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The problem of the kinetics of the diffusion-limited reaction
A+B—+AB has been formulated in terms of the pair probability
densities of the reacting particles (every A taken with every B).
The alteration of these pair densities due to diffusion and reaction
have been considered. The competition of every A for every B
and the removal of particles from the system upon reaction have
been appropriately accounted for. The formulation leads to a set
of coupled differential equations that can be solved for a variety
of boundary conditions. The problem has been solved in detail
for a random initial distribution. The rate of reaction at any
time is just the probable rate at which a single A and a single B

diffuse together (with an appropriate boundary condition for
reaction on close approach) multiplied by the product of the
number of A's and the number of B's present at that particular
time. The rate of the reaction A+BLAB will be second order
and the reaction A+B-+B will be 6rst order after times long
compared to a transient whose form is given explicitly. More
general equations are obtained to permit the treatment of non-
random initial distributions, as occur, for example, in the anneal-
ing of radiation damage. In such cases the irregular transients
may account for a major portion of the reaction.

I. INTRODUCTION

HK major factors determining the rate of a
birnolecular chemical reaction are: (1) the prob-

ability that the reactant particles will encounter one
another in their random movements and (2) the
probability that the energy and steric factors will be
appropriate for reaction at the instant of encounter.
It often occurs in solid solutions and solutions of viscous
Quids that the reactant particles must move from site
to site many times before reaching one of their reactant
counterparts and that the activation energy for this
motion is comparable in magnitude to the activation
energy for reaction. When this situation prevails, the
rate of reaction is dominated by the first factor above
and the reaction process may be described, for the
purpose of kinetics, as the diffusion together of the
reacting particles.

Several attempts to solve the problem of the diGusion-
limited reaction A+B-+AB have been made in the
past. ' ' In all of these treatments, however, a large
degree of independence in the distributions of the
reacting particles has been assumed. Consequently, the
correlation between the distributions of the A's and
the 8's due to the reaction process and the eGects of
this correlation on the reaction rates have not been
thoroughly understood. The treatment of this problem
is complicated by the fact that many A's compete for
each of the B's (and vice versa) and that one or both
of the particles are removed from the population upon
reaction. These problems have been treated here by
dealing directly with the joint probability distributions
for each of the AB pairs (every A taken with every B).
Higher order probability distributions (ABB triplets,
etc.), when required, have been approximated by the

superposition technique. That is, one assumes that the
correlation between the distributions of the individual

particles arises from the independent interaction of each

pair of particles. The differential equation for the
alteration of the joint distribution of each of the pairs
has been derived. 4 These differential equations may be
solved for a wide variety of boundary conditions.
Consequently, a fairly general and complete mathe-
matical description of the diffusion-limited bimolecular
reaction is possible. In particular, it is found that, for a
random initial distribution of the particles, the rate of
reaction at any time is just the probable rate at which
a single A and a single B diffuse together (with an
appropriate boundary condition for reaction on close
approach) multiplied by the number of A's and the
number of 8's present at that time. This has been
assumed in the past without proof. '

It is believed that the equations derived here have
considerable practical application in treating experi-
mental data. Section II deals with the definitions.
Sections III, IV, and V reduce the kinetics problem to
a set of differential equations. Section VI deals with
the boundary conditions for the differential equation.
Sections VII and VIII formulate the general problem
as a boundary value problem. The simplest and most
common solutions are given t Eqs. (47)—(50), (55)—
(58)j. Section IX summarizes some of the conclusions
and gives a few remarks on the practical applications
of the theory. The following article in this journal
illustrates the technique by an application of the theory
to the annealing of radiation damage in solids.

