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A beat structure has been found on free-induction decays associated with the pulsed nuclear magnetic
resonance of nuclei in rigid lattices. A general quantum-mechanical theory is developed for the shapes of
induction decays. The theory is specialized to the case of rigid solids and applied to the magnetic dipolar
interactions among the F'e nuclei in a iluorite (CaF&) crystal. It is also shown rigorously that, except at very
low temperatures, a free-induction decay is the Fourier transform of the corresponding steady-state resonance
line shape. The calculation of the shape of an induction decay in CaF2 thus corresponds to the calculation
of the shape of the F'9 resonance line for the crystal. It is demonstrated that the resonance line shape for an
ordered rigid lattice is not Gaussian.

I. INTRODUCTION

REE induction or Bloch decays observed in pulsed
nuclear magnetic resonance experiments on protons

in polyethylene" and on Quorine nuclei in TeQon
exhibit a beat structure when examined at temperatures

sufficiently low that large-amplitude nuclear motions
have eGectively ceased. All solids subsequently exam-
ined at liquid nitrogen temperatures (paraf5n, ice,
zirconium hydride, Lucite, ethyl alcohol, methyl
alcohol, and calcium Quoride powders and single
crystals) have been found to display a beat modulation
of their decay envelopes (Fig. 1).

Induction decay beats previously reported in liquids
and solids have arisen either from a chemical shift
which produces nuclei with slightly diGerent Larmor
frequencies' or else from a crystalline lattice structure
with several nuclei closer to each other than to other
neighbors and thus sphtting one another's resonance
lines into several components. 4' In the case of the solids
investigated in the present paper there is no evidence
for the existence of any splittings of the c.w. (steady
state) line shapes larger than 10 s of those required to
explain the observed beats. The observed beat fre-
quency is in fact of the order of the full nuclear dipolar
coupling.

In the only previous paper which attempts to predict
the shape of free-induction decays in solids, Herzog and
Hahn' assume that the dipole-dipole interactions
between nuclei in a solid produce a Gaussian distribu-
tion of magnetic 6elds at the nuclear sites. Their calcu-
lation is based on a classical stochastic model and
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predicts a monotonically decreasing decay. without any
beat structure.

It was decided that the most suitable approach to
the present problem would be to examine a simple solid
about which a maximum amount of nuclear resonance
information was available. The calcium Quoride crystal
(CaFs) was well 6tted for this role for the following
reasons. All of the abundant isotopes of calcium have
zero angular momentum, and therefore have no dipole
or quadrupole moments. The only isotope of calcium
that has a spin other than zero is Ca4', and this is only
0.14% abundant and has a very small magnetic
moment. The only stable isotope of Quorine has an
angular momentum of —,'5, and therefore has no quadru-
pole moment. The Quorine nuclei form a simple cubic
lattice. Furthermore, Pake7 and Bruce' had already
made c.w. measurements on the particular cystal used
in this experiment and found that its second moment
agreed with that predicted by Van Vleck' to within a
few percent.

Fourier transforms have been calculated of Bruce's'
c.w. line-shape data for three orientations of the CaF2
crystal with respect to the external 6eld Ho. The trans-
forms have been found to have beats and in fact to be
identical, within experimental error, to the experi-
mentally observed decay shapes.

In order to interpret the decay measurements made
on calcium Quoride, a general theory of free-induction
decays has been formulated. The results of the theory
are evaluated in this paper for any solid satisfying the
conditions that there be only one species of magnetically
active nuclei, and that these nuclei have an angular
momentum of -', 5 and occupy sites rigidly 6xed in space.

II. EXPERIMENTAL PROCEDURE

A standard spin-echo apparatus" was employed in
the present measurements. A permanent magnet
produced a static 6eld of 6890 oersteds in which the
Larmor frequency for F" nuclei was 27.6 Mc/sec. The
magnet gap was only 1.9 cm which made close control

7 G. E, Pake and E. M. Purcell, Phys. Rev. 74, 1184 (1948).
8 C. R. Bruce, Phys. Rev. 107, 43 {1957),preceding paper.' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
'e E.L. Hahn, Phys. Rev. 80, 580 (1950).
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of the sample temperature quite difBcult. The magnet
inhomogeneity was about 0.1 oersted over a 1 cm'
sample cross section.

A pulsed rf oscillator-power amplifier transmitter was
used and was capable of rotating the F"magnetization
through m/2 in about one microsecond. The sample was
placed in one coil arm of a balanced twin-T rf bridge,
which served to reduce the amplitude of the rf trans-
mitter pulses arriving at the signal amplifier. The signal
amplifier was a commercial 30 Mc/sec I.F. strip manu-
factured by Linear Equipment Laboratories and desig-
nated I.F. 21.

Free-induction decay data were photographed from
a Tektronix 531 oscilloscope and measurements made
from the photographs. The low temperature measure-
ments were made by immersing the sample and coil
directly into a bath of liquid nitrogen contained in a
styrofoam vessel.

The calcium fiuoride crystal examined was cylindrical
in shape and fit the rf coil snugly so as to obtain the
largest possible signal-to-noise ratio. The crystal (the
same as used in c.w. measurements made by Pake~ and
Bruce') had been cut so that the axis of the cylinder lay
along the $110) axis of the crystal. The angle that the
(100$ axis of the crystal made with the magnetic field
was determined by attaching a rod with a pointer to
the crystal and then reading the angle from a protractor.

III. QUANTUM MECHANICS OF
FREE-INDUCTION DECAYS

A. Description of Decays

The quantum-mechanical description of free-induc-
tion decays will be given here in as general a form as
possible, with restrictions for special cases being intro-
duced as needed.

Let a sample containing Eo identical nuclei be placed
in a static magnetic 6eld Hoz, where z is a unit vector
in the s direction. The magnetic moment operator and
spin operator of the ith nucleus will be denoted by p;
and S;, respectively. p;= yhS;, where y is the gyromag-
netic ratio. The total magnetic moment operator of the
i7o nuclei is obtained by summation over the S'0 nuclei.
ts=P; p, =y5 P; S;=yisS.

The Hamiltonian for the sample is

K—Ko+ Ki+ Ksy

where Xo——nuclear Zeeman energy term =—yMog;S;,
= —pSHpS, Ky = total magnetic interaction Hamil-
tonian among the So nuclear magnetic moments, and
3'.2=all other parts of the Hamiltonian, such as those
due to the motion of the nuclei, the magnetic inter-
action of the E'0 nuclei with electrons and nuclei of
other species.

After thermal equilibrium is established, the sample
will have developed a macroscopic magnetic moment

4y, g
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FIG. 1. F" free-induction decay in a CaF2 single crystal. 80
along $1 0 Oj. Temperature 77'K. The visible nulls occur at
approximately 22, 43, and 63 p,sec after the rf pulse. The double
exposure shows superimposed a second rf pulse which was applied
several hundred psec after the Grat pulse in order to check the s./2
condition of the Grst pulse. The response to the second pulse also
shows a 10-psec blocking of the 30-Mc signal ampli6er in this
case. The beat pattern is distorted by square-law detection.

s'
s

(t)A =Tr{exp(l Q; S;,)yis P;(S;,s)}

Tr{exp(f P;S,,)}
Tr{exp(l P;S;,)yfi P;(S;,i+S;„g)}

, (3)
Tr{ exp(t' P;S;,)}

where t' = (yhHo/kT).
The trace of a matrix is independent of basis. If one

chooses the basis in which each spin is individually
quantized along the s axis, the trace associated with the
x and y components vanishes, and

yM Qf Tr{(g;ere'*)S;,}
(v)"=

»{II'e""*}

which may be rewritten as

Tr{ers~ S;,}
(ts)A„——yAIIoz P

Tr{ere'*}

8 S

1VoyMTf ' D-n( p er")j
BX

(ts)A„.In Appendix A, formula (A8), it is shown that

(p)A„——Tr{exp(—K/kT)p}/Tr{exp( —K/kT) }, (2)

where T is the the temperature of the sample.
For the evaluation of Eq. (2), it is assumed that

K~&(KO and can be ignored. It is further assumed that
any spin operator terms in Ã2 which refer to the Ã0
nuclei are small and can also be ignored. That part of
X2 which does not contain any spin operator terms
referring to the Eo nuclei will be denoted by 3'.2'. Since
K2' commutes with Ko and since

Tr{A„(r;)B,o(r;)}=Tr{A„(r;)}Tr{J3„(r;)}
where r; and r; are diferent sets of variables,

Tr {exp (—3'.,'/k T)}
cancels out of the calculation. If one substitutes into the
resulting equation the definitions of Ko and p, one 6nds
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TABLE I. The transformation properties of the spin operators to
rotations about the x, y, and z axes.

