will be done in Secs. 6 and 7.

Let us brieQy review the progress so far. Starting
with the fundamental equations for the rates of trapping
of holes and electrons, charge balance, etc., and making
use of the fact that the carrier concentrations at the
surface and surface-carrier excesses are functions of the
two system parameters 8 and Y, it has been possible
to deduce the complex amplitudes 3 and Y in response
to the application of an ac 6eM to the surface. The
expressions derived in this way have involved a quantity
Z, which relates, through Eq. (5), the ac minority-
carrier current at a point just below the space-charge
region to 5, which describes the amplitude of the ac
departures from equilibrium there. In the next section
we relate Z to the bulk lifetime, geometry of the

0$&u(B—r~/BB)+Z")+cvZ'+or C„foXP „(21)
in which it has been convenient to introduce s, the
surface recombination velocity, given by:
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sample, etc. Then, in Sec. 5, we shall proceed to take
the ac solutions for 8 and 5 and use them to,deduce the
in-phase ac conductivity modulation for a slice of
given properties.

4. Z

It will be noticed, from Eq. (5) and the definition of
b given in the paragraph preceding that equation,
that Z has the form of a generalized "input admittance"
of the bulk, as seen from the surface. It therefore
depends on the geometry of the sample, and may be
calculated by an argument essentially identical to that
used by Shockley" to determine the ac properties of
a pg junction. Only the outlines of the argument will

be presented here.
The differential equation to be satis6ed at all points

below the space-charge region is

8'Ap Bhp hp
D = +

x Bf
(24)

where x is the perpendicular distance below the surface,
hp the added carrier concentration at that point, D
the minority-carrier diffusion constant, and 7- the bulk
lifetime. The boundary condition at x=0 is

(Ap). 0——e,3, (25)

from the definition of 5.
The situation of most general interest concerns a slice

of uniform thickness X, having, on the surface farthest
from that to which the 6.eld is applied, a surface
recombination velocity s*, which may or may not be
equal to s. This gives the other boundary condition,

(D~~p).= = (s*~p)*= — (26)

The solution of (24) appropriate to a periodic 8 of
frequency (co/2m) is of the form

Dp=A exp) xM/(Dr)&$+B —expfxM/(Dr)'j, (27)

where 2 and 8, determined by (25) and (26), are

It will be noticed that Eqs. (28), (29), and (30)
include the body lifetime (through P and M) and the
surface recombination velocity s~ at the back surface,
but not the surface recombination velocity s at the
front surface. This is because we have implicitly in-
cluded recombination effects at this surface in the
discussion of the rates of capture of carriers by traps
in Sec. 2.

We have now deduced both the minority-carrier
current at a point just below the space-charge region,
and the actual distribution of carriers across the width
of the slice, in terms of b. In the next section we shall
complete the formal working by showing how this in-
formation may be used, together with (15) to (23),
to deduce the conductivity modulation of the sample.

5. CONDUCTIVITY MODULATION

At low enough frequencies, at which there is always
equilibrium inside the semiconductor (8=0), the only
way in which the conductivity of the sample may
change is by variations of the surface excesses F„
and I'„, At higher frequencies, however, one must
consider in addition the existence of pairs of excess
(or deficit) carriers in the space-charge-free region,
fairly deep into the semiconductor. The observed change
of sheet conductance of the sample will be the sum of the
two, having regard to sign. Because the variation of
8 and Y with time will not, in general, be in phase with
that of Z, there will be both an in-phase and an out-of-
phase conductivity modulation. The experiments so
far reported by Montgomery describe only the inphase
component (except at the highest frequencies, where
there is some uncertainty, owing to circuit phase shifts);
presumably the out-of-phase component could also be
measured by a straightforward modification of the
measuring circuit.

We now write down the surface and volume contribu-
tions to the conductivity modulation of the sample in
terms of 5 and F.

(vnM+s*) e&~

A =-,'~,~
vnM cosh(PM)+s* sinh(gM)

(vg)M —s*)e &~
8=-',Ng

wDM cosh($M)+s* sinh((M)

(28)

(29)

(i) Contribution from the Surface Excesses

The additional conductivity DG& due to the surface
excesses is

- ~or l (ar
I +&I

E ab ) r E ah ) r.
where )=X/(Dr)&, en= (D/r)&, and M= (1+ion)&.