II. DEFINITION OF THE PROBABILITY DENSITIES

In order to avoid mathematical complexities, it will

be convenient to restrict the treatment to those cases
in which the distributions of the A's and the 8's depend
only on the distance of each A from each B (and vice
versa). The probability distributions will be assumed to
be otherwise uniform over the entire medium (i.e.,
random distributions). As a consequence of their

4 Differential equations similar to those derived here have also
M. V. Smoluchowski, Z. physik. Chem. 92, 192 (1917). been derived recently by Monchick using a diferent technique
F. Collins and G. Kimball, J. Colloid Sci. 4, 425 (1949). but the same approximation. Monchick, Magee, and Samuel, J.

'H. L. Frisch and F. Collins, J. Chem. Phys. 21, 2158 (1953). Chem. Phys. 26, 935 (1957).
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interdependence, it will be necessary to deal with a
number of distinct probability distributions. These
will be defined as follows:

pg;(rz, t)dVg/V=probability that A; is in the
volume element dVA at rA, t.

pAt(gt&(r&, t; r&)dV&/V=probability that A; is in dV~
at rA, t given that 8; is at rB, t.

These probabilities may be related to the macroscopic
properties of the systems by noting that the macroscopic
density of A particles, CA, is given by

of Ai and the Cartesian laboratory coordinates of 8;.
This is the space in which pi;, the joint probability
density, is properly defined. One desires to find the rate
of change of pij in the hypervolume element dVAdVB.
This rate, itp;, /itt I is just the change due to the probable
Aux of Ai and 8j into d VAdVB through the hyperfaces
of d VAd VB plus the change due to the probable rate of
destruction of A; and 8j within d VAd VB.

By summing the change in pij due to the Qux of
particles through each of the twelve hyperfaces of
dVAdVB, one obtains

1 Ng4

Cg(rg, t) =—Q pg;(rg, t),

where EA' is the number of A particles at 3=0. Simi-
larly, the average concentration of A's at rA, t given
that 8j is at rB can be expressed as a sum of the pAi(B j)'s.
Under the assumption that the distributions depend
only on the relative positions of the A's and 8's, the
pA s are independent of position and are functions of
time only. On the other hand, the pAi(Bj) are functions
of rA, t and of the given position of the 8 atom, rB.
The corresponding probability distributions of the 8j s,
p» and pBj(A .) are defined similarly.

By a well-known theorem from probability theory, '
we may define pair probability distributions:

such that
Pij= PAi(Bj) PBj PAiPBj (Ai) y

p, , (rz, rz, t)dV&dV&/V'=probability that A; is in dV&

at rA, t and that 8j is in dVB at rB, t.

This latter probability density is the joint probability
distribution for A i and 8;.The p;, 's may also be related
to the macroscopic properties of the system. Consider
all of the A8 pairs in the system, every A taken with
every 8. The average number of pairs having the A. in
d VA at rA, t and the 8 in d VB at rB, t is given by

Ng4 Na4

Cgn(r~, rtt, t)d V~d Vtt= —P P p;, (r~,r ttt) dV~ dV t.t(3)
V' '

III. CHANGE OF THE JOINT PROBABILITY
DENSITIES DUE TO DIFFUSION

Consider the six-dimensional hyperspace formed by
the combination of the Cartesian laboratory coordinates

'W. Feller, ProbabtHty Theory Qohn Wiley and Sons, Inc.,
New York, 1950), p. 78.

The purpose of this paper is to show how the pi s vary
with rA, rB and t due to the diffusion and reaction of the
A's and 8's-. This in turn will determine the rate of the
diffusion controlled reaction, since this rate depends on
the number of pairs having the appropriate A8 sepa-
ration for reaction.

~A DA VA lnpAi (Bj ) y (6)

where DA is the diffusion coefficient of the A s. Particles
with known interaction potentials, e.g., ions, can be
treated by including a force term in (6); however, the
mathematics become correspondingly more dificult.
For simplicity one also assumes that DA is independent
of position. Substituting (6) and the corresponding
expression for vtt into (5), one obtains

D~~~'p;;+Dttv7Jt'p;;+ (itp;;/itt). h. = itp;;/at. (7)

It should be noted that Eq. (6) and therefore all
subsequent equations have been derived on the assump-
tion that pi; does not vary appreciably within distances
comparable to the random-Bight jump distance. This
poses one of the most serious limitations on the theory
developed here.