I
Sa

sy
Sz

Rotation about
s axis

~i8s

S
S„cosg+S,sing
S, cosg —S„sing

Rotation about
g axis

~i8s„
S cosg —S, sing

S„
S,cosg+S, sing

Rotation about
z axis

~i8Sz

S cosg+S~ sing
S„cosg—S sing

Sz

The terms on the right-hand side of Eq. (5) form a
geometric progression containing 2s+1 terms, having a
ratio factor of exp( —{)and a Grat term of exp(fS).
Therefore

(lIt)A„=CAVO"/hz{ 2 (2s+ 1) coth f2 (2s+ 1)f]
ot"(-'t)} (6)

Equation (6) agrees with the Langevin value and its
magnitude will henceforth be denoted by tt (0).Its high-
temperature approximation, cVO(yh)'s(s+1)PO/3kT,
will be denoted by ttt'(0). (The high-temperature ap-
proximation is valid for (2s+1)f/2(&1 ).

After the sample is placed in a magnetic 6eld and
allowed to reach thermal equilibrium, a "m/2" rf mag-
netic Geld pulse H&(t') is applied in the x,y plane. The
pulse nutates the macroscopic magnetic moment into
the x,y plane. The rf pulse will be assumed to have a
square envelope, at last t„seconds, and to have a
carrier frequency fo equal to the Larmor frequency.
For the sake of convenience, the phase of the rf pulse
will be chosen such that

H1(t') =H1L(sino&at') 9+(cos~ot') g]
where t' is the time measured from the beginning of the
rf pulse. The Hamiltonian describing the sample while
the rf pulse is on is X'(t') = X+Xq(t'), where

Xg(t )= p Ht(t )= htdt(St; slntttot +Stt costttpt ),
with ~,=qB,.

The wave function describing the sample while the
rf pulse is on will be denoted by P(t'). It satisGes the
Schrodinger equation, X'(t')P(t') =ihBQ'(t')/Bt'. Since
the wave function describing the sample cannot change
instantaneously, f(t )]t =0 must satisfy the initial con-
dition that it be identical to the wave function ~

describing the sample immediately before the rf pulse
is turned on.

Let P(t') =exp(it'X/h)P'(t'), so that

exp(it'X/h) X8(t') exp( —it'X/h)|t '(t')
=ih+'(t')/at'. (7)

It is now assumed that t„is suKcieritly small that
those terms in X& and X2 which do not commute with
Xl(t') or Xtt have expectation values which are much
less than 1 when multiplied by t„/h. Their effect upon
X3(t') may then be ignored. This procedure is equiva-
lent to the assumption that the Fourier spectrum of the
rf pulse is much broader than the Larmor frequency
deviations of the individual nuclei. The Larmor fre-
quency deviations in question arise from the "local
6eld inhomogeneities induced" by X,j and K2. Thus
there are left only those 3'.~ and 3'.2 terms in

exp( —it(xo+ X,+X2)/h]
that do commute with X&(t') and Xo, and Kq. (7) may
be reduced to
—e '"tt' *La&1(S sincuot'+S„coscvot')]

y&' ' +'(t') =iap'(t')/Bt'. (8)

The quantity exp(mot'S, ) is just the operator R, (coot' )
for rotation about the s axis. It is easy to demonstrate
that the transformation properties of the spin operators
are those given in Table I.

Using Table I, Eq. (8) reduces to

~1S„Q'(t')= eh/ (t')/Bt',

the solution of which is p'(t') =exp(it01S„t')f'(0). To
satisfy the previously mentioned initial condition, P(0)
is chosen to be identical to the wave function tt(0)
describing the system immediately before the rf pulse
is turned on. Then

(t~)t= exp( it X2'/—h)st"pt~s~t, i~tt~stttt(0)

The wave function describing the sample after the rf
pulse is turned off will be denoted by ttt(t), where the
origin of t is the instant at which the pulse is turned oG.
Since the wave function describing the sample cannot
change instantaneously, ttt(t) must satisfy the initial
condition that it be identical to the wave function
describing the sample immediately before the rf pulse
is turned off; that is, p(0)=ttt(t ).

Therefore, for f short enough, the action of the rf
pulse upon the sample is well approximated by a simple
operator. Exp(itdot„S,) represents the precession of the
spins about Bos and exp(m&t„S„)represents the preces-
sion of the spins about H1. The nutation produced by
the rf pulse is made to satisfy the "~/2" condition by
setting 7Htt =sr/2.

In Appendix A, it is shown that 5 seconds after the
"~/2" pulse is turned off

Tr{exp(—X/kT) exp(it„X2'/h)R pt(t„)T,pt(t)pT, y(t)R,,(t ) exp( —it„X2'/h)}
(s(t)) =

Tr{exp(—X/kT) }
where T,„(t)=exp( itX/h) a—nd R,~(t„)=exp(i~ot S,) e xp(i Sm /)2

Since Tr(A,~B,~) =Tr(B,~A,~), where A,~ and B,~ are any two operators, Eq. (9) may be rewritten in the form

Tr{exp( it X2'/h)—exp( —X/kT) exp(it„X2'/h)R„t(t„)T„t(t)pT„(t)R,p(t„)}
(s(t)) = (1o)

Tr{exp(—X/kT) }
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Equation (10) can easily be evaluated for t=0 by
using the technique previously applied to Eq. (2).
Equation {10)then reduces to

&p(0))„„=Neph{-', (2s+1) coth[-', (2s+1){'j
——', coth-', i }{—(cosMst„)x+(sin(set )j}. (11)

Therefore the macroscopic magnetization has nutated
from along the s axis into the x,y plane. While doing so,
it has also performed t /fe revolutions about the z axis,
and at the end of the pulse, makes an angle coot with
respect to —x. Since the system has cylindrical sym-
metry about the applied static magnetic Geld, the
initial azimuthal angle which the macroscopic mag-
netization makes with the —x axis should not acct
the rate of decay of the macroscopic magnetization. To
simplify later calculations, this angle will be assumed
to be (2p+1)s., where p is an integer. Then (p(0)&s„
=p(0)z.

In the usual free-induction decay experiment, a
single receiver coil is oriented perpendicular to the
static magnetic Geld. With no loss of generality, one

may assume the x axis of the laboratory coordinate
system to be along the coil axis. This coil is responsive
only to changing magnetic fields along the x axis and
one need only evaluate &p, (t) &A„since this is the physical
quantity observed. Therefore, the general quantum-
mechanical formula predicting the shape of the decay
for a particular species of nuclei in any substance at any
temperature is given by the x component of Eq. (10).

Another useful result derivable from Eq. (10) is the
rate of relaxation of the spins, after the "s./2" pulse,
toward the direction of the static magnetic field. The
time constant T& associated with this process describes
the rate of growth of the s component of the macro-
scopic magnetization &y, (t))A, and is derivable from the
s component of Eq. (10).

B. High-Temperature Relationship between the
Free-Induction Decay and the Spectral

Density Function

Let the shape function of a spectral line be g(&o), where

g(ce) drd = 1.

One is concerned with the magnetic dipole radiation
linearly polarized parallel to the x axis. The probability
of the radiation producing a net absorption between
levels a and b (assumed to have negligible widths) is
proportional to

( &f ~
p )Ps) ~

' exp( —E,/kT). "
The mean eth absorption frequency is the sum of

absorption frequencies raised to the eth power and
summed, each frequency being weighted by its transi-
tion probability,

2 .s (o s" l.&AIIJ*I&)I'e ~~I&'r

&~n)

Z slQsl~ I4)I'e ~'"' (13)

where co,, s= (E,—Es)/h.
Equation (13),without the Boltzmann factors, is just

the starting point of the Van Vleck method of moments. '
Substituting Eq. (13) into (12), one obtains

Tr{exp(—X/kT) p, (0)y (1)}
Tr{exp( —X/kT) p,'(0)}

(14)

Thus one sees that the Fourier transform of the shape
function of the absorption line, excluding the Boltzmann
factor, is nothing other than the autocorrelation
function of the associated dipole moment. This result,
without however inclusion of the exp( —X/kT) factor,
has also been derived by Yokota" as a suggested
technique of calculation for pressure broadening of
microwave spectra.