The quantity needed for substitution in the work
of the preceding section is

Z=(5 'I,). p
———(b 'Dip) where b is the ratio of the electron to the hole mobility.

=vnM5-'(A —8)
vnM sinh(gM)+s* cosh((M)=e;zg)M—
voM cosh()M)+s* sinh()M)

"O'. Shockley, Bell System Tech. J. 28, 435 (1949).

(30)

(ii) Contribution from Excess Carriers in the Body

The distribution of added carriers in the body of the
sample is known, for the case of a parallel-faced slice,
from the work of the preceding section )Eqs. (27),
(28), and (29)]. The additional conductivity d,G2
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associated with these carriers is

~X
AGo= (1+b)eN,„) Apdx.

0

(32)

This completes the formal working. If, now, we wish
to express the conductivity modulation in terms of a
"field-effect mobility" p, pz, which will in general be
complex, we must sum the contributions from (i)
and (ii):

@pm= (DGg+a G)p/eo. , (34)

To calculate the eGective mobility, we need to start
with (15) to (23), substitute Kq. (30) for Z, substitute
the resulting expressions in. (31) and (33), and then
use (34). There would be little point in writing down
the general expressions so obtained. It is convenient
from this point on to take advantage of the actual
magnitudes of the parameters occurring in the practical
case of germanium, and to discuss separately the low-
and high-frequency dispersion phenomena. This will
be done in the next two sections.

6. THE LOW-FREQUENCY DISPERSION
PHENOMENON IN A THIN SLICE

In the practical case of a thin slice of germanium
having etched surfaces, the frequency 0 is of the order
of 10' sec '. Thus, at frequencies small in comparison
with this figure, one may drop the second term from
each of (16), (17), (20), and (21). Certain other terms
may also be neglected; and substitution of typical
values for the various parameters suggests the following
set of approximations:

8
8=—N(Q(se;+Z') fp(1 —fp) —N) '—(I'„—I'„), (35)

Bg

8
(E= NBZ" fo(1 fo)—Nr~—(r „—I"„), —

8g

e=0,
n=(u)C„fpp, Q(BI' /By) j-,
h =0(se;+Z'),

S=QZ".

(36)

(37)

(38)

(39)

(40)

We Grst note that, since 5) is considerably smaller
in magnitude than 8 and P, (5/0) is quite small in
comparison with (Y/o). Therefore, when we come to

Using (27)—(29), we obtain:

~X'

b,pdx
Jo

(D7)& voM sinh()M)+S*Lcosh()M) —1$
=n;5 (33)

vDM cosh()M)+s* sinh()M)

substitute into (31), it is reasonable to drop the term
in 5 and consider only that in 5 .

We also see that, since 8$=Sh, the imaginary part
of (P/o) is zero, that is, the variations of surface poten-
tial are in phase with the applied 6eld. Throughout the
range of frequency under consideration, the real part
of (F/o) is seen to be given by:

yI
(I'„—I'„)—N~ fo(1—fo)

o- .8I'
(41)

This is the common-sense answer for the dc case,
since the second term is just N&(Bf&/BF). Since we
have shown it to hold also in the ac case, one may say
that the true field eBect—the conductivity modulation
arising from modulation of the surface excesses—can
show no dispersion up to a frequency of the order of
0. The same fraction of the induced charge goes into
the fast states at any frequency in this range.

We turn now to the departures from equilibrium
in the interior. Here it will be convenient to restrict
the calculation to the case that the sample is thin in
comparison with a diGusion length, and to make, for
the moment, the additional limitation that a&«D/X .
From (30) and (33), we obtain

s*+vDM'(
Z~.

1+(s*/») 5

, (1+l(s*/»)ki
apdx~, p(D~)

( 1+(S%D)p 3

(42)

(43)

To get B, we use (15) with (35)—(38). Substituting,
we find

( s $ ) cdTy(c07l+p)"
~pdx= —c( 1+

~ p 4 2') ~ 1+GPTy
(44)

where we have written

0 'C„fpp, Bi'~/BF-'

4=
N ~fo(1 fo) B(—I' p I—'n)/B y'—

(45)

a quantity independent of frequency, and depending
only on the mean surface potential and the properties
of the surface traps, and

s~ s ( s* )
1+ + I 1+

Vo) V~( ~ Vg&

(46)

The solution given in Eq. (44) has a number of
interesting properties.