IV. CHANGE OF THE PROBABILITY DENSITY
CAUSED BY REACTION

A. Diffusion-Controlled Reaction

One desires to determine the rate of change of pij in
dV&dV& caused by the reaction of Ai or 8j. Noting
that the pair AQ; is destroyed if either A; or 8, react
with any other 8 or A and that Ai or 8j cannot react

'S. Chandrasekar, Revs. Modern Phys. IS, 1 (1943).

where VA is the divergence with respect to the coordi-
nates of Ai and vA is the probable vector velocity of
A; at rA given that 8j is at rB. The definitions of VB
and vtt are similar. If one further defines (itp;;/itt), r„
as the probable rate at which p;j changes due to the
reaction of A i or 8j in d VAd VB, one obtains

itp/r)t= (itp/itt), ~, [V'~(v~p—;;)+V'tt(vttp;;) j. (5)

It should be noted that this differential equation
applies only to that region where ~r~ —

rtr ~ )rs, where
ro is some A8 separation within which A and 8 react.

The probable velocity of an A particle at rA given
that there is a 8 particle at rB is well known from the
theory of stochastic processes. ' lf we restrict ourselves
to particles exerting only short-range chemical forces,
so that the potential of an unreacted particle is inde-
pendent of position, this velocity is
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with each other in the region in which Eq. (7) applies

( ~
r~ —r~

~
)rp), one concludes that

—(itp;;/r)t), h, dtd. VgdVg/Vs
=probability that simultaneously A; is in dV& at

r~, t and that 8; is in dV~ at r~, t and that either

A; reacts with Bz (kW j) or 8; reacts with

A (rN W i), during the interval dt.

Since the possibilities of reaction of A; with each of the
B& are mutually exclusive, we may sum the contribu-
tions to the above probability due to the reaction of A;
with each of the 8& (kW j). The same is true for the
reaction of 8, with the A (mWi) Th.e possibility of
both A; reacting with BI, (kA j) and 8; reacting with
A (mWi) simultaneously is not excluded, however, so
that a summation of the probabilities for each of the
possible reactions is legitimate only if the probability of
both particles reacting is negligible with respect to the
probability of one reacting. This can be achieved by
making dt, dVg, or dV~ arbitrarily small. One can
proceed, therefore, to determine the probabilities of the
individual reactions and sum them.

The probability that A; is in d V&, B; is in d V&, and
that A; reacts with a particular B& during dt may be
expressed as a product of probabilities. It is just the
probability that B; is in dV& at I'& given that A; and
BI, are reacting in a small volume element at rg, times
the probability that A; and B& react irrespective of
where B; is located. The first of these is a conditional
triplet probability. It may be approximated by a
superposition technique in which one assumes that the
correlation between the particles arises owing to the
independent interaction of each of the pairs. Since two
B particles interact only by volume exclusion and
indirectly by their mutual correlation with the A' s, one
would expect the direct chemical interaction of A; with
the B's to dominate the required triplet probability. One
may therefore approximate the probability that 8; is in
d'V~ at r~ given that A; and B~ are in a small volume
element at rg by ps;ig;&de/V or (p;;/pg;)de/V.
Therefore the required probability is

dp»

. dt » dt

4nrr—ps(D~+Ds) &p;;
(12)

V - ~~ -20

where r =
~

r~ —rs
~

and r p is an AB separation outside
of which the AB interaction is independent of r, but
inside of which the interaction potential rapidly in-
creases to its value for the AB bond. The total rate of
the reaction A+BLAB is given by

4n.rp'(Dg+ Dn) Bp~f-
(13)

2 Bf rp

This result may be modified to account for the reaction
A+8-+8, simply by allowing $8p&;/dt)» and dC&./dt
to equal zero rather than the values given by (12) and
(13).

