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Previous work is extended so as to provide a determination of
the shortest wavelength at which plasma oscillations can be
sustained by a degenerate electron gas. The collective oscillations
are treated without introducing collective coordinates, thereby
avoiding possible complications associated with subsidiary con-
ditions. Instead the Hartree self-consistent field method is used to
provide a direct quantum-mechanical analog to the Bohm-Gross
derivation of the dispersion relation. The effect of electron ex-
change, calculated by replacing the Hartree by the Hartree-Pock
method, somewhat decreases the dependence of the plasma fre-
quency on wave number. The maximum wave number corresponds
to the momentum just sufhcient to cause an electron at the surface
of the Fermi sea to make a real transition, absorbing one plasma

quantum of energy. This criterion agrees well with %'atanabe's
measurement of the maximum angle by which electrons under-
going the characteristic energy loss are scattered. The previous
work on the intensity of the characteristic energy loss as a func-
tion of angle is supplemented by a study near cuto8, where is is
shown that the intensity drops rapidly to zero as the maximum
angle of scattering is approached. By use of the generalized sum
rule of Nozieres and Pines it is also possible to study the con-
tribution of one-electron excitation to the differential stopping
power. Varying as the fourth power of the angle of scattering, this
contribution is negligible at small angles and first becomes
dominant as the cutoff is approached.

I. INTRODUCTION

' '
N a previous paper' a qualitative estimate was made

~ ~ of the smallest wavelength, or alternatively, of the
largest wave number, at which plasma oscillations can
be propagated by a degenerate electron gas. (There
and in the present work the usual simplihcation of a
uniform fixed background of positive charge is made. )
Although the determination of this cutoff is a problem
which can probably be handled satisfactorily within
the frame work of the full Bohm-Pines' theory of
Coulomb interactions, we prefer to give here a more
limited treatment which is, however, somewhat simpler
and more directly suited to the specific problem at hand.
The method is that of the Hartree self-consistent held,
and is used in Sec. II to obtain the plasma dispersion
relation in a way completely analogous to the classical
derivation of Bohm and Gross. ' The resulting quantum-
mechanical dispersion relation is identical to that of
Bohm and Pines. Following Bohm and Gross, we re-
move the time dependence of the self-consistent held

by working in a coordinate system moving along with
the traveling plasma wave. In Sec. III, on the other
hand, we give the corresponding time-dependent cal-
culation, working entirely in the laboratory system.
This method of the time-dependent self-consistent field
has already been presented by Zyrianov and Kleonskii, 4

~ Research supported by the U. S. Atomic Energy Commission
and by the Once of Naval Research.

t The central result of this investigation has been reported at
the March Meeting of the American Physical Society LR. A.
Ferrell, Bull. Am. Phys. Soc. Ser. II, 2, 146 (1957)g.' R. A. Ferrell, Phys. Rev. 101, 554 (1956).

2 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
3 D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).
4 P. S. Zyrianov and V. M. Eleonskii, J. Exptl. Theoret. Phys.

30, 592 (1956) LEnglish translation: Soviet Physics JETP 3, 620
(1956)j.The present author is indebted to Dr A. A. Broyles. for
bringing this article to his attention. Pore added in proof.—A time-
dependent Hartree derivation of the Bohm-Pines dispersion rela-
tion similar to that presented in Sec. III of the present paper has
recently also been given by M. Nogami (to be published).

and as they point out, also shows promise as a way of
treating collective oscillations in nuclei without the
introduction of collective coordinates and subsidiary
conditions.

One result of both Secs. II and III is simply the dis-
persion relation already established by Bohm and
Pines. The present alternative derivation has, however,
the advantage of being free of any possible uncertainties
connected with the diQiculty of giving a rigorous
treatment to the Bohm-Pines subsidiary conditions.
An additional advantage of the present simple approach
is that it lends itself quite readily to a study of the
e8ect of electron exchange. This is carried out at the
end of Sec. II, where the Hartree is replaced by the
Hartree-Fock method. It is shown that exchange de-
creases the dependence of the plasma frequency on
wave number.

A serious shortcoming, the neglect of correlations,
also appears at this point. This is an inherent approxi-
mation in the Hartree-Pock method and is satisfactory
in the limit of weak interaction, or high density. In the
range of electron densities encountered in normal metals,
metals, however, the electron-electron correlations are
quite strong and should not be neglected. Since the
eGect of these correlations is to keep the electrons sepa-
rated it is clear that the present work overestimates
the eGect of the exclusion principle on the dispersion
relation. A correction for correlation is suggested but
not rigorously established. To do so would require a
more powerful theory, such as that of Bohm and Pines,
which includes correlations from the start.