(i) Relation to the "Fundamental-Mode
Lifetime"

The fundamental-mode lifetime, for the case s,
s*«(D/X), may be written as follows:

7'gu&s= 7/51+ (s +s)/vDH.
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Comparing this expression with (46), one may make
the following assertion: in the case that (s*t/vD)«1,
the time constant governing the low-frequency dis-
persion phenomenon in the 6eld-eGect experiment is
the fundamental-mode lifetime. This is consonant
with the experimental findings of Montgomery. Fur-
thermore, the frequency factor in (44) is the Fourier
transform of (e "i).Montgomery has pointed out that
such a relation ought in certain cases to exist, since,
if a pulse of carriers disappears uniformly across the
thickness of the slice according to a certain law, the
frequency behavior ought to be given by the Fourier
transform of that law. However, we may see from (46)
and (47) that this will not be true in general. If
s*) (vo/$) (which is equal to D/X), the two charac-
teristic times are not the same. The reason for this is
obvious: if the surface recombination velocity at the
back surface is greater than (vD/$), the decay will
not be well represented by a simple exponential, since
higher decay modes will become important. Mont-
gomery's law should therefore hold only when the
decay of photoconductivity after exposure to a short
Gash of carriers follows a simple exponential law.

(ii) Asymptotic Behavior at Frequencies such
that ~~,&&1

First it should be remembered that we have tem-
porarily required that oo»D/X'. Thus, Eq. (44) will
hold out to cur&»1 only if r,&)X'/D. This implies that
we may explore this frequency range with the help of
(44) only if s*«(vn/$). Then, from (44) we see that
the limiting value of the right-hand side, at co7~&&1, is
—C. Looking at (45), we may see that it is of a form
which is susceptible of a simple physical interpretation,
at any rate in the condition that the mean surface
potential Y has an extreme value.

If we consider the limit Yo~—~, the expression
(BF„/BF) in the denominator may be dropped,
and, remembering that, under these conditions
0—oC„(p,+pi)/N~ [see (23)), we get:

f
d ' 4pdx /do-+ —1.

The meaning of this is as follows. %hen Yo—+—~, the
surface is rich in holes and poor in electrons. Further,
at cu»s'/D, all changes in surface charge have to be
supplied by a flow of holes (minority carriers) from
the interior. So, for each charge of unity that appears
at the surface in response to a change of the external
field, there must be a depletion of one hole-electron
pair from the space-charge-free interior. This is in
agreement with the qualitative argument given in
Sec. 1.

At the other limit, Fo~oo, the term (BF„/BF) in the
denominator becomes large without limit, so that
d[1'Apdx)/do~0. This too is common sense: the
surface charge consists mainly of electrons, which can

be supplied rapidly from the ohmic contacts to the
sample, without upsetting the hole-electron equilibrium
signi6cantly.

Summing up the surface and volume contributions
to the conductivity modulation, and expressing the
result in terms of the field-eGect mobility by means of
(34), we get

--i Br„ Br„+5-
BY BY

B
p p E' p„—— (F„F„)—N if—o(I fo)—

BY

BF
0'C~—fop' (4g)(I+6)

1+oo2r12 BY'

r HIGH-FREQUENCY DISPERSION PHENOMENON

At frequencies comparable to 0, a different approxi-
mation procedure becomes appropriate. %e begin by
writing down asymptotic forms for Z Prom (30)) and
for Jpx APdx [from (33)):

Z—m, (D(v/2) l(1+i),
X

J
Apd ~x,3(D/2cu) &(1 i)— (so)

n=r [C,fop, 0(BF„/BF)),—
h= (0—co)Z',

r= (0+co)Z',

(55)

(56)

where Z' —=I;(D~/2) & throughout.
Here we have dropped (i) terms in aP from 8 and h,

on the grounds that these do not become important
until ra becomes comparable with (D/Z') (where 2 is a
Debye length), at which point the analysis fails in any
case, and (ii) terms linear in co from 8 and 5, on the
grounds that substitution of typical values for the
various parameters suggests that they may generally
be neglected in comparison with the terms shown.