B. Sinks and Sources Due to Other Reactions

Sometimes in physical situations in which diffusion-
limited reactions occur, other reactions which alter the
concentration of the reactants will occur simujtane-
ously. It is often possible to describe these phenomena
mathematically and to include their effects in the
differential equations for the rates of change of the
probability densities. However, no attempt will be
made to include general sink terms in the present
treatment. It is simply noted that the inclusion of
specific sink terms in the formulation is not impossible,
but the resulting mathematics problems become some-
what more formidable.

Substitution of (9) into Eq. (7) yields

DAVA pij+DBVB p;;+f;,(t)p;; = &p;;/&t. (11)

It may be noted that f;;(t) is never positive.
If (11) can be solved for p;;, one can immediately

determine the probable rate of the reaction A;+8;+
AB. It is merely the Aux of A; into B; or vice versa.
This Aux is given by~

where

(9)

where (dp~—/dtj~j ,dtd V~/V is the probability that A;
and BI, react in dVg during dt irrespective of where B;
is located. Summing these probabilities for the reaction
of A; with all Bs (k&j) and the probabilities for reac-
tion of 8; with all A (mAi), one obtains

V. DIFFERENTIAL EQUATION FOR THE JOINT
PROBABILITY DENSITY

The N&pN&p equations of the form (11) are the
differential equations for the pair distribution functions.
In their present form they are not particularly amenable
to solution. However, a number of simplifications are
possible. These simplifications are presented below with
a discussion of the general procedure for solving the
equations.

Since the cases of interest are those in which the
distribution of A's and B's depend only on the relative

r If Eq. (12) is not self-evident it may be obtained by using
Green's theorem to integrate Eq. (16) once over the entire volume
and considering the significance of the individual terms.
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positions of the A's and 8's, it will be convenient to
transform the variables in Eq. (11) as follows:

DB&A+DA&B
$$— ) ~2 +A ~Q)

DA+DB

DByA+DAgB
gl ) 3'2= 3'& 3'»

DA+DB

DB&A+DAsB
82—Sg SQ.

DA+DB

(14)

Because of the importance of this new coordinate
system, it will be convenient to deal with an infinite
medium only. Use of a finite medium causes the limits
of the variable x2 to depend on the value of x&, etc. Use
of an infinite medium need not limit the applicability of
the results, since nearly all laboratory experiments
involve dimensions which are essentially infinite with

respect to atomic dimensions. This will not be the case,
of course, if the Qux of particles to the surface of the
sample is an important matter.

Substituting the new variables of (14) into Eq. (11),
one obtains

simpli6ed, however, if one takes advantage of a few
facts demanded by the physical situation.

One notes that the differential equations for the p;;
are all identical. One expects, therefore that all of the

p;; will be the same unless special boundary conditions
exist for certain of the pairs. It will become apparent
in the next section that these boundary conditions can
be different only if the initial knowledge of the various
A;8; pairs is diGerent. If all of the particles are initially
randomly distributed with respect to one another, all
of the p;; are identical and the treatment is quite
straightforward. In general there will be at most only
a very few types of the p;;. In the remainder of this

paper we shall deal in detail with the case for which all
of the p;; are identical. More genera1. cases may be
handled. , however, as will be shown in the following

paper in this journal.
Another factor which simp1ifies the solution of (18)

and permits the evaluation of the f;; is that CAB, the
sum of the p;; (see Eq. (3)j must become independent
of r for large values of r. Since the system is indnite,
this limiting value, CAB( o,ta), is just the average value
over the system. We have, therefore,

CACB=CAB(~ qt)

&a p;;+ (DA+DB)~2 p;;+f;;(t)p;; =
DA+DB Bt

(15)
Ns' Ns'

=—P +exp~ f;;dt ~U;;(,t), (20)
s g' 4&0 )

(21)U;; (r,t) = rB;; (r,t)/r.

single equation resulting from the boundary
condition on the p;; at large values of r will go a long

way toward the determination of the f;; If all of .the

p;; are identical, equation (20) completely determines

f;; In this case. , (20) becomes

8 p;; 28p;;- Bps~
D + +f (-t)p;"

Br~ r Br Bt

where
CACB=CA'CB'U;;(~, t) exp ~ f;;dt,

0

(17)DA+ DB. (22)

The XA'1VB' differential equations of the form (16)
are coupled through the functions f;,(t) This coupli. ng
may be simplided by the substitution (23)CA'= 1VA'/V, CB'=EB'/V.