In the last half of Sec. III the connection is estab-
lished between the degree of excitation of a plasma
oscillator and its amplitude of vibration, and also be-
tween the degree of excitation and the average number
of excited electrons. The number of excited electrons
per plasma quantum is found for all but the very long
wavelengths to be relatively small (greater than, but
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of the order of magnitude of unity). This suggests the
"momentum-exciton" model which is worked out in a
paper which follows. The numerical value of this ratio
is also utilized in Sec. IV, where the angular dependence
of the eigenloss' (characteristic energy loss) intensity
is studied in the vicinity of the cuto6. This cuto6
results when the wavelength of the plasma oscillation is
sufficiently short to convey to individual electrons the
momentum needed to enable them to make real transi-
tions. They then absorb energy from the oscillation and
damp it out. This cuto6 criterion reduces essentially to
the requirement that the phase velocity of propagation
of the plasma shouM become small enough to coincide
with the velocity of the electrons at the surface of the
Fermi sea. This determination can be made more pre-
cise and the result is exhibited in Fig. 2 below. The
cutoff angle obtained in this way for inelastic electron
scattering by the plasma is larger than the Bohm-Pines
value by 30-SO%%uz for naturally occurring electron densi-
ties, and is in good agreement with the measurement of
Watanabe on aluminum. ' Of special theoretical interest
is the behavior of the cutoG momentum in the high-
density limit. While the Bohm-Pines cutoG parameter
varies as r„where r, is the radius of the unit sphere in
Bohr radii, the presently determined cutoff parameter
has a more complicated dependence. While still passing
to zero, it does so more slowly and becomes considerably
larger than the Bohm-Pines parameter in the limit
r, ~O.

A further result obtained in Sec. IV is the variation
as a function of angle of the intensity of the inelastic
electron scattering. It is found that the angular de-
pendence determined in reference 1 is modified by a
reduction factor which is essentially unity for small
angles but drops rapidly to zero as the cutoff angle is
approached. In Sec. V, with the help of the generalized
sum rule of Nozieres and Pines, excitation into the
continuum of low-lying one-electron states is studied.
The total contribution of these transitions to the
differential stopping power is found to be negligible
except near the cutoG and beyond. Thus, for angles of
scattering less than the cuto6 angle, an incident fast
electron loses energy almost entirely by collective ex-
citation of the electron plasma.

II. SELF-CONSISTENT FIELD METHOD

Suppose that a running wave of density Quctuation
with angular frequency oi and wave vector k is pro-
pagated through a degenerate electron gas, which is
assumed to be at rest in the laboratory system (i.e.,
to have zero average electron momentum). Consider
the coordinate system which moves uniformly relative
to the laboratory system with velocity equal to the
phase velocity (oi/k') k. In this system the density wave

iP;(x) = q;(x) (1+A;&+'e'" *+A;&—~e—'" *). (2)

First-order stationary-state perturbation theory~ gives

—ego
g .(+)—

E(k,)—a(k,ak)
(3)

where E(k;)=fs'AP/2m is the energy of a free electron
of momentum Ak;. Equation (2) thus simplifies to

ego A
g .(6)—

&5k; k/m+hk'/2m
(4)

According to the above expressions, the contribution
of the electrons to the total', charge density at the point
x is —e times

P ~
iP (x)

~

'= V—' P $1+2A; cos(k. x)],
where we have dropped terms higher than the first
power in A;(+& and have introduced

eyak'/et—
A;=A,'+'+A, & '= (5)

(Ak,' k/m)' —A'k4/4m'

The constant term in the electron density is canceled
by the uniform positive background. Hence, according
to Poisson's equation, the potential set up by the
electrons at point x is

qi(x)=2( —4se/O'V)(Pg;) cos(k x). (6)

This equation is of the same form as Eq. (1).Hence the
amplitude of the potential wave, in terms of the per-
turbations in the electron wave functions, is

ye= (4 e/k'—V)g~; . (7)

If X is the total number of electrons, Eqs. (5) and. (7)
constitute a set of %+1 homogeneous linear equations.
The general condition that such a set have a nontrivial
solution is the vanishing of the secular determinant.
The special case at hand can, however, be handled
much more simply. We substitute from Eq. (5) into
Eq. (7), and divide by q s. (All the A s are of the same

is at rest and sets up an electrostatic potential of the
form

9i (x)= 2 ys cosk x, (1)

where yo is a constant. On the other hand, the elec-
trons have an average velocity in the moving system of
—(co/k')k. Aside from the perturbing effect of the
sinusoidal potential the electrons occupy states corre-
sponding to a sphere in momentum space of radius equal
to the Fermi momentum, but centered at —(num/k')k
Let the unperturbed plane waves be designated by
y;(x)=V 'exp(ik; x) (where V is the volume of
quantization), and the perturbed wave functions by

~ The terminology of reference 1 will be assumed throughout.' H, Watanabe, J. Phys. Soc. Japan 11, 112 (1956).
7L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-

pany, Inc. , New York, 1955), second edition, p, 153,
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sign. Hence qo cannot vanish unless the 3 s all do,
which is assumed not to be the case.) We further
substitute

hk;/mrs= v,—((o/k') lt,

where the velocity vectors v; are distributed throughout
the volume of a sphere of radius equal to the Fermi
momentum divided by the electron mass. Thus the
condition for a self-sustaining wave reads

&o 'E ' P [(co—lt v.)'—A'k'/4stss] '=1 (8)

Here we have introduced the customary symbol for
the plasma frequency at infinite wavelength, co~
= (4srsse'/sts)**. ss is the average electron density, E/V.