Suppose now that the temperature of the sample is
high enough that one may ignore Xe+Xt+ (Xs—Xs')
while evaluating exp( —X/kT) in Eq. (14). (This is
equivalent to assuming that the sets of energy levels
generated by these terms are all equally populated. )
Then

Tr{exp(—Xs'/kT)S. (0)S,(t)}
F(~)= (15)

rsNes(s+1) (2s+1)~0 Tr{exp{—Xs'/kP) }

F(t) = e '"'g(te)ate=

"M. H. L. Pryce and K. W. H. Stevens, Proc. Phys. Soc.( s1). —
(London) A63, 36 (1950).el ~ I. Yokota, Progr. Theoret. Phys. Japan 8, 380 (1952).

where the leadiog terms in the denominator correspond

Let F(/) be the Fourier transform of the shape function
to Tr[S,'(0)j.

It will now be demonstrated that the general expres-
sion for the free induction decay, the (p, (t)&A„from Eq.

(—ia)t)" (10), is equal to p'(0)F(t) in the approximation that
g(co)Che Xr(&Xo and Xs = Xs'. In this approximation, Eq. (10)

~00 S e may be written
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Tr(exp( —Xp'/kT) exp( —Xp/kT)R„t(t„)ti, (t)R.„(t„))
Tr{exp(—Xp/kT) exp( —X&'/kT) }

Tr{exp( X I/kT)cits c~)wspcrszc is—aspic
—iws~p (t)}

Tr{exp(—Xp/k T) exp( —Xp'/kT) }

(16)

Using Table I, one 6nds that

yh Tr{exP(—Xp'/k T)crs*S,(t) )
(P.(t)) = . (17)

Tr(exp( —X&'/kT)) Tr{exp(—Xp/kT))

As in the case of the spectral density function, it is
assumed that ('«1. Therefore

No.r8 =-II(1+(.5;,)
and

yh Tr{exp(—Xp'/kT)g;(1+$5, ,)5,(t) )
(t *(t))"=, . (19)

Tr{exp(—X,'/kT))g, Tr{1+f'5;.)

However, Tr(1,p)=(2s+1) (for the ith set of wave
functions), Tr(S;,) =0,Tr[exp( —Xp'/kT)S, (t))=0, and
Tr[exp( —X,'/kT)Sz. (0)Sr,(0)S;.(0) )=0 for (k&l
Qmg ). Therefore one finds that

(~.(0)).
Tr(exp( —X&'/kT)g;, &'S;,( 0) 5&,( 0))

=vhf (20)
(2s+1) p Tr(exp( —Xp'/kT))

with the terms of higher order than the 6rst making go
contributions. For t) 0, 5; (t) is a function of the spin
operators S~ (0), Sr, (0), Therefore there is some
correlation of S;,(t) with Si„(0),Si,(0), , etc., and
Tr[exp( —Xp'/kT) Sp, (0)Si,(0)5; (t) ]does not nec-
essarily vanish. If the interaction between spins is of a
short-range nature, then the contributions of the higher-
order terms are still small. To show this, assume that
S;,(t) is influenced by only N' near neighbors, and that
the influence of each of these neighbors may be approxi-
mated by a correlation function c(t). Then

f' P Tr(exp( —Xp'/kT)Sp. (0)Sr,(0)5;,(t)}
j, k, l
kgl

~2('C(t)N' P Tr{exp(—Xp'/kT)Sp, (0)5;,(t)}. (21)

If 2f'c(t)N'«1 for all t, then expression (21) is neg-
ligible in comparison to

t g;, p Tr[exp( —X'p/kT) 5&.(0) 5;.(t))
and may be ignored. The same argument holds true
for the higher order terms except that the product
containing m Sp, (0) terms will end up with a coeflrcient
smaller than [t c(t)N'g" '. Thus, only the first term of
this series makes a major contribution to (p, (t))A„and

phd Tr{exp( Xp'—/kT)5, (0)5,(t)}
(&*(t)) = (22)

(2s+1) ' Tr(exp( —Xp'/kT))

Comparing Eqs. (22) and (15), one finds that

(p.(t))„„=p, '(0)P (t). (23)

Thus, as was to be proven, the Fourier transform of
the spectral density function is identical to the expres-
sion for the free-induction decay to within a multi-
plying constant at a high enough temperature (f«1;
i.e., T)0.1'K for Hp~10' gauss). This theorem holds
for solids, liquids, and gases, and for any type of short-
range interaction between the particles making up the
sample.

Equation (12) may be restated as F(t) = (exp( —ipit))
and Eq. (23) can then be rewritten as

(t (t)) =t'(0)(c '"') (24)
One may therefore consider a free-induction decay to
be just the expectation value of the phase function of
the Larmor frequency of all the Eo nuclei of the sample.
From Eq. (22), one finds that

yh( Tr {exp(—Xp'/kT)5 (0) exp( —it X/h)5. (0) exp(it X/h)}
( .(—t))"=

(»+1) ' Tr(exp( —Xp'/kT))
(25)

It will be assumed for the evaluation of Eq. (25) that

exp(itX/h) exp( —Xp'/kT)
~exp( —Xp'/kT) exp(it X/h).

Therefore, (ti (t))A„is an even-valued function of t, and

( .(t)) „='(0)( ( +6 )t)
(where pi —cop= Api)

(it).
=ti'(0) cospipt P ((&(u)")

even m g t

(it)"—sinpppt P ((Ao))")
~

. (26)
Oddn iet

Equation (26) will be useful for comparing the results
of Sec. IV with those of Van Vleck. ' H the high-tem-
perature condition is not satisfied, then the various
expansions involving ( are not permissible and (ti (t))A,~. (0)~(t).

IV. FREE-INDUCTION DECAY CALCULATIONS
FOR A RIGID CRYSTALLINE SOLID

A. Hamiltonian

For the calculation carried out in this section, it will
be assumed that the sample contains only one species
of particle having a magnetic moment, and that these
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Sx
Xr———P 2J;pS,"Sp+(yk)'P ——S; SA(r;p)

k&j k(j 3

S;.Sp 3(S,"r,p)(Si r",&)

(2&)

Here r,k is the vector connecting the positions of the
jth and kth nuclei, and J;k is the usual exchange
integral. The 6rst term in the above expression is the
exchange interaction term arising from the possibility
of two identical particles "exchanging places. " The

a,re nuclei. The nuclear magnetic interaction among
these nuclei may be expressed in the following way. '

second term is the dipole-dipole interaction term,
including the Fermi hyperhne term.

At suf5ciently low temperatures, all the nuclear
motion in a solid is vibrational and of small amplitude.
Such nuclear motion does not electively average out
dipole-dipole interactions, nor destroy the coherence
of spin processes. It is therefore permissible to assume
that K2 and 3'.~ commute for the evaluation of free-
induction decays of solids at these temperatures. Since
K2 commutes with Xo and p, , one has

exp( it„—Xs'/lt) exp( —K/kT) exp(it„3:s'/k)
=exp( —X/kT)

and formula (10) may be reduced to

Tr{expL —(Geo+ Ki)/k T)R.p'(t„)exp Lit (3'o+ ~i)/&]ti* exp L
—it (3'o+ ~i)/@]Rop (t )}

(t .(t))A.=
Tr{expt —(mo+ 3'.i)/kTj}

(28)

The direction cosines of f,k relative to the laboratory
frame of reference are now defined as (o.;p,P;p,y;p). H
S~=S +iS„andS =S, iS„,—then

S;.Sp=-', (S,+Sp +S; Ss+)+S;,Sp, .