Since p;; is independent of x~, yj, and s~, it follows that
V~'p;;=0. If one further transforms x2, y2, and s2 into
spherical coordinates and assumes no angular depend-
ence, Eq. (15) takes the form This

m;;
p,;= exp f dt .

The diGerential equations for the m;; are no longer
coupled and become

Elimination of f;; from Eqs. (18) and (22) leads to

C~C~
ps'' = U;, (r,t).

CA'CBOUg (~,t)
(24)

BR;; BR;;
D

Br2 Bt
(19)

The problem, therefore, centers around the solution of
the equations of the form (19) with the appropriate
boundary conditions. At erst sight, it might seem that,
even if (19) were solved, for each of the m;;, Eq. (18)
could not be solved for the p;;, since the f;t depend on
the p;g in a complicated manner. This problem is greatly

dCg dCg

dt dt

~P'~=—4n-ro'DC~oC~o (25)

The eGect of the coupling due to competition is then

simply to supplement the boundary condition at time
/= 0 by a stronger condition requiring p;; to approach
CACB/CA CB' at large values of r at all times. One may
evaluate CA and CB by integrating Eq. (13) which

takes the form
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Taking the derivative of (24) and substituting into
(25), one obtains

to within a distance rp, but thy, t no chemical interaction
occurs when their separation exceeds «, one is led to
the following boundary condition on p; .

dCg de
dt dt

CgCs 8U@(r,t)= —4n-ro'D (26)
U;;(~,t) Br .p

p;;=0 for r~rp. (28)

which can be integrated by taking advantage of

CB CB [CA CA]. (27)

One may, therefore, readily obtain C&, C&, and C»
from Eqs. (24), (26), and (27), if Eq. (19) can be
solved for w;;. It should be noted that Eqs. (22) through
(27) were derived on the assumption that all of the p;;
were identical. The situation will be slightly more
complex, if the initial knowledge of all of the pairs is
not the same. However, the technique will be similar.
Such a case is treated in the following paper on radiation
damage in solids.

1. p;,~p«as t~~, where p« is the equilibrium
probability density determined from the equilibrium
concentrations of A's and 8's.

2. p;;=g(r) when t=0, which is determined from the
initial distribution of each A; with respect to each 8;
(or vice versa).

3. A boundary condition at some small A8 separa-
tion, rp, which adequately describes the mechanism of
reaction of an A and a 8 and their subsequent removal
from the population of A's and 8's.

The first boundary condition must be determined
from each experimental situation. It will not in general,
greatly complicate the mathematical problem involved,
for it can always be reduced to the boundary condition

p;,*=0 by the substitution p;; =p;;—p«. The second
boundary condition must also be specified for each
particular case. By far the simplest case mathematically,
and probably the most common, is a random initial
distribution of the A's with respect to the 8's. This
leads to the boundary condition p;;= 1 when t= 0. More
complex initial distributions can be dealt with, however,
and sometimes occur as is illustrated in the following
paper. The third boundary condition above is by far
the most difBcult to formulate. In order to avoid
unwieldly complications in the mathematics, it is
necessary to oversimplify the problem grossly. Some of
the more acceptable formulations of this boundary
condition are discussed below.