Equation (8) is just the dispersion relation first de-
rived by Bohm and Pines [Eq. (57) of reference 2j. It
formally differs from the classical dispersion relation
[Eq. (9) of reference 3) only in the appearance of the
additional term~ —hok4/4tts', which vanishes in the
classical limit as A -+ 0. (Of course, the distribution of
velocities is much different in the degenerate and non-
degenerate cases. In this respect the degenerate case is
simpler, because of the absence of the Soltzmann tail
which in principle produces a singularity in the dis-
persion relation and requires a treatment of electron
trapping at all wavelengths. ) As Bohm and Pines ob-
serve, it is!a straightforward matter to obtain from
Eq. (8) an 'expansion for co in powers of k. Although
they present expressions to fourth order in k, we repeat
the calculation here, since there is an additional fourth-
order term which they do not seem to have included.
Designating the velocity average by (), we find for
the coefficient of coo in Eq.'(6) '(odd powers of 'velocity
average to zero).

([(co—k v )'—its'k4/4m'] ')=co '+co 4k'(v')

+co ok4(v4)+co 5'k4/4sts'+

Substituting into Eq. (8), multiplying by co„, solving by
iteration, and introducing Av'—= ((v4)—(v')') l, we obtain

oo'=co '+k'(v')+re 'k'(hv')'+fs'k4/4sss'+. . . (9)

It is convenient to introduce the Fermi momentum
Ako=tssvo, the Fermi energy Eo ——A'ko'/2srs, and the
ratio of the Fermi energy to the plasma quantum of
energy, &=Eo/%co„. Then Eq. (9) reads

co = co [114y (v /vo ) (k/ko) +16/ (Av /vo ) (k/ko)

+y'(k/ko)41 j. (10)

Substituting (v'/vos) = ss and (Av'/vos) = 12/175 and tak-

This term is of considerable importance for the short wave-
lengths and is essential to a correct treatment of the cuto8. A
Hartree-type derivation of the dispersion relation which uses the
Bohm-Gross transformation and is similar to the present work has
already been given by Wolff LP. A. Wolff, Phys. Rev. 92, 18
(1933)j.But to solve the Hartree equations Wolff uses the WKB
method, which is not valid for short wavelengths. He therefore
does not find this nonclassical term in the body of his paper. It is,
however, implicit in Eqs. (6b) of his Appendix 8, which is equiva-
lent to the present treatment. He also discusses there the effect
of exchange. (See reference 13.)

The coefficient of (k/ko)' is the same as Bohm and
Pines's, but for the coefficient of (k/ko)' they have only
p'/2. Our coefficient is consequently smaller than theirs
by the factor (1—12&'/35)= (1—0.385/r, ), where r,
= (3/4v-ao'I)' is the radius of the unit sphere in Bohr
radii. Here we have used the free electron expressions

which yield

Eo= 3.67 ry/r, s,

A(o v =3.46 ry/r, '*,

y=1.061r, &.

(12a)

(12b)

(12c)

Recently, by studying the dependence of the char-
acteristic energy loss, Ace, of 25-kev electrons passing
through metal foils as a function of scattering angle,
hk/p, where p is the momentum of the incident elec-
trons, Watanabe' was able to establish experimentally
the value of the (k/ko)' and (k/ko)4 coefficients in Eq.
(9). (For additional discussion of this experiment, see
the review articles by Pines. '")He was able to measure
(k/ko)' coeflicients for several metals, and these will

be discussed further below. For the moment, we want
to consider brieRy the (k/ko)' coefficients he found for
the two metals aluminum and magnesium. In both
cases, his experimental values are somewhat smaller
than y'/2. The correction of the preceding paragraph,
however, reduces &'/2 by 19'P~ and 15'P~ in the cases
of Al and Mg, respectively, and thereby brings the
experimental and theoretical values into agreement,
within experimental error (which is, to be sure, rather
large). A word of caution must, however, be injected
at this point concerning the signi6cance of this agree-
ment. In the following paragraphs is shown that there
are non-negligible exchange corrections to the Sohm-
Pines dispersion relation. The effect of exchange on the
(k/ko)' coefficient of co/oo„ is estimated, but evaluation
of the (k/ko)4 exchange correction is not attempted.
Since the effect of exchange always appears in higher
order in k/ko, the dominant (k/ko)4 term, (y'/2) (k/ko)',
will be unaffected. For this reason it is unlikely that
inclusion of exchange will significantly alter the value
of the theoretical fourth-order coefBcient. Agreement
with the experimental value cannot be definitely estab-
lished without a quantitative estimate of the effects
both of exchange and of the positive-ion lattice on the
fourth-order coeKcient.