Kj may then be rewritten as"

Kr = Q (A; pS,"Sp+ B;pS;,Sy„+C,p (S;+Sp.+S,,Sp+)
k&j

+D,p(S; SI„+S;,Sp )

where

+&~pS;+Sp++RyaS;~p j, (29)-
8~ (~h)'

Ata= —2J;p ——(yk)'8(r, I,) — (1 3y,g) =Ap;, —
3 2f k

B,„=3L (yh)'/2r;p'$ (1—3y;„')=Bp;,

C;I,= —s $(V&)'/r; p'jV; p(~, p
—iP, i),

D = —lHv&)'/ 'j~'( +if )

&;p= 4$(v&)'/r;p'j—(~,P 2~;pP, p P,I—'), —

RJp= 4L(v&)'/r p'3—~J'+2~'A' PJp')—
If X&' denotes K~ transformed to the Larmor rotating

reference frame whose s axis coincides with the s axis
of the laboratory reference frame, and whose x and y
axes are rotating about the s axis with an angular

velocity coos, it can be shown from Table I that

Xi'=QUA;pS; Sp+B;pS;,Sg,.
k&j

+C,,(S,~„+S;.S„).-'-o

+D;p(S;Mp, +S;.Sp-)e'""

+E;pS;+Sp+e """+FpS;Mp e""o'j. (3—0)

It is found experimentally that the nuclei of a par-
ticular species have a distribution of Larmor frequencies
with a half-width of no more than 1% in a sample free
of paramagnetic impurities in a static magnetic 6eld
of 1000 oersteds or more. In the previously discussed
solid where the nuclei may be considered to be Axed
in space, these spins when viewed from the Larmor
rotating reference frame will have little relative motion
with respect to one another or the observer. The most
effective terms of 3'.~' are therefore those that are time-
independent in the rotating frame since the time-
dependent terms will be eGectively averaged out over
a short interval of time (such as several Larmor periods).
Consequently the time-dependent terms of K&' will be
dropped from future calculations of this section. Uan
Uleck, ' in his evaluation of the second and fourth
moments for a solid, also dropped these same terms
because of their nonsecular behavior. Thus, there
remain only those components of K& which are secular
in the rotating reference frame:

~r"=-', Q(A;pS; Sp+B;pS;.Sp,). (31)
j.gk

It is further assumed for the evaluation of

exp' —(~o+3.r)/kT1

in Eq. (28) that 3!& is much less than Kp and may be
ignored. It is easily shown that Ko and X',~" commute.
Therefore

&inst Tr{exp(—Kp/kT)R, pt(t„)exp(itX&"/k) exp(italo/A)S, exp( —it's/t't) exp( —it3C&"/h)R, p(t )}
(ti.(t))A = . (32)

Tr {exp(—Kp/k T}
"In a slight modi6cation of a notation used by Van VIeck (reference 9).



I. J. LOWE AND R. E. NORBERG

It was shown in the previous section that

R,p(t„)=exp(iirS, ) exp(-', AS„).

Using the results of Table I, we obtain

exp(it Xp/h)S, exp( —it Xp/t't)

R„t(t„)exp(itXo/k)S, exp( —itKp/A)E (t )

and
=S.cospppt S„—si nMpt (34)

R.,t(t„)exp(it X,")S.,(t.)
=exp[ —(it/2A)p (A, «S; S«+B;«S;&«,)j (35)

=S cosp~ot jS„sinp~pt, (33) Therefore

Tr{exp(—Xp/kT)e"&~e&S e "t4+~&}

(p~(t))«y =+A coscoot
Tr{exp(—Xp/kT) }

Tr{exp( —Kp/k T)e "«+~&S„e—"«+~& }—pk Sinot (36)
Tr{exp(—Xp/kT) }

where

a=—P At«s; S«,
2A i&&

1
p= QB—p,S;Q« .

2A i&~

to its nutation into the x,y plane, precesses about the
s axis with the angular speed yHO without diminishing
in magnitude. This same result is derivable in a much
simpler manner by using the vector model. "
B. Decay Shapes for Special Values of A, ~ and 8; I,

If n=P=G (no magnetic interaction between nuclei),
then

Tr {exp(—Xp/kT)S. }
(ti, (t)),„=yh) coscoot

Tr{exp(—Xp/kT) }
Tr{exp(—Xp/kT)S„})—slncoot (37)
Tr{exp(—Xo/kT)} i

As in Eq. (2), Eq. (37) may be immediately evaluated
as (p, (t))A„——ti(0) cosooot. Therefore, in the case of
vanishing magnetic interaction between nuclei, the
macroscopic magnetization of the sample, subsequent

The evaluation of Eq. (36) is hampered by the fact
that n and p do not commute. ([n,pj is evaluated in
Appendix 3.) Since the coefficients of operators in n
and P are of the same order of magnitude, one cannot
use any expansion technique for exp[—it(n+p) j based
upon one of the two quantities being much smaller than
the other. A different criterion for expansion will be
developed in this section from an examination of the
two special cases: all 8;& independent of j and k, and
A, I, =O for all j and k.

The results of Appendix 8 show that, for the spin —',

case, [O.,Pj =0 if B,« is independent of j and k. In this
case exp[—it(n+P))=exp( —itn) exp( itP) a—nd

Tr{exp(—Xo/kT)e "&e"~S,e ""e "&} . Tr{exp(— X/ oTk) "eee~ Se "~e "~}
(ti.(t))«,=yh costs pt

—QA slncoot

Tr{exp(—Xp/kT) } Tr{exp(—Xp/kT) }
(38)

It is easy to show that [n,S $ =[n,S„$=[n,S,$ =0 (this follows at once from the rotational invariance of a).
The above expression then reduces to

Tr{exp(—Xo/kT)e "~S,e—"~} Tr{exp(—Xo/PT)e"&S„e "~}
(pz (t) )Ay

=+A cosMot —sin~at
Tr{exp(—Kp/kT) } Ti'{exp(—Kp/kT) }

(39)

Thus for s= —, and B,I, independent of j and tIt', the shape of the decay is independent of the A, l, 's. This fact was

erst pointed out by Van Vleck' in a di6'erent way. He demonstrated that the moments of a spectral density
function are independent of A;« if B;« is independent of j and k. For s greater than —„[n,p) is zero only for n or
P=O. If P=G, (ti, (t))&, can be shown to be independent of n by the same argument as was used above.

In the special case that A,&=0 for all j and k,

Tr {exp (—Ko/kT) exp[(it/2h) P;, «' B;«S;Q«,)S,exp[—(it/2h)g;, «' B;«S;Q«,j}
(p, (t))A„——yh cospr pt

Tr{exp(—Xp/kT) }
Tr{exp(—Xo/kT) exp[(it/2h)P;, «' B;«S;Q«,]S„exp[—(it/2h)P;, «' B,«S;Q«,j}

QA SlnMot— (40)
Tr {exp(—Kp/kT) }

In the first term of Eq. (40),

xp[e(it/2A)g;«'B;«S;Q«, ,jS,exp[—(it/2h)p;, «' B;«S;Q«~j=g; e' "'S;,e 'e'*" (4I)
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where 8;= (t/h)g; B;g;,. (The prime notation indicates the exclusion of the diagonal term j=i.) Since 8; does
not contain any spin operators referring to the ith particle, 8; commutes with S;. Therefore, exp(i8;S;,) may be
considered to be just a rotation operator for the ith particle. Referring to Table I, the first term in Fq. (40)
becomes

Q ~Tr {exp(—Kp/kT) (S;,cos8;—S@sin8;) }
yA cos~pt

Tr{exp(- SCp/kT) }
t'Tr{er '*S;,}) (Tr{exp({P S;,)(e"''+e @')}p

=yh cospppt P I

Tr{er 4*} j E 2Tr{exp({P S,)} j
From the results of Sec. IIIA, Eq. (42) reduces to

Tr{ers;4Tr{e&e'*}2/o

t4(0) cosMpt (Tr{er ~* exp(itB;;S;,/ft) }p (Tr{ers'* exp( itB; pS—;,/A) }&2 II'I I+II'I (43)

where, in the product also, the prime notation indicates
the exclusion of the diagonal term j=i.Expression (43)
may be evaluated for any permissible value of s by the
following technique. Since the trace is independent of
the basis in which it is evaluated, one may use the
basis in which the spins are quantized along the s axis.
Then

Tr {er s4* exp (itB;;S;,/A) }

Q, I
ere~'* exp (itB;,S;,/Is) I it; )s'~s

= 2 e""8"lexp(it»&. /&)I4") (44)
s' s

In order to carry out the evaluation of (44), we now
express it, as a superposition of wave functions Q, for
a spin quantized along the x axis, since expl (it/5) B;;S;,$
working on p, ~ is replaceable by exp I (it/k)B;, s"j
(where s"=—s to s). The trace is then expressed in
terms of the expansion coefficients of the f, with
respect to $,".