If one assumes that the irreversible combination of
an A and a 8 occurs when they approach one another

VI. BOUNDARY CONDITIONS

In order to solve the differential equations for the
joint probability distribution, three boundary condi-
tions are required. These will be determined from the
physical situation as follows:

This boundary condition was first proposed by
Smoluchowski. ' It is not so unrealistic as it might at
first seem. It implies that the force between an A and a
8 follows a step function with the step occurring at rp.
This is in fair accord with the strong, short-range forces
of a chemical bond. If one desires to account for the
reversibility of the reaction, a fair approximation is to
require that

pi j peq for = rp (29)

This can be simplified to the previous case by the
substitution p;;*=p;;—p, .

The major objection to the Smoluchowski boundary
condition, outside of its idealization of the A8 inter-
action potential, is that it cannot account for the
possibility of reQection upon collision of an A and a 8.
If, as suggested in the introduction, the reaction rate is
determined in part by the energy and steric factors at
the instant of collision, a more elaborate boundary
condition at rp will be required. Collins' has suggested
that we may define a pair separation, rp —hrp to rp,
within which the rate of reaction is no longer diffusion
controlled, but proceeds according to first-order chem-
ical kinetics. He suggests that the probable rate of
reaction of A, and 8; be given by

dp&y

where k is a chemical rate constant. Since this rate of
reaction must also be equal to the Qux through the
sphere of radius rp, we have

Bp &

(31)

where

p= her 0/D. (32)

This boundary condition will be referred to as the
radiation boundary condition since it accounts for the
"reQection" of the particles on collision and since the
resulting boundary value problem is quite similar to
the radiation problem in heat Qow theory.

A further modification of this boundary condition
may be necessary for the reaction A+J3 +B. This is-
due to the growth of the 8 particle as in the growth
of colloids and in precipitation from solid solution.
Here either the Smoluchowski or radiation boundary

condition may be used, but the value of rp will vary
with time depending on the rate of reaction.
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Ngo ¹go
C-(,t)=—Z Z p'(r, t),

V'
[from (3)j (33)

dCg dC~ 4n-rp'D»' ~~' Bp;;-

7 ~ Br rQ

VII. SOLUTION FOR THE SMOLUCHOWSKI
BOUNDARY CONDITION

A. General Solution

The mathematical formulation of the problem may
be made by summarizing our previous conclusions as
follows:

CgCg
CAtt(r, t) = U,,(r,t),

U,,(~,t)
w;;(r, t)

U, , (r,t) =

(42)

[from (21)j (43)

dCA dCtt 4trro'CACJt BU;;(r,t)

U;;( to, t) Br ro

For example, when all of the p;; are identical, we replace
Eqs. (33), (34), (36), and (37) by the following:

exp( ( j;;dt ~, Prom (18)$

Cgp ~~' —@harp'D ~P I
Z

Cg Igg Bf rp

[from (13) and (17))

Ctt Ctto —[CA' —CA], [from (27)j
[from (26)] (44)

B. Detailed Solution for the Uniform
Initial Distribution

(34)

(35) The simultaneous solution of (35), (41), (42), (43), and
(44) is elementary. We have, therefore, a complete
solution to the diffusion-controlled reaction, if all of the

(36) p;; are identical and the Smoluchowski boundary
condition is valid.

Cap ~"o —~rp'D ~p .

mph

Consider the problem outlined in the previous section
when the initial distribution of A's with respect to the

V Br rQ 8's at time t=0 is uniform. That is, p;;(r, t=0) =1 for
all p;;. In this case, all of the p;; are identical. The
initial boundary condition on w;; is

DB'w;,/Bx'=Bw;;/Bt, x=r —ro. [from (19)$ (38) w, ;(x,0) = (x+ro). (45)

The boundary conditions on the p;; are In this case, (42) takes the form

p;,~0 as t—+~,
p;;(r, t=0)=h(r) for r)ro,

p;;(r=ro, t) =0.
(39)

and (44) becomes

2ro p" exp( —n')
dn i, (46)

(r —rt) /2 (Dt) 1 g% )