To take into account the effect of electron exchange
on the second-order coefficient, we simply replace the

'D. Pines, Solid Stale Physics (Academic Press, Inc. , ¹w
York, 1955), Vol. 1, p. 43/."D Pines, Revs. M. odern Phys. 28, 184 (1936).

ing the square root gives

6
(o/(o, = 1+-y'(k/ko)'

5
6 1

+ I

—~'+-v' I(k/ko)'+". (»)
35 2 )
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above Hartree self-consistent 6eld method by the
Hartree-Fock method. The wave function for the
E-electron system is a product of two Slater deter-
minants of the one-electron wave functions iP, . (Since
none of the interactions involved in the present problem
is spin-dependent, we are free to consider the spin
"up" electrons as distinguishable from those with spin
"down". ) The Hartree-Fock equation for lf;(x) is the
free-electron time-independent Schrodinger equation
(we continue to work in the moving coordinate system),
perturbed by —ep(x) the energy of interaction with the
Hartree field, and in addition by the integral operator

g2—
z ZAs(x) ~"d'xVf*(x')

ix —x')

The centered dot indicates that the expression is to be
multiplied by iP;(x') before the integration over x' is
carried out. The summation is over all electrons, while
the factor of one-half allows for the fact that only half
of these can exchange. The above operator can be
expressed in powers of the A;&+& by substituting the f,
from Zq. (2). The term independent of the A;l+l is
known, from the work of Pines, " to affect the free-
electron motion only very slightly, provided electron-
electron correlation is taken into account. We therefore
neglect this term, as well as those quadratic in the
A;&+'. The eGect of the remaining linear terms on the
one-electron function ilr; can be taken into account by
perturbation theory.

This calculation is carried out in Appendix I Lwhich
contains Eqs. (13)—(23)j. The result depends on E.„,
the exchange energy per electron, "and is given by"

oos =(oo'+ k'(ti')+ E, h'/m. (23a)

Solving for co in terms of co„, one obtains in place of
Eq. (11)

(24)

According to reference 12

E.„=—0.916 ry/r, . (25)

Substituting from Eq. (12a), we find for the correction
factor due to exchange

1+-', (E,x/Es) = 1—0.208r, . (26)

Thus we see that exchange reduces the value of the
dispersion coeKcient and thereby decreases the de-
pendence of the plasma frequency on wave number.

"D.Pines, Phys. Rev. 92, 626 (1953).
's F. Seitz, The 3doderri Theory of Solids (McGraw-Hill Book

Company, Inc., New York, 1940), p. 341.
"This result agrees with an estimate given by Pines Preference

10, Zq. (22)j, except for sign, the short-range modification dis-
cussed below, and the trivial omission of the mass factor. Wo16'
(reference g), has noted that exchange contributes a (h/he)s term
to the dispersion relation, but does not give a numerical result.

Before applying the correction factor of Eq. (26) to
normal metals it is necessary to examine the range of
validity of the present Hartree-Fock calculation. An
inherent approximation in the Hartree-Pock method is
the neglect of correlation. Such an approximation is
justi6ed for weak interaction, or high density. There-
fore Zqs. (24) and (26) can be relied upon for electron
densities corresponding to r,(&1, and we conclude that
exchange has no eGect on the dispersion coefficient in
the high-density limit.

For the electron densities encountered in normal
metals, corresponding to values of r, greater than unity,
electron-electron correlation is important and its neglect
is not justi6ed. Since the correlation tends to keep the
electrons separated so that the Pauli exclusion principle
will have less inQuence, it is clear that the present
calculation errors in overestimating the effect of ex-
change. For these comparatively low densities exchange
can be handled correctly only by means of a more
powerful theory, such as that of Bohm and Pines, which
takes into account correlation. The reader should con-
sult the work of these authors (reference 2) for a dis-
cussion of this and related questions. In particular it
should be mentioned that the random-phase approxima-
tion used by Bohm and Pines is closely related to our
Hartree self-consistent field calculation. The Hartree
calculation can be considered as an exact treatment of
the Hamiltonian obtained by neglecting all terms in
the Fourier expansion of the Coulomb interaction
except those corresponding to a given momentum
transfer. This might be called the "strong-random-
phase approximation. "It is not clear that it is identical
to the Bohm-Pines random-phase approximation, which
neglects terms in the kinetic energy part of the Hamil-
tonian. In any case, the results are identical, at least in
regard to the dispersion relation for plasma oscillation.
As Bohm and Pines state, when one makes such a
random-phase approximation, "no 'exchange' contribu-
tions to the dispersion relation appear up to order k4."
The present Hartree-Fock calculation is an attempt to
go beyond these approximations and include the eGect
of interactions corresponding to momentum transfers
other than that associated with the wavelength of the
plasma oscillation being studied. Our procedure suBers,
however, from neglect of correlation and we can only
conjecture here what the correct result for normal elec-
tron densities would be. By virtue of the correlation
each electron is surrounded by a screening cloud, so
that electron-electron collisions only take place for
close collisions. The sum in Eq. (21) of Appendix I
should therefore be restricted to large momentum
differences, which simply replaces the Coulomb ex-
change energy by the exchange energy for a screened
Coulomb potential. According to Appendix I of refer-
ence 11, this is equivalent to reducing E,„by the factor
g(P)=1—4P/3+P'/2 —P'/48, where P is determined
below from Zq. (43) and Fig. 2 of Sec. IV. It must be
emphasized that this correction for correlation is in no.
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way proved in the present work. The exchange correc-
tion to the coeKcient of (k/kp)', which we call the
"dispersion coefficient, " is therefore conjectured to be,
instead of Eq. (26),

1+-,' (E,„/Ep) = 1—0.208r,g(P). (27)

Numerical values for the dispersion coefFicient both
with and without the exchange correction are listed i'
Table I for the four values of electron density corre-
sponding to the metals measured by Watanabe. ' The
experimental values were obtained by multiplying
Watanabe's parameter a by 2y.