All further free-induction decay calculations will be
performed only for s=-', . For this case it will be more
convenient to express the spin operator S in terms of
the Pauli spin operator e.

Another method will be used for the evaluation of
expression (43) because of its special convenience for
the spin —', case. Using the expansion/4 exp(i8o )=cos8

+io, sin8, expression (43) may be rewritten as

t4(0) cos(opt s'4 (B;4t)
Z II'cosl

(2A j
Using the same technique, the second term in Eq.

(40) may be shown to vanish. Therefore, if A,&=0 for
all j and k,

iVp

(t4 (t))4, =t4p cos4opt P II—cos(B;zt/2A). (46)
Ep ~=& i

One 6nds from the above calculation that in the
special case in which A;&= 0 for all j an.d k, (t4, (t) )p„may
be evaluated without any approximations being made,
and that the evaluation predicts a decay shape having
beats. This result is not useful for the prediction of
actual beat periods, however, because in the case
where some 2;~ are diGerent from zero, the A,~ terms
wash out those beats predicted by the above expression
and introduce others.

C. General Decay Shapes

From the calculations of the previous section, it
appears that the most promising expansion of
expL it(n+p) j i—s of the form exp( —itn)x(t) exp( —itp),
where x(t) is a correction term to take care of the non-
commutability of a and p. The reason for this choice
is that the exp( —int) term produces no eBect at all
upon the free-induction decay, and the eGect of the
exp( —iPt) term can be evaluated in a closed form.

Since n and p are Hermitian operators, and since a
commutes with o, and o„,Eq. (36) reduces to

yi't Tr{exp(—BCp/kT)e""xt(t)a, x(t)e '~'} pit Tr{exp(—Kp/kT)e4e'xt(t)o„x(t)e ""}
(t4, (t))A„———cos4p pt — ——since pt (47)

2 Tr{exp(—Xp/kT) } 2 Tr{exp(—3:p/kT) }
Since x(t) =exp(int) expL —it(a+P) j exp(iPt), x(t)

may be evaluated by expanding the three exponentials

into power series and multiplying the power series

together.

'4 A, Abragam, "Lecture notes on nuclear magnetic resonance, "-

Saclay, 1956 (unpubhshed).

sty

)tsar

ptpi
x(t) =cp+c~l —I+csl —I+cpl —I+c4I —I+"

41Ij 42 Ij (3 Ij E.4Ij
(4g)

where the first five coeflicients of the power series are

cp= 1, cy= 0, cs= La,P)—=X,

cs=i(I a,g —DI,XQ), c4——c4'+3K',
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TABLE Il. Traces containing products of 0. operators. ' The
symbols used include gj=2jg(0)/yANg and p;S=Bjsj/2A

II' cos(pa j+pas+p«) means II, with e w j, k, l

Oop

&iz
~7z(7'kx&tx

0'j gp'ky&ly

&jko'ky

~gx jy&kx&lx

erlx&gy& jy&ky

&$x&gy&j»0 kz

Tr f

exp�(

—Xp/kT)e'PC7ppesP')/Tr f exp ( —Xo/kT) )

gII cosfts j—g tan&;k tanpj~II' cos$ 7—alt /II COS(tltaj+tltak+titat)+II COS( Pa j+tttak+tltat)—II' cos(4;+4, —A ) II' co—s(@„4,4.+—4 )g—q tan@,kII' cosp~
q tanqbjg tangy, tan@j~II' co&,j
~&gt'csin(&jtgt+q4t+et jt) II' cos(4ag+tjtat+tttak)

Stn—( 4g—t+0 jt+Agt) & COS( tftag+4aj+tttas)—sin(4 l 4H+Ai) II' cos(~t4, —4;+yak)
+sin( titgt —P jl+Pgt) II cos(—4'ag ti'a j+4'as)g
alt'P—Sin Q at+a jt+4%t) H COS(l ag+4'a j+4'ag)
+Sin(tjtgt+lj'jt At)II'COS(4 a+ad j—a4ag)
+sin(@g~ —p;~+@kf)&' cos Q~g —4~;+@~k)
+sin (tjt, t 0 l—At)—II' cosQ„0„04—) j—

a Traces containing the following operators yielded zero: o&, cr7y, o jzok„47I„
&iz&kyeI'Lx o'7'x&k», 4'Ix&gz&jy&ky g'lx&kzt7'gx&i» +'fx&kz+'gzg'j».

Ftt(t) and Gtt(i) are the two terms that describe the
induction decay shape for the case A;&=0 for all j and
k. These two terms were evaluated in (IV B).In order
to evaluate the higher-order terms, it is erst necessary
to evaluate some of the commutators in F (t) and
G (t). These commutators have been evaluated in
exactly the same way as is Ln, P7 in Appendix B, and
show that F„(t)and G„(|t)become more unwieldy and
difficult to handle as the subscript e increases. There-
fore, only those terms up to and including F4(/) and
G4(i) were specifically evaluated. The commutators
connected with F4(t) and G4(t) were not evaluated
directly, but rather a procedure was used by which
many terms could be discarded on inspection I:efore
evaluation.

To find the various F„(t)and G„(i)components, one
needs to evaluate terms of the form

c '=
LP,(,) 7-7-—L,(,) 7-7-—LP, Lj3,) 7-7-.

Tr{exp(—Xo/kT)esjtO. ,e gjtt).

Tr{exp(—Xp/kT))
(51)

The cutting oG of the power series at t4 is dictated, by
the tremendous increase in labor required in order to
evaluate any of the terms c„t"for n) 4. Comparison of
the theoretical and experimental results will indicate
the range of t over which this procedure is valid.

Since a and P are Hermitian operators, cst ——(/n, P7 )t
= —c2. In exactly the same way, one Ands that c3 =
—cs, (c4') t = —c4, and ()t')t =)ts. Therefore, keeping
terms up to and including t',

t2 ts

xt(i) tr,y(t) ~o,+Lo.,)t7=+Po.,cs7=
21

t4

+ (Lo.„c4'7+3L[o.,)t7, )t7 )—
4l

t2 t3
=P,p+P„+P„+P,4 , —(49)——

3i 4f

and a similar expression results for 0-„.Therefore,

qh t t3

(ttt, (i)),=—cosotltt
~

Ftt(t)+Fs(t) —+F (t)—
2 I 2f 3f

t' q yttt ( t2

+F4(j)
~

——»ntgttt
~

Go(&)+Gs(&)—4!j 2!

p
+G (i)—+G (i)—,I, (50)

4t)

where the F„(t)coefficients are given by

Tr{exp(—Xe/kT)e&'P, „e&')

Tr{exp(—Xp/kT))
F„(i)=

0 p represents the various products of (T operators
which occur in Il and G. The techniques of evaluation
fall into two groups. The erst is characteristic of that
demonstrated in Appendix C for O,p=o-;,o-~,a-g, . The
second technique of evaluation is characteristic of that
demonstrated in Appendix D for O,p=o.;,o-j,„o-~,. The
results of these trace evaluations are listed in Table II.

Using the evaluated commutators and the traces
listed in Table II, one can evaluate Fs(t), Gs(t), Fs(t)
and Gs(t) Among . the traces are some which have factors
gj= 2jt(0)/yklVtt, and some which have factors of gjs. For
T)0.1'K and &0&10' oersteds, g&&1 for all known
nuclei. Those terms which contain a q' factor are there-
fore dropped. The traces which yield a q' factor contain
the product of at least two 0. operators where e/x.
Therefore, on this basis one can drop before evaluation
all such terms in F4(t).

It is seen that for each o-, term to be evaluated in a
trace, a tangent term is produced. Since one is only
interested in terms independent of t in the F4(t) and
G4(i) terms (this was previously set as a limit for the
order of term desired), one need keep only those terms
in the commutator results which contain only a 0-;,.
These terms can in general be identi6ed without
complete evaluation of the commutator. Evaluating
G„(t),one finds that G„(/)=0 for jts=0, 2, 3, and 4. It
seems reasonable that all the G (t) terms should van sh,
but thus far this has resisted mathematical proof.
Proof of G„(tt)=0 for all js is equivalent to showing that
an observer in the coordinate system rotating about the
s axis with the Larmor frequency yHO sees the macro-
scopic magnetization decay without precessing with
respect to him.