The corresponding boundary conditions on m are

zv;;+0 as t-+co,

w;, (x, t=0) = (x+ro)h(x+ro) =g(x) for x&0, (40)

w;;(x=0, t) =0.
where

dCg dC~

«=

taro�(DA+Dit).fp=—tt 1+ CACtt,
(wDt)1

(47)

(48)

The general solution of (38) with the boundary condi-
tion (40) is well-known from the theory of heat flow
and is

1
w;;(x, t) =

) g(x+2(Dt)*'n) exp( —n')dn
—r,/2(Dt)~

2fQ

t.
1 1 1

+tt 1+
CA Ctt CA' (2rDt) tt

(49)

One may readily integrate (45) by taking advantage of
(35). The result, for the case in which CA' ——Ctto, is

1
g( x+2(Dt)&n) e—xp( —n')dn. (41)

Qrr" gto(Dt)&

The general solution of the above set of equations is
difBcult because of the set of coupled integral equations
(36) and (37). But as remarked earlier, these equations
may often be reduced to a few algebraic equations by
virtue of additional knowledge of the physical situation.

SR. Churchill, FoNrier Series and Boundary Value I'roblems
(McGraw-Hill Book Company, Inc. , ¹wYork, 1941), p. 120.

(CA CB )CA

2rQ
rCA —Ctt' exp —tt(CA Ctt') 1+

(wDt)1

(Ctt' —CA') Ctto

2rp
Ctt —CAo exp ~ —tt (Ctto —CA ) 1+

(wDt)1

For the case in which C~ &C~', the result is

, (50A)

. (508)
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rp'. D

TA

= 3~t'p3cBp

Substitution of (49) or (50) into (46) gives C~n, the
density of AB pairs, as a function of r and t. Both
(49) and (50) reduce to second-order kinetics for times
long compared to rp'/D. If either Cg or Ctt is much
greater than the other, Eq, (50) will reduce to a first-
order kinetics.

The above solutions may be modified readily to
account for the reaction A+B-+B, such as occurs in
the growth of colloids. In this case, CB is constant and

equal to CB'. This reaction follows first-order kinetics
after times long compared with rp'/D.

The joint AB probability density as a function of the
AB separation after various times is shown in Fig. 1

for the case in which Cz'=Cn' PEqs. (46) and (49)J.
It should be noted that the rapid depletion of AB pairs
with separations of a few rp is a direct consequence of
the assumed diffusion-limited mechanism.

A consideration of the above reaction at times of the
order of rp'/D shows that the apparent second-order

(or first-order) rate constant is time-dependent and
becomes very large as t approaches zero. It appears
that the transients will be longest for particles which

diffuse slowly and have a large capture radius. However,
the ratio of the length of the transient period, rp'/D,
to the mean life of the A' s, 7.A, is a better measure of the
significance of the transient. An order of magnitude
approximation for this ratio is given by

VIII. SOLUTION FOR THE RADIATION
BOUNDARY CONDITION

The radiation boundary condition requires that:

Bt' rp, t
=Pp;; (rp, t) Lfrom . (31)g (52)

The mathematical formulation of the problem is
identical with that for the Smoluchowski boundary
condition (Sec. VIIA) except that (40), the boundary
conditions on m, become

transient is a consequence of the assumed boundary
conditions. The postulated uniform initial distribution
existing right up to the capture radius rp caused an
infinite initial gradient in p. This is, of course, impossible
experimentally so that the very early stages of the
transient will never be observed. Furthermore, the
validity of Fick's law in the region of the large gradient
is not at all certain. The objection applies, however,
only at the very earliest time so that the form of the
transient given above should be at least qualitatively
correct. Collins' has suggested. that Fick's law will be a
more valid approximation if the radiation boundary
condition is used. This is undoubtedly true since the
postulated infinite initial gradient can be achieved only
if there is a barrier to reaction upon collision. Further,
the large gradient in the p;, existing at the barrier is no
longer in the region to which Pick's law is applied.
This modified boundary condition is treated in the
following section.