It will be noted from Table I that the exchange cor-
rection computed above by no means improves the
agreement between theory and experiment. It is only
weakly dependent on r, and amounts roughly to a 10%
reduction in the dispersion coeKcient. The agreement is
best in the case of beryllium. The dispersion coefFicients
for the other metals should theoretically be smaller than
the beryllium coeS.cient, whereas experimentally they
are larger. The discrepancy is worst in the cases of
germanium and magnesium, where it amounts to about
a factor of two. It is natural to suppose that the dis-
crepancy is due to departures, caused by the positive-
ion lattice, from free-electron behavior. An extension
of the Bohm-Pines theory to include the eGect of
lattice on the dispersion coefBcient has been made by
Nozieres and Pines. " The present Hartree-Fock ap-
proach, or rather that of the next section, may also be
extended to take the eGect of the lattice into account. "
It would be highly desirable to have a quantitative
estimate of the extent to which the lattice aGects the
dispersion. In general this would require detailed
knowledge of the Bloch waves and the energy-band
structure of the metals. Only in the case of the alkali
metals can a relatively simple theoretical treatment be
expected. Unfortunately it is just these metals which
are most dificult to handle experimentally.

III. TIME-DEPENDENT SELF-CONSISTENT FIELD

The method of Bohm and Gross, used in the preceding
section, of working in a moving coordinate system is not
generally applicable to the problem of calculating the
frequency of collective oscillation of a system of many
particles. Only in the case of a free interacting gas does
it seem to be useful. Treating the plasma oscillations in
metals more realistically and taking the lattice into
account would already select out the laboratory system
as preferred. The Bohm-Gross transformation would
be of no advantage in this case, since in the moving
coordinate system the lattice would set up a rapidly
Quctuating time-dependent potential. Therefore, it is
necessary in the general case to work in the laboratory
system and to cope directly with the time dependence

'4 P. Nozieres and D. Pines (to be published). See'also D. Pines,
reference 10.

1' Some work along this line has already been carried out by
R. D. Myers (private communication).

TABLE I. Theoretical and experimental (Watanabe, reference
6) values of the eigenloss and of the dispersion coefficient for
various metals. The entries under "Exch." are computed from a
conjectured formula for the correction due to electron exchange,
and are not rigorously established in the present work.

Metal

Be 1.88
Al 2.07
Ge 2.08
Mg 2.65

Eigenloss
Ao)t Exp.

18.2 19.0
15.7 15.0
15.6 16.5
10.9 10.5

Dispersion coefFicient
Theory

No exch. Exch. Exp.

0.72 0.64 0.65m 0.06
0.65 0.58 0.74+0.07
0.65 0.58 1.22a0.22
0.51 0.44 0.81&0.05

—ego
g, (+)—

Z(k,)—Z(k;a k) ai't(p

eq p/ft

ahk; k/mw(p+Ai't'/2m
(30)

Recalling that the present electron momentum hk;
differs from that of Eq. (4) by the term (mo/k')k, one
sees that Eqs. (30) and (4) are identical. Thus the

of the self-consistent held set up by the collective oscil-
lations. A procedure for accomplishing this has been
provided by Zyrianov and Eleonskii, 4 who have noted
that it is possible to make a very simple generalization
of Hartree's equation to the time-dependent case. In
this section we sketch briefly the derivation of the
plasma dispersion relation by this method, and show
that it is equivalent to the derivation given in Sec. II.
In addition we derive a relation between the amplitude
of the oscillating self-consistent field and the quantum
number of excitation of the corresponding plasma
oscillator (i.e., the number of plasmons present). This
result will be used in Sec. IV to study the short-wave-
length cutoG in the excitation of plasmons by electron
scattering.