The subsequent working proceeds as in the previous
section. The real part of (F/o) is found to be given by
Y' -B - —1

(Fv —I' ) —Ngfo(1 —fo)
0. BY

N~fo(1 —fo)
, (57)

I+(o'r2o B(Fv—I'„)/BF

It will be noted that these expressions are independent
of the geometry of the sample, bulk lifetime, etc. : they
correspond simply to the state of affairs in which the
diffusion length into the sample is (D/oo)&.

A careful inspection of (16) to (21) suggests the
following approximations as suitable for our present
purpose:

8= Z'[NP fo(—1 fo) (0—s—)) (B/—BF)(I'„—F„)), (51)

S=—Z'[N, Qf (1—fo) —(0+ )(B/BF)(F„—F„)), (52)

8=(a'( BF/ BF), (53)
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where

8
r, =Q-i (r„—r„)

BV

X (I'„I'—) 1V—ifp(1 fp)—. (58)
BV

J
Apdx

8
(F„—F„)—Xgfo(1 —fo)

BI'

X Q'C, fop—s

BY 1+pi'~ po

Br„/BY
Xifo(1 fo) O'C~—foPN

— (59).B(I'„—F„)/BF

This again follows a simple dispersion law, with the
value on the low-frequency side agreeing with Eq. (45),
as it must, and that on the high-frequency side being

—(Br„/BF)/pB(r„—r„)/BYj.
This latter limit has a very obvious meaning, when
compared with the limiting value of (Y'/o), discussed
above: it says that, for cov&)i, every minority carrier
(hole) appearing in the surface excess must have come
from the bulk and vice versa. Since the surface states
are no longer operative, this is just what we should
expect.

We write down 6nally, the expression giving the real
part of the 6eld-eGect mobility in this frequency range,
using (31), (32), and (34):

The ac variation in surface potential is seen to
follow a simple dispersion law, the characteristic time
~2 being of the order of, but rather less than, 0 '.
On the low-frequency side of the dispersion,

(Y'/ ) LB(F —F-)/BY —&fo(1—f )j '

which is the value given in Eq. (41); on the high-fre-
quency side, (Y'/o)~LB(F~ —F )/BYi ', which is the
value one would calculate in the absence of surface
states. This shows quite vividly that 7.

& does indeed
characterize the relaxation of the surface states.

Turning to the added carriers in the body, we 6nd,
for the real part,

In deriving this expression, we have taken advantage
of the fact that, since 8 and S are generally small in
magnitude in comparison with h and P, (5i«( Yi;
this has allowed us to neglect the term in 5 in (31).

8. COMPARISON VfITH EXPERIMENT

The purpose of this section is to show how closely
it is possible to fit the experimental measurements
reported by Montgomery' by means of the theory
developed in the preceding sections. The measurements,
which covered the frequency range 10' to 10' cps,
were made on a 20 ohm-cm sample of p-type ger-
manium, kept in three diferent ambients, which, one
would estimate from previous work, 4 ' cover the range
of surface potential

i
F—1nXi (5. The measured fila-

ment lifetime was 25 @sec, which, for the slice thickness
given (0.5 mm), corresponds to a surface recombination
velocity of 1000 cm/sec on each face, if the body
lifetime is supposed to be in6nite.

For the purpose of calculation, it will be convenient
to combine Eqs. (48) and (60) to give a single expression
for the eGective mobility over the entire frequency
range. It is true that we have not investigated the
validity of (48) for frequencies pi»D/X' Howeve. r, so
long as ri»X'/D the entire low-frequency dispersion
phenomenon lies at frequencies lower than D/X', and,
since both real and imaginary parts match on to the
low-frequency tail of (60), we may be assured that
there is no other dispersion phenomenon at any fre-
quency in between. In the case of Montgomery's sample,
the condition 7.i»D/X' is not too well satisfied, but we
shall hope to get at any rate a qualitative description
of his results by ignoring this fact.