This approximation is valid for both A+B +AB and—
A+B~B. It should be noted, however, that this

m;,—+0 as t—+~,
u;, (x, t=O) =g;;(x),

(53)
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The boundary value problem is familiar in heat-Qow
theory as the radiation boundary condition for a
semi-infinite solid. ' The problem is simplified to
that of the Smoluchowski boundary condition by the
substitution

y Bm;,
!
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After a solution is obtained for e;,, however, (54) must
be integrated. This is not in general di6icult so that it
is possible to obtain solution for the m;, for any simple
initial distribution of the A's with respect to the 8's.
For a uniform initial distribution of the A's with
respect to the 8's, all of the p;; are identical and the

FIG. 1. Probable distribution of 8's about a central A particle
after various times for a diffusion-limited 4imolecular reaction.

' H. S. Carslaw and J. C. Jaeger, Condlotiom of Heat ttt Sotttts
(Clarendon Press, Oxford, 1947).
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reaction rate is given by

r02
4—nrpPD. CgCg P——

r(/+1

where
(&(0+11'

rp
(56)

For very short times such that est—0, the rate is

dC~/df =—4n.rp'hr pkC~C~.

For very long times, such that mt~, the rate is

(58)

Both of these rates are simple second-order rates.
However, the rate constants are different unless rpP((1,
in which case the reaction is not diffusion-limited.
Consequently a transition period will exist in a naive
chemical-kinetics treatment of a truly diftusion-limited
reaction.

One may consider how the form of the rate equation,
(55), varies with P. When rpP((1, the rate (55) takes
the form (57) and the reaction follows simple second-
order kinetics, i.e., the reaction is not diffusion-con-
trolled. When rpP»1, the rate becomes identical with

(47), the rate when the Smoluchowski boundary condi-
tion is valid. This is to be expected since the radiation
boundary condition becomes the Smoluchowski bound-
ary condition as P approaches infinity.

Because of the increased complexity of the equations,
the treatment of experimental data assuming the radi-
ation boundary condition would require more e6'ort
than would be required if the Smoluchowski boundary
condition were assumed. However, a better ht of the
data should be obtained with the radiation boundary
condition since it is more general. Therefore the
radiation boundary condition should be applied to cases
in which a definite activation energy for reaction upon
collision is expected.

IX. CONCLUSIONS AND CONSIDERATION
OF APPLICATIONS

Physical situations in which diffusion-controlled reac-
tions occur are well known. They occur, for example,
in the growth of colloids, the quenching of fluorescence,
chemical reactions in solids, and annealing of defects
in solids. Approximate descriptions of the diftusion
process and even the assumption of simple second-order
kinetics have often been used with moderate success in
the treatment of data obtained in such experiments.
The present treatment shows the conditions in which
these approximations are expected to be valid, and
oGers an explanation of the transients observed. A
valid interpretation of the experimental parameters is
possible.

The problem of the diffusion-limited bimolecular
reaction has been formulated in terms of the joint
probability densities of the pairs of reacting particles.
The formulation leads to differential equations which
may be solved for a variety of boundary conditions.
The problem has been solved in detail for a random
initial distribution of the reacting particles. It is found
that the rate of reaction at any time is just the expected
rate at which a single 3 and a single 8 diffuse together
(with an appropriate boundary condition for reaction
on close approach) multiplied by the number of A' s
and the number of 8's present at that particular time.
If the barrier for reaction upon collision is of the same
order of magnitude as the barrier for diftusion, the rate
of the reaction A+BLAB will be of second order and
the reaction A+BE will be of first order after times
long compared to rp/D (ol p1lfp Cil mean lives). The
rate constants are expressible in terms of the capture
radius, rp, and the diffusion constant, D=D~+D~.
The solution to the kinetics problem may be obtained
for other initial distributions, as will be illustrated in
the following paper in this journal on the annealing of
radiation damage in solids.
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