The one-electron wave functions are now time-
dependent. If the unperturbed plane waves are desig-
nated by

(p;(x, t) = V—' explifk; x—E(k;)t/A)},

the perturbed wave functions will have the form

|t;(x,t) = (p, (x,t)
XL1+g (+)e((k I .too+/ . .—(—)e—((k .x—hlo 1 (28)

The self-consistent potential is in the form of the travel-
ing wave (p(x, t)=2ppp cos(k x (pt). The H—amiltonian
operator which acts on the individual electrons is
therefore time dependent and of the form Pp+B',
where H'= —eq&(x, t) and H p is the free-electron kinetic-
energy operator. The time-dependent generalization
of Hartree's equation is consequently

Nap(x, t)/at= (Hp+EV)p(x, t). (29)

Substitution of Eq. (28) into Eq. (29) and collection of
first-order terms yields
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e=Ag,y;(x;,t), (31)

where A is the antisymmetrizing operator. It is clear
that if the P; are substituted from Eq. (28) into Eq.
(31) and multiplied out, a large number of terms (i.e.,
Slater determinants) will be obtained. If these are
collected according to the power of e '"' which accom-
panies them, then 0' will assume the form of a general-
ized wave packet, in which each stationary-state wave
function appears in the superposition with its own time
factor. The time factor is simply the exponential func-
tion of —it/A times the energy eigenvalue associated
with the stationary state of the system. The wave
packet peaks at a certain energy of excitation. Sig-
nificantly larger energies will not be present with
appreciable probability in the expansion because the
additional factors of e '"' bring in further factors of
A;&+&. (It is assumed that A, &~& &&1.) On the other hand,
an energy appreciably smaller than the mean energy is
improbable because of the smaller number of terms in
Eq. (31) which correspond to such an energy. The
situation is similar to the competition between the
Boltzmann factor and the entropy, so familiar in sta-
tistical mechanics. In the present case, the most prob-
able energy of excitation, which we write as vAco, is
easily determined from the equation

requirement of self-consistency is the same as before,
and results in the same dispersion relation. 's (There is
only a minor change in the Hartree field set up by the
electrons; the additional time factors in the wave func-
tions result in a running instead of a standing wave. )
Zyrianov and Eleonskii have already sketched a some-
what diGerent derivation in their note, and as a matter
of fact, give an extension of the dispersion relation to
any interaction which perturbs the particle plane
waves only slightly. They also brieQy discuss the ex-
tension of the time-dependent method to include the
eGect of exchange. We do not need to go into this here,
since the work is straightforward and the results are
the same as those of Sec. II.

Now that we have found a solution to the time-
dependent Schrodinger equation corresponding to a
collective oscillation of the system, it is desirable to
determine the degree of excitation which the solution
describes. The wave function for the complete system,
+, in terms of the one-electron wave functions, P, , is
given by

where
r = (V&op'i'p'/24''t&p„)G (&p,k),

(&p
—k v,)pp„'

G(&p, k) =Ã-' P,—
L(&p—k v;)' —t't'k4/4m'$'

(33)

Since the dispersion relation t Eq. (8)) determines &p~

in terms of &p and k, G can be considered a function
only of the latter two quantities. The general behavior
of this function will be discussed in the next section.
I et us here study only the limit of k ~ 0, where G= i.
Then the energy of excitation is

r A&p, = V ps'its/2rr. (34)

In arriving at this result it is first necessary to normalize
the P; by dividing by (1+~A;&+&~'+~A, & '~')f. »
addition, use is made of the orthogonality of )t; and lt;
for iH j. The latter follows from Eq. (29), which can
be used to show that (P,,f;) is a constant independent
of time. It follows that the constant must equal zero
except in the special case of resonance, 8;—E;=&Le,
which does not arise in the present problem. Note
added i44 proof. The —P; defined by Eq. (28) are not
strictly solutions of Eq. (29), since solving Eq. (29)
to second order furnishes an additional time-dependent
factor to every lt;. The contribution which these factors
make to Eq. (32) is canceled by the total interaction
energy, which must be subtracted whenever the
Hartree-Pock method is strictly adhered to, so as not
to count the pairwise interactions twice. Equation (32)
can, of course, also be derived by simply adding to the
total kinetic energy the total interaction energy.

It is desirable to note at this point that the degree
of excitation or number of plasmons, "v, can be calcu-
lated in an alternative way which exhibits more clearly
the fact that the Pauli exclusion principle has been
satisfied. It might be claimed that the term in f; which
contains the factor A;&+&e'"' should not contribute if
the state k;= k;+k is already occupied. Similarly, the
term in f; containing A;& 'e 'k'* should be omitted.
But the energy denominators in the expressions for
A;&+& and 3;( & are identical except for sign. Therefore
these two contributions do indeed cancel from Eq.
(32). The same is true for the quantity P;A;
= Q;(A;&+&+A;& &), which appears in Eqs. (6) and (7)
of the preceding section.

Returning to Eq. (32), substituting from Eq. (30),
and from &p s=4rrXe'/mV, we find

c) ) (
=(Ace) 'Q;

( f,,ih~; [
—

(
&t&,,iA

at I ( r)t
(32)

This result is in complete agreement, as must be ex-
pected for the long-wavelength limit, with the following
simple classical calculation: According to Poisson's
equation the charge density is (k'/44r) &t (x,t). The total

=P;([A,&+& )'- tA, &-' )')

'~ The Bohm-Pines dispersion relation can also be derived from
the Lindhard theory of the dielectric constant LJ. Lindhard, Kgl.
Danske Videnskab. Selskab, Mat. -fys. Medd. 28, No. 8 (1954)j.
The condition that a plasma oscillation of a given wavelength

and frequency should be self-sustaining is that the dielectric con-
stant, Z(&p, k), should vanish. This follows from the equation
D=EE when the electric displacement 9 vanishes but there is
present a nonzero fluctuating electric field E. See also J.Hubbard,
Proc. Phys. Soc. (London) A68, 441 and 976 (1955).