Evaluation of Ftt(t), Fs(i), Fs(tj), and F4(j) yields

and the G„(t)by a similar expression. (jt.(&))4 —ttt(0) cos«~Q(i) (52)
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where

ti (0)= -', Soph tanh (yhHo/2k T)
and

1 halo (B t) t2

Q(t) =—p g' cos~ ~+ Q A;k(B;l Bkl)—
( 2h ) 8h' t~k~l

rB.,t)
X tan/

/
t»/ III' «»/'

( 2h ) ( 2h ) I 2h

+ r, L2A;"(Bki-B;l)+2A;P(Bkl-B,k)
48I »~~«

+A; kA kl (B,k B;l)+—A;kA; l (Bkl B;k)—

+A l lAkl (B,l B;k)+—A rl Ark (Bkl Brl)—
(Bklt)I (Belt )—Akl(»k —B l)'] tan( )II' cosI
( 2h ) e ( 2h )

2 [A k'(Bkl —Bll)'+A;P(Bkl —B,k)'
12854 j~&~&

+2A kA. l(Bki—B;l)(Bkl—B k)]

(Bakt !Xg' cos~
)

. (54)
I 2h)

and

Q (t) = U (t) U(t),

U (t) = g.' cos(B„t/2h)

(55)

(56)

The function. Q(t) is written in a form which is inde-
terminate for certain values of t (Appendix C). These
indeterminacies are introduced through multiplication
and division of certain terms by cosine functions. At the
points t„where Q(t) is indeterminate, we may find

Q(t„)by evaluating the limit of Q(t) as t &t„. —
If one neglects surface effects and considers a lattice

in which all the nuclei occupy equivalent lattice posi-
tions (such as the fluorine nuclei in CaFk), then

g, ' cos(B„t/2h) is independent of j, and Q(t) may be
rewritten as

Upon examination of the qualifying assumptions
made up to this point, one concludes that the free-
induction decay formula (52) should ho!d for all rigid
solids containing a single species of spin ~ nuclei. The
eGects of other nuclear species or of electrons may be
taken into account by including their interaction
Hamiltonian in 3'.i and. re-evaluating (ti (t))k„for the
new K1. The present formulation of the problem has
not been limited to spin ~ particles, so one could evalu-
ate formulas for induction decay shapes of particles
possessing any spin by following the technique sug-
gested in Sec. IV B.

Van Vleck, in his classic paper, ' evaluated (»') and
(»') for a rigid lattice of particles of any spin.

By comparisons of Eq. (26) with Eqs. (52) to (54)
for (ti, (t))k„,one finds that

t2

Q(t) =1——(»')+—(»')+
41

A power series expansion for Q(t) in Eq. (54) reveals
that the coeKcients of t2/2! and t4/4! in (58) coincide

respectively with the second and fourth moments

predicted by Van Vleck.

D. Classical Interyretation of the Decay
Calculations

Some of the results of the previous quantum-
mechanical calculations for free-induction decays can
be reproduced from a simple classical model. Although
the model does not seem amenable for extension to the
general calculation of the decays, it does give some

insight into the mechanisms involved.
It will be assumed that the sample under examination

contains only one nuclear species with a magnetic
dipole moment, that these nuclei have spin ~ and occupy
fixed points in space, and that all lattice points are
equivalent. As in (IV 8), it will be assumed that A;k ——0
for all j and k, so that the total Hamiltonian for the
nuclear system may be written as

(B,kt )
U(t) =1+ —p A;k(B;l Bkl) tan~—

8~2 +p j&I && E2h) SC= yhHo p Sr.+io Z B—,kS;.Sk*.
j=1 j&I

(59)

(Brit ) to 1
X tan

~ ~+ Q p A kl (B;k—B;l)'
~ 2h ) 48h'Eo i&»l

The expectation value of the magnetic field in the
s direction at the jth nucleus is

+4A; P(Bkl Bjk)+2A;kArl(Bk—l B;k)—
Hq =(lP

~

—(rhS~.).
X ( yhHoS;. ++~' B;kS—r.Sk.) ~p), (60)(Bklt)

+2A;kAkl(B;k —B;l)] t»~
&2h)

t' 1

64fs4 Ep

where the prime signifies k4 j and P is a suitable wave
L~rk'(Bkl —Brl)' function for the system of nuclei. %e may use the wave

j&k&L
functions P for which all the spins are individually

+A;kA, l(Bkl B,l)(Bkl —B,k)]. (5—7) quantized along the s axis, since such wave functions
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are eigenfunctions of 3'.. Therefore

H;, =Hp (1/—2yh)gp'(&B p). (61)

(t».(t))» =t»(0) co~«Z {(-')"'Z(II'~+"'")}

=t»(0) coscopt g'(e'"&"+e '"&")/2 (64)

After the "~/2" pulse there are as many spins up as
down along s. Thus the probabilities for having a plus
or minus sign for B;p in Eq. (61) are each p.

g&'(&B,p) can be evaluated by the techniques used
for random-walk processes.

The Larmor precession rate of the jth nucleus is
40~ =pB~'q = coo AM~& where

where P(her;) is the probability that any nucleus (since
all the sites are equivalent) will have the Larmor pre-
cession rate Mp —DN;; and where t»(0) is the value of the
macroscopic magnetization immediately after the "vr/2"
pulse. P(d~;) is symmetric about Aced;=0 and, since
sinks;t is an odd function of Aced;,

(t», (t))»„——t»(0) coscvpt P P(hen;)e'P"~'. (63)

However, P(ha&;) =g(-', )~o, where the sum is to include
all states such that Pp'(&co;p) = happ;. Therefore

her;=gg. '(acop) =P»'(+B;p/2h).

From (III 8) it can be seen that an induction decay
based upon the above model must have the form

(t», (t))»,——t»(0) P P(hem;) cos(ppp —A~,)t, (62)

=t»(0) coRppt g' cos(B;pt/2h).

Equation (64) is identical to Eq. (52) which was
derived quantum mechanically in Sec. IV B for the
same set of qualifying conditions used in the present
section. The classical interpretation of Eq. (64) is that
each nucleus has only a 6nite number of possible
Larmor frequencies, the range of choice of frequencies
being the same for each site. The nuclei may be con-
sidered to start out in phase at time zero and beat with
one another to produce nulls in (t», (t))»„.

Equation (64) illustrates the fact that the assumption
by Herzog and Hahn' of a Gaussian distribution of local
inhomogeneities of AH;, at the lattice sites is not com-
pletely justi6ed in the present case. A Gaussian dis-
tribution of static local inhomogeneities at the lattice
sites would yield a Gaussian-shaped spectral density
function and a Gaussian-shaped induction decay, which
is in conflict with our experimental results. By using a
more complicated summation procedure, which will not
be reproduced here, it is possible to show that the
correct distribution function for an isochromat of the
local 6eld distribution is a Bernoulli function. The dis-
tribution function of the local 6elds over the lattice is
a sum of products of Bernoulli functions, which however
reduces to a Gaussian function for 8;~~0 and Eo—+~.

V. COMPARISON OF THEORY WITH EXPERIMENTAL RESULTS

A. Predicted Free-Induction Decay Shapes for Calcium Fluoride

Equation (55) can be used to describe the shape of the fluorine induction decay in CaFp since all the fiuorine
sites are in this case equivalent. If we make the reasonable assumption that the magnetic interaction between the
fluorine nuclei is purely dipolar, then A;&= —B,&/3, and Eq. (55) reduces to

where

and

(t» (t))»„=t»(0)cos(optU(t) V(t),

U(t) =g, ' cos(B; t/2h)

(65)

1t t y' 1
V(t) =1—-~ —

~

—P [8;p tan(B;pt/2h)][B;~ tan(B, ~t/2h)] —LB;p tan(B;pt/2h)]B»~ tan(B;~t/2h)]
6 42h)

1t t~'1 1 t'ty41
+-I —

I
—2 (2B"B.~—»"B;~—B;.»i&4i) «n(B.it/2h) ( ) P (Bjp'B»P B,»'B»tB t).