Combining (48) and (60), we have, for an e-type
semiconductor,

where

= —b+ +
p I+oi27 12 I +pipy2P

(61)

Br,/B Y—Q- C„f,p,
A „=(1+b), (62)

B(I'„—I'„)/BY—Eifp(1 —fo)

(1+b)Q 'Cqfops btcfo(1 —fo)—
8„= (63)

B(r F)/B Y1V~fo(—1 fo)' — —
and ri and 7p are given by (46) and (58), respectively.
By analogy, we may write down the equivalent results
holding for extrinsic p-type semiconductor:

pFE' p„(r„I'—„—) iY ufo(1 —fo)— —
BI" where:

A„B„=1- +
I+p)'bio I+(v'7 p'

(64)

8
b(r~ I'„)+(1+—b)—Q 'C„fpp, +
BF 1+pP7'

—BF„/BY—Q—'C„(1—fo)N,
A„= (1+b)

B(r~—F )/BF —iY~fo(1 —fo)
(65)

be, fp(1 —fp) —(1+b)Q 'C„foP,) . (60)
(1+b)Q 'C~(1—fo)tlat —biYifo(1 —fo)8„= (66)

B(r„—r )/BY Xifo(1 fo)— —
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FIG. 1. Field-effect mobility as a function of frequency, for
20-ohm-cm p-type germanium, as a function of surface potential
Y. Surface-state scheme as described in text.

' Statz, de Mars, Davis, and Adams, Phys. Rev. 101, 12'l2
(1956).

Figure 1 shows the results of using equations (64),
(65), and (66) to calculate the dependence of p, t t on fre-
quency for a p-type sample of the resistivity (20 ohm-
cm) used by Montgomery. The parameters have been
chosen to give the best Gt: C„has been set equal to
1.7X10'cm/sec, C to 1.1&&10' cm/sec, and n~ to
2.5)&10"cm '. This means that we have postulated
a level of density 1X10"cm ', situated 0.18 volt above
the center of the gap. The position of this level agrees
with that found by Statz et al.";the density supposed,
however, is larger than that reported by them. The
t."„and C„imply capture cross sections of 2.4)&10 "cm'
for holes, and 1.6&10 "cm' for electrons. The ratio of
these cross sections agree with that reported by Garrett
and Brattain, ' but the magnitudes of each are here
taken as four times as large as the values reported by
those authors. Since we have assumed only one trapping
level in the work of this paper, we should not expect
the results of the calculations to give a good description
when the surface potential is negative; and, indeed,
the calculations suggest that the Geld-effect mobility
should be equal to the bulk value for holes, and inde-
pendent of frequency, in this range of Y. To patch up
the solution in this region, we would have to work out
the theory afresh, with two trapping levels instead of
one. There would seem to be little merit to this pro-
cedure at the present stage. Qualitatively, we may
argue as follows. If we introduce a new trapping level
somewhere in the lower half of the gap, the low-
frequency mobility will be reduced to some value below
p, „,as observed. The "lifetime" dispersion phenomenon
will not now appear, since the expression (65) for A„
tends rapidly to zero with increasing negative F,
whatever the exact position of the trapping level.
The high-frequency dispersion phenomenon, during
the course of which the field-eGect mobility must rise
to p„, will still be found, and will be characterized by a
new value of v2, given by inserting the parameters for

the new trapping level into (58). It will be seen that,
so long as the density and cross sections for the new set
of traps do not differ too radically from those postu-
lated above, and so long as they are located about as
far helot the center of the gap as the traps previously
discussed lie above it, the value of ~2 will not be too
diGerent. Because of this fact, we have indicated on
Fig. 1, as a dashed line, the way in which we would
expect the Geld-eGect mobility to go at Y= —3, if
these conditions are satisfied. (It must be emphasized
that this curve is purely schematic. )

Comparing Fig. 1 with Montgomery's results, we

may say that a reasonable qualitative description has
been given by the present theory. Unfortunately, we
are ignorant of the values of Y to be assigned to the
three curves in Montgomery's paper, but one might
guess Y 7 for ozone, Y 2 for dry oxygen, and Y —3
for wet nitrogen. A simultaneous measurement of V
by the large-signal Geld-effect technique4 would be
informative here, as would measurements on an e-type
sample.