"The term "plasmon" has been introduced by D. Pines (refer-
ence 10) for the quantum of energy in a plasma oscillation.
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This is exactly one-half the total energy of excitation,
as must be the case for a harmonic oscillator.

We are now in a position to investigate the validity
of the assumption A;(+'&(1. As a rough measure of
2;&+i, consider the quantity espp/Aso„. From Eq (3.4),
we have

(essop) ' ory t' X it
' ap

EAso, ) srAso„ l L & I.
(35)

where X=2sr/k is the wavelength, ap is the Bohr radius,
and the cube of quantization has edge of length J.The
inequality is always satis6ed if the excitations to be
studied are restricted by o«L/ap. This is, however, no
real restriction and can be alleviated by using a larger
volume of quantization. In the limit of an infinite
number of electrons occupying an infinite volume, the
above perturbation treatment of the self-consistent
field equations is completely rigorous.

We conclude this section by studying the collective
nature of the plasma oscillations. More specifically,
we ask the question, how many electrons are excited
per plasmon? Designating the expectation value for the
number of electrons to be found outside the Fermi sea
by u', we have

where the primed and double-primed summations are
performed over regions of the Fermi sea restricted by
the exclusion principle. According to reference 1, Sec.
III, the number of terms in each of these restricted
sums is, for small k/kp, (where kp is the Fermi wave
number) approximately 3ATk/4kp. According to Eq.
(30) A;i+& is accurately given for small k by Weiop/Asoo.

Thus the number of plasmons per excited electron is

t/"qo'k' 2ko (&~&&' Sy k

p' 2srAso„3Ek E estop~ 3 kp
(37)

This ratio is very small for long-wavelength plasma
oscillations. In this case each plasmon corresponds to
the excitation of a very large number of electrons. On
the other hand, as one passes to shorter wavelengths
the smaller energy denominators in A, (+& cause the
first term in Eq (36) to p.redominate over the second.
Eventually (at the cutoB—see Sec. IV), the second
term can be neglected compared to the first. The same
approximation applies to Eq. (32), so that the ratio
s/s' becomes in this case unity. In this limit only one
excited electron will be found on the average outside

potential energy is therefore

1 pk'—9 (x,t) q (x,t) spx
2& kr

~ sks

cos'(k. x—pot) dsx = V sss p'k'/4sr.
2x ~

the Fermi sea, for each plasmon of excitation. This
simple result suggests an idealized quantum-mechanical
model for the electron plasma, in which the ground
state is represented by the unmodi6ed Fermi sea and
the excited state of one short-wavelength plasmon is
represented by one-electron excitation. " It should be
emphasized that a small o/o' ratio is in no way essential
to or connected with the collective nature of the oscilla-
tions. The latter is due solely to the large number of
electrons which are available to participate in the
oscillations. At the short-wavelength limit, for example,
a large fraction of all the electrons in the system par-
ticipate. This is not inconsistent with the fact that, in
this case, if a measurement of the electron momenta
were carried out, only one electron per plasmon would
be found with momentum in excess of the Fermi value.
Speaking somewhat more pictorially, for a collective
oscillation to be possible it is only necessary for an
excited particle to be able to interact with the others in
the system, so as to be able to pass along its excitatioii.
It is not necessary for more than one particle to be
excited at the same time. This is especially evident in a
recent treatment of nuclear collective oscillations by
one-nucleon excitation. "

fs E= (BE/Bp)Ak=tsAk. (38)

Introducing the phase velocity of the plasma wave,
V=so/k, and requiring conservation of energy upon
absorption of a plasmon by an electron we find vhk=k&,
or

(39)

This equation is well known in classical plasma theory'
as the condition for Landau trapping, and indicates
that those waves will be damped whose propagation

The consequences of this model have been reported by J. J.
Quinn and the present author LBull. Am. Phys. Soc. Ser. 11, 1,
44(1956)g. See also a paper which follows Pote added s.ss Proof
Using the present self-consistent field treatment as a guide it has
proved possible to include in this "momentum-exciton" model the
etc'ts of three-, 6ve-, etc. , electron excitation. By taking into
account Feynman graphs in which the excitation makes a "jog"
and travels backwards as well as forwards in time, one can derive
the Bohm-Pines dispersion relation and the other results of the
present paper without the necessity of working in the classical
limit and invoking the correspondence prince/e."R. A. Ferrell and W. M. Visscher, Phys. Rev. 102, 450 (1956);
104, 475 (1956).