9 (2h) Ep iw&~& 12 E2h) Ep imps

Terms in V(t) which contain odd functions of B;p are dropped since the sums of these terms over the lattice are
negligible compared to the sums of the even functions. Thus,

1~t ~'1
V(t) =1—

I

—
I
—E E»p «n(B;.t/2h)]LB;i «n(»«/2h)]

6 &2h&

2t t q' 1 1 t'ti41
+-I —

)
—Z BJ"B.«an(B»t/2h) —I

—
I

—P B"B»P. (66)
9 (2hi Hap t~pw 12 E2h) Ep iwpw&
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Since the fluorine nuclei in a cubic lattice are all equivalent (ignoring surface effects), one can eliminate the
indicated summation over j in Eq. (66) and multiply the right-hand side of the equation by $0. By using the
relation

g XI„X) (g——Xg)' —Q XI,',

Eq. (66) may be rewritten as

1- B;&t PB;&tq '
IB;&t ]B;&tP

I

2-
P (B;~t~'q

t
B;~t

V(1)=1—Z' «nI I
-Z' -t»I

I
+-

I
2'I

6 & 25 & 25 I i 25 4 25 9 I . 9 E & ( 25 ) ) & 25 ( 25 J

The above method of writing V(t) has the advantage
that all summations are to be taken over a single
subscript.

In the evaluation of Eqs. (65) and (6'7), the terms
corresponding to the first 26 near-neighbor Quorine
nuclei have been evaluated individually, and the terms
corresponding to the more remote nuclei have been
coalesced into another sum by a power series expansion.
This latter quantity turns out to be isotropic to within
&S%%uz for the orientations considered.

%ith thk use of a Quorine near-neighbor separation
of 2.725X10 ' cm in CaF2, free induction decay shapes
have been calculated for the cases that Ho is applied
along the I 1007, L1107, and I 1117 axes. The results of
these calculations are plotted as the solid curves in
Fig. 2 for comparison with the experimental results.

formation of the c.w. line shape was carried out by the
numerical integration of F(t) = J'g(&o) cos&utdco for
various values of 1. g(o&) is just the normalized function
corresponding to the c.w. line shape. The results of
these calculations are plotted in Fig. 2 as the open-circle
points.

The c.w. line-shape data for calcium Quoride were
taken at room temperature; i.e., about 300'K. The
induction decay data were taken at both 298'K and
77'K. The 77'K data and the 298'K data were found
to agree to within experimental error, so that no dis-
tinction has been made between them in the presenta-
tions on the graphs or tables.

Table III lists the times, v„,at which the decays have
nodes; v „refersto the nth zero. X stands for no evidence
of a zero-point near 7.„.

B. Experimental Free-Induction Decay Shapes
for Calcium Fluoride

There are two sets of experimental data to be com-
pared with each other and with the shapes theoretically
predicted for the F" decays in calcium Quoride. The
6rst set consists of the actual decay measurements for
Quorine in CaF2. The second set is made up of the
Fourier transforms of the experimental c.w. line shapes
for the same CaF2 crystal.

The rf pulse applied to the sample had a width of five
microseconds as measured between half-power points.
During the interval of time that the rf pulse is applied,
the magnetic dipoles of the sample are being rotated
or Qipped rapidly by the II& field, and the magnetic
inhomogeneities at the lattice sites are varying at a rate
rapid in comparison with the rate at which they can
dephase the spins producing the induction signal.
Therefore, while the rf pulse is being applied, the macro-
scopic magnetization is not decaying but has a constant
magnitude. The induction decay may therefore be con-
sidered to begin at the end of the rf pulse. The experi-
mental free-induction decay measurements are indi-
cated as the crosses in Fig. 2.

As mentioned before, the Fourier-transform data
have been derived from experimental c.w. line shapes
for CaFu by use of Eq. (23). The F"c.w. line shapes for
our crystal were supplied by Bruce. ' The Fourier trans-

C. Discussion

T~szx III. Locations of nodes on F'9 free-induction decays in a
single crystal of CaF2.'

Ho direction
1']

psec
7'2

p,sec
f'3

psec @sec

Lt 0 Oj E 21.7&1.0
F.T. 22.0
Th 21.8

42.7a1.7 62.7&1.7
43.0 63.0
42.5 56.7

71.9~4

$1 1 0) E 36.9&1.0 67.3&1.6
F.T. 37.5 68.5
Th 37.2 69.5

L1 1 1l E 53.8~1.6 99.5~3
F.T. 52.0 96.5
Th 60.0 N

112

161&4

& E =direct experimental free-induction decay data. F.T. =Fourier
transform of experimental c.w. data. Th=theoretically predicted value.
Experimental second moments are those of Bruce. s N =no evidence of zero
near v~.

Table III and Fig. 2 show excellent agreement
between the experimental induction decay data and
the Fourier transforms of the c.w. data at each orien-
tation. These results corroborate the prediction of Eq.
(23); vis. , if the high-temperature condition is satisfied
the shape of the Fourier transform of a c.w. line shape
is identical to the corresponding free induction decay.

Figure 2 further shows good qualitative agreement
between the experimental decay shapes and the theo-
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retically-predicted decay shapes. The best agreement
occurs for Hp along L100j and the poorest for Hp along
L111j.For Hp along L1007 there is excellent agreement
between the theoretical and experimental values for 7-z

and 72, while the disagreement between the theoretical
and experimental values for 73 is deGnitely outside the
limits of experimental error. The most probable source
of this discrepancy lies in the cutting o6 of the power-
series expansion for x(t) at t' (see IV C). While the
theoretically predicted shape of the induction decay
may be accurate for small t, one expects to obtain poorer
results for large t since the higher order terms which

(c)

FIG. 2. Bipolar plots of F" free-induction decays in a CaF2
single crystal. (a) Hp along the L100) axis; (b) Hp along the L110$
axis; (c) Hp along the L111) axis. The crosses indicate the ob-
served induction decay amplitudes. The circles show the Fourier
transform of Bruce's line-shape data for the same crystal. The
theoretical induction decays predicted by Eq. (65) are shown as
the solid curves.
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APPENDIX A. TIME-DEPENDENT
STATISTICAL THEORY

Consider a large number E' of identical systems
making up an ensemble, each described by the Hamil-
tonian 3'.. Let the kth system be described by the
normalized wave function P"(t). This wave function
satisGes the Schrodinger equation

xp'(t) =iItay'(t)/at (A.1)

Introduce now a complete set of orthonormal wave
functions @„)involving the same coordinates as in
lt"(t)] into which the wave function its(t) can be
expanded.

(A.2)

have been ignored then make a relatively larger con-
tribution.

Another source of error in the theoretical results
arises from the manner in which the induction decay
formulas have been. evaluated in (V A). There only
the Grst 26 near neighbors were treated individually.
The agreement between theory and experiment for
reasonably short times corresponds to a successful calcu-
lation of all of the F" resonance line shape thus far
observable in CaF2. This result has been achieved by
explicit consideration of only the Grst three near-
neighbor shells of Quorines and the representation of
the contributions from more remote nuclei by a very
nearly isotropic function.

Additional sources of discrepancy between the pre-
dicted and observed induction decays include misorien-
tation of the crystal and such crystalline lattice defects
as vacancies, substitutional impurity ions, and phonons.
Because the six nearest F"neighbors to a given Quorine
site make no contribution to the local magnetic Geld at
the site for Hp along L111j,it is in just this orientation
that the experimental results should be most sensitive
to the above sources of deviation from theory. Rough
calculations indicate that an 8' rms deviation of the
r;I, to the six nearest neighbor F sites is sufBrient to
bring the theoretical position of the first beat node into
agreement with experiment for the [111)direction.
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where

tt. '(t) = y.*P'(t)dr. (A.3)

r is a volume element of coordinate space. The coef-
ficient a "(t) can be used to describe the kth system.

The density matrix p „(t)is defined as pe(t„))'=Z.,(t„)p&(O) (A.9)

Assume now that to each system in the ensemble, an
identical "shock" (i.e., the sr/2 pulse of Sec. III) is
applied. Assume further that this shock is of such form
that if the wave function for the kth system is f~(0)
before the shock, it is

after the shock is turned oG, t„being the length of time
(A.4) the shock lasts. Thus t seconds after the shock is turned

off,

T.,(t) = exp( —itX/l't).