Since the parameters of the trapping level or levels
come into Eqs. (61) through (66) in a rather compli-
cated way, it is difFicult to decide what latitude in the
assumed values of these parameters would be permis-
sible. One definite statement can, however, be made.
It is not possible to account for the smallness of the
observed value of ~2 without invoking levels that are
relatively distant from the center of the gap." In
the simple case of one trapping level so situated,
rs 1/per(o„o„)&pt j or 1/[vr(o. „o )&et], where vr is, the
thermal speed and a„and 0-„ the trapping cross sections
for holes and electrons, respectively. Thus, so long as
7s is of the order of 10 s sec, and (o.„o„)& 10 "cm',
there must be a trapping level situated such that
eq 10"cm ', or one situated such that pt 10"cm ',
or both. Otherwise, there should be some range of Y
close to zero in which 7-2 would be found to be very
much longer than the value quoted. This raises the
interesting question: could there be, in addition to
discrete states situated either high or low or both,
other states close to the center of the gap? The evidence
provided by Montgomery's experiments suggests that
the answer is no. If the density of such states were
sufficient to produce a noticeable effect on the low-

frequency Geld-effect mobility, then this effect should
disappear at a frequency of the order of the v.2 appro-
priate to these states. In the extreme case of a complete
distribution of states near the center of the gap, there
should be a gradual change of the Geld-eGect mobility
over several decades in frequency. There is no sign of
this in the measurements reported by Montgomery.
Thus the high-frequency field-effect measurements

"It is tacitly assumed, in this paragraph, that the circum-
stances are such that the observed low-frequency field-effect
mobility is not lower than what it would be in the absence of
fast states by more than, say, an order of magnitude. This allows
us to say vs =0 ' Lsee (58)g.
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show that all the fast states present in signi6cant
numbers are relatively distant from the center of the

gap; or else, that the states close to the center of the
gap have unexpectedly large cross sections.

How, then, can we account for the low-frequency
Geld-eftect experiment, which cannot be interpreted
simply in terms of a pair of discrete levels, one high
and one low, but seems to demand a continuous dis-
tribution of fast states near the center of the gapP The
most reasonable assumption is that there are inhomo-
geneities in V from point to point on the surface. This,
as pointed out previously, ' would have the effect of
smoothing out the simple Boltzmann expressions
giving the dependence on mean Y of the charge trapped
in fast states. It is possible that a detailed analysis of the
high-frequency measurements, taken in conjunctiom
with Geld-eGect and surface photovoltage measurements
of the sort reported previously, ' would lead to an
estimate of the magnitude of the inhomogeneities
demanded.

9. FINAL REMARKS

This paper has presented a theoretical treatment of
the two relaxation processes observed by Montgomery
in the high-frequency 6eld-eBect experiment. The
salient results are the following:

1. The lower-frequency dispersion phenomenon, as-
sociated with thermal recombination processes, is
characterized by a time 7&, which, under certain re-
strictions, is equal to the fundamental decay-mode
lifetime.

2. The higher-frequency dispersion phenomenon, as-
sociated with the relaxation of the fast states themselves,
is characterized by a time 72, which is principally
affected by the position of the fast-states trapping

level in the gap, and the hole and electron capture
cross sections. With reasonable vaLues for these latter,
the experimental values for w2 suggest that the fast
states are distant 0.18 volt from the center of the gap.

3. The Geld-eGect mobility at orr2)&1 should be equal
in magnitude to the mobility of the majority carrier
in the bulk, except insofar as the Schriefter correction
is important. As suggested by Montgomery, measure-
ments in this range should aQord a direct experimental
determination of the magnitude of the Schrie6er
correction.

4. The 6eld-effect mobility at frequencies inter-
mediate between ~~ ' and v2 ' has a value which depends
on the trapping parameters, surface potential, etc.,
in a rather complicated way. For the case of a well-
developed inversion layer, the mobility in this range
should have a value intermediate between the mobility
of the bulk majority carrier'and the sum of the mobili-
ties of the bulk majority and minority carriers. At
the other extreme of surface potential, the mobility
in this frequency range willie equal to that observed
at low frequencies.

5. The diKcu)ties usually encountered in trying to
Gt low-frequency Geld-eGect data to a model including
only a pair of discrete fast-state levels are more likely
to be associated with inhomogeneities in surface
potential on the surface studied than with the existence
of a continuous distribution of fast-state levels near
the center of the gap.

6. The extension of 6eld-eGect measurements to still
higher frequencies —into the wave-guide range, for
example —would furnish an interesting tool for studying
transit-time eBects.

My thanks are due to H. C. Montgomery and %.L.
Brown for many interesting discussions.