The expectation value of any phy»cal quantity 0 of 8'r(t)) = T. (t)[0"(t )) = T (t)R.,(t„)0"(0), (A.10)
the ensemble is found by taking the quantum-mechan-
ical average of O,I, over the kth system and then the
average over the ensemble. Thus

N

(o())"=—Z "L "())*o"'() '
gr-cJ

Substitute (A.2) into (A.S):

(A.S) Therefore, t seconds after the shock is turned o8:

&o(t))„„=—P {[it (t))"}*0.,[P (t))"d.

1
&o(t)),„=p l

—p (a„&(t))*a„(t)l y„*o.,y„d.
n, m(Qt:=S ) 4

(A.6)

[T.,(t)Z.„(t„)it~(O))*
g &=i~

xo.,[T.,(t)z.,(t.)it &(0))dr
(A.11)

=Tr{p„(t)0„}.
It can be shown'~ that for an ensemble in thermal

equilibrium, p„(t)is time independent and is given by

N
=—P it &(0)[R.,t(t„)T.,t(t)0.,

XT.,(t)R.,(t„))f"(0)dr.

p„(t)=exp( —K/kT)/Tr fexp( 3!/kT) }, —(A.7)

where T is the temperature of the ensemble. Therefore Tr{exp(—K/kT)E, ot(t„)T,ot(t)

XO.,T.,(t)R.,(t.)}
(A.12)

Tr{exp(—de/kT) }

Tr fexp( —at*/k T)O.o}
(0(t))A, =

Tr {exp(—K/kT) }
(A g) (o")"=

By substituting (A.Z) into (A.11) and proceeding as
above,

From Eq. (36)
APPE1VDIX B. EVALUATION OF t e,g

[a,P) = (1/45') P A;;Bt,t[(S,„S;„+5;.5;.), St &t ) .
i&j,k&l

(8.1)

To evaluate Eq. (8.1), one must sum over i, j, k, and t Those terms. where i4 jgkQ/ vanish since all the
operators commute. The only terms left in (B.1) are

[n,p) = Q f Qt A;.Bgt[(StoS;„+5;,SI,.), Sr&t.) + Qt A, tBI,t[(St„S;„+St,S;,), $1+t.)4' a~i ~~@~i j+I&l

+ 2' A'I BI t[(StoS'o+Sp.S,,), Sp+ts) + P; A, tBgt[(StoSco+St.S;e), $1+t*)

+2At, tBt t[(SIoSt„+Sg.St,), Se.St,) }. (B.2)

Using the fact that i, j, k, and l are umbric variables and SXS=iS, Eq. (B.2) reduces to

z z
[e,P) =—Q A;t, (Bst B,t)St.Sp„Ss,+ —Q At, tBt,t[St„(Spgt„+St„St„)St.(St,„SI„+St+s,„)—). (B.3)

$2 j&k&L 2jP I ~&

's D. ter IHaar, Elements of Statzsticat Mechamscs (Rinehart and C'ompany, New York, 1954), p. 150.
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For S=-'„onehas [S„S„)~=[S„,S.)+=[S„S,]+——0 and the second term vanishes in (8.3). Thus for S=x2 and
Bjb independent of j and k, [gr,p] is equal to zero.

APPENDIX C. EVALUATION OF
Trfexp( Ko/—AT)e egir;, orb, irgze '~g}/Trfexp( Ko/AT))

Let gtg;2 =B;bt/4h. The expression to be evaluated may then be rewritten as

Tr{eXP[({/2)gi griz) eXP(i Paj Paja;zOjz)abzai, O;, eXP(—i Pa/ Pa/O~ajz)}

p[O/ )Z' '*)}
(C.1)

where the notation P,g indicates a summation over a with (bQ j. To initiate the evaluation of (C.1), let (2=k.
Since exp[i0f(o„o„,o,))=cos0+if(o„o„,o,).sin8 for the case that f'= 1, it follows that

Therefore (C.1) becomes

e'» b'g "O';z'ObzO/ze '8/."j*'g =Oi, (gr;,Ob, COS2$jb+O;„Sin2(tgjb). (C.2)

Tr{ezp[({/2) 2 g" O '*) eXp(i Pa'2 gtgajaazgrjz)gr/zOggg eXp( —'i Za'" gtgajaaza jz)}
sin (2&jb)

T { p[(t/2)Z'" '*)}
(C.3)

If one now lets (2= {and repeats the above process, (C.3) reduces to

Tr{exp[(t /2)pi griz)'exp(i Za ' ' gtgajgraz(rjz)(rjz exp( i Za ' ' 4a jgrazgrjz) }—sin(2gI/ jb) sin(2$ j)) (C 4)
»{exp[(t'/2)Z "'e )}

The remaining traces in (C.4) may be evaluated in exactly the same manner that Eq. (40) was evaluated s!nce the
two are now identical. Thus expression (C.4) reduces to

—sin(2&jb) sin(2&jb) (2/b(0)/yfiNo) g, cos(2&„). (C.S)

If one multiplies and divides expression (C.S) by cos(2((gjb) cos(2&j&), it may be rewritten as

—(2/b(0)/yhNo) tan(B jb//2/tb) tan(Bj/j/2A)g, ' cos(B jt/2//8) (C.6)

The trace expressed in the form of Eq. (C.6) is indeterminate at the points where the tangent functions have
infinities.

APPENDIX D. EVALUATION OF
Tr{exp ( /g/' oA T)e'egir;, orb„ir—gze "")/Tr f exp (—(K'o/AT) )

As in Appendix C, let gtg, b= B,bt/4I'b. The expression to be evaluated may then be written as

Tr{e(t/2)Zizige(i/2) Zab8abaazabzgr ., & (r e
—(i/2) Zab8abaazzbz},jz Q Q

Tr{e(t/2)Ziziz}
(D.i)

Those terms in (D.1) where (2 and b are both different from j, k, and /will vanish since those terms commute
with o o»jo i„.Those terms where u and b are equal to j, J, or /also vanish, and expression (D.1) may be rewritten as

where

Tr{e(t/2)z;z;z(egizgzig'a e—*iajz8/' g(egiabzob'grb e
—)izbzob')(eoiogz8!'gri e

—'*i'alzog')4
jZ &w Jx ly iJP

Tr{e(t/2) z;aiz}

8i' ——2Q jb'gt, bo„

(D 2)

and tI~' commutes with o;, ol„and op.
From Table I, one finds that (D.2) becomes

Tr{exp[(l/2)p gb'gr z) &&[Tr(e(t/')'jzaj) cos0j . +Tr(e(r/'&a/zgr j„)sin0 )X[Tr(e(r/'&zbzobgg) cos82'
—Tr (e(r/2&'b*o /b, ) sin82') && [Tr (e(&/2& zg*cr/„}cos8)g —Tr{e(t/'& zg*gr b,}sin8i'7}

(D.3)
Tr(e(r 2&zj') Tr(e(t '&abz) Tr(e(&/'&zgz) Tr(exp[(l/2)p, ' "'o;,))
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The only terms to survive in (D.3) are of the form

Tr{g&r'Io&~jag . } p(0)

Tr{e&r "&'&'} philo
Therefore Eq. (D.3) reduces to

( p(0)
)

Tr {exp[(g/2) g t" 'o" j[e'"~'+'"'+"&+e'& '~'+"'+"& e—«'~'+'a' 'i'&
&*,
—'& o—+o~' os'—

&

(yh&o&
Z«e; eo'—+e& & Z« e; —e&,'-+e& &+&«e; ea —e& —&yZ« e;—eo—eg —

&j}
(D.4)

Tr{exp[(f'/2)Z"' '*j}

The f&rst term of Eq. (D.4) may be evaluated as follows:

Therefore the 6rst term of (D.4) reduces to

(t&(0) q
' (Tr{e&r'o& '*[cos(2(&t„+p,&+&t,&))+io.„sin(2(&t„+&t,&,+p,&))$})

Lyso~ &«~ Tr{g&rlo& ~iz}

(t(0) i' g. cos[(B„+B,+B,)t/2hj. (D.5)
&yh&o& &.»» &&

1 (2t&(0) ) '
I {K cos[(B„+B,y+B,&)t/2hf+ Q, cos[(—B„+B,g+B,&)t/2h]

4 (yh1Vo) aug e&j,k, l

cos[(B„+B.&,
—B.&)t/2hf —g, cos[(B„—B,&,+B,~) t/2h 1}. (D.6)

o&j,k. l

If the same procedure is carried out for the other seven terms, Eq. (D.4) reduces to