IV. SHORT-WAVELENGTH CUTOFF

Equation (8) of Sec. II can be employed to calculate
the plasma frequency for a given wavelength provided
the summand is a well-behaved function of v;. This
ceases to be the case when the energy denominator
vanishes in at least one of the A;t+& of Eq. (30). Then
the excitation of some of the electrons conserves energy.
This results in real transitions, which damp out the
plasma oscillation. Letting p and p be the components
of the electron momentum and velocity in the direction
of propagation of the plasma wave, and using a crude
approximation for the energy of transition, DE, we have
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pup 0 3——53+. r, (41)

Equation (40) gives a cutoff ratio 33% larger than does
Eq. (41). No real inconsistency exists between these
two expressions. Equation (41) refers to the optimal
number of collective variables to be introduced into the
Bohm-Pines theory, so as to best describe, (with a
certain variational trial wave function), the long-range
correlations in the ground state. There is nothing in the
Bohm-Pines theory a priori to prevent shorter wave-
length plasma oscillations from taking place, even
though no variables have been introduced to describe
them.

A cutoff determination which is more accurate than
Eq. (40) is obtained when AE of Eq. (38) is equated
to the actual transition energy, (2p+p')Es, and when
the functional dependence of co on k is taken into ac-
count. Figure 1 shows a plot of the transition energy
and of AoP' for the case r, =2 (nearly aluminum, for
which r, =2.07). The continuum is due to electrons of
less than the maximum velocity of vs. As k/ks is in-
creased the cutoff is encountered at the moment that
the 4o curve touches the continuum. The dashed line
represents the approximate expression, Eq. (11). As
seen from the 6gure, this terminated series expansion
fails adequately to reproduce the fairly rapid rise in
Ace near the cuto6. 22 The actual cutoff ratio is 0.73
while the approximate value is 0.68, corresponding to
an error of about 7%. LEquation (40) gives the slightly

's Reference 9, Eq. (6.8).
"This function has been calculated from Eq. (8), and does not

include the effect of exchange, which has been found in the pre-
ceding section to reduce the dispersion coeKcient by the relatively
minor amount of about 10% (for r, =2). Since the effect of ex-
change on the dispersion relation as a whole has not yet been
worked out, we are forced to neglect it. This is, however, not a
serious handicap in the present section, since the goal here is to
illustrate how, once the correct relation is known, it can be used
to determine the cutoff. For the present purposes it is of no great
consequence how this dispersion relation is obtained. One can
even use the experimental dependence of co on k, whenever this
has been measured to sufhcient accuracy. See, for example,
reference 25 below.

"The behavior near cutoff has been obtained from Eq. (51)
below. It is interesting to note that the eigenloss curve becomes
tangent to the continuum at the point of contact.

velocities coincide with some of the electron velocities
of translation. In the present case of the degenerate
electron gas e is limited by the Fermi value, vo. On the
other hand, V is roughly proportional to wavelength,
(since ce is only weakly dependent on wavelength and
can be approximated by ro„), and increases without
limit as one passes to very long wavelengths. Thus,
damping only occurs for the short wavelengths, and
6rst sets in for vsAks(k/ks) =AM„. Designating the cutoff
ratio by k/ks=p, and noting that v&Aks is twice the
Fermi energy, Eo, we have

P= (2y) '=0.471+r, . (40)

This can be compared with Pines' expression, "obtained
from the Bohm-Pines theory,

24
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FxG. j.. Collective and individual electron excitation energies
(in units of the Fermi energy), as functions of momentum (in
units of the Fermi momentum) for r, =2. The dashed curve repre-
sents the three-term approximation to the series expansion of the
Bohm-Pines dispersion relation. The cutoff occurs for the mo-
mentum at which the collective excitation merges with and is in
resonance with the continuum of individual electron excitation
energies.

worse value of 0.666.) Fortunately, accurate values for

p as a function of r, can be obtained from the exact
Bohm-Pines dispersion relation much more readily than
the function ro(k) itself. It is only necessary in Eq. (8)
to replace Aoi by AE= (2p+p')Es and k by pks. Since
co„ is a function of r, the resulting expression is a rela-
tion between p and r, . Breaking the summand up into
partial fractions and letting I;vo be the component of
the electron velocity along k, we have

mo&„' 1

k' k Are —Akvel, —A'k'/2m

1

Aoi Akv N—,+sA'k'/2m)

fAro, q' 1 f 1 1

( Es ) 4P' &1—I; 1—a~+Pl

= (3/16''Ps) $(2+P) ln(1+2/P) —2).

Substituting for y from Eq. (12c) and solving for r„
we obtain

r,=6.02P'[(2+P) ln(1+2/P) —2) '. (43)

Since it is not possible to invert this relation and find p
explicitly as a function of r„we have computed the
latter as a function of p and have plotted the results in
Fig. 2. From the curve thus obtained, one can read ofF

p for any desired value of r, . The significance of the
upper portion of the curve, where p takes on values
greater than unity, may well be questioned. The average
electron spacing already becomes equal to a half-
wavelength at about k/ke= 0.82. It is not clear whether
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that the eigenloss fades into the background at 15—18
milliradians.

The peculiar high-density behavior of the cutoff
expressed by Eq. (44) is unexpected and bears closer
examination. In particular, we want to study in detail
the manner in which Ace approaches and merges with the
continuum of one-electron excitation energies. "This is
facilitated by a simplification which the high-density
limit introduces into the Bohm-Pines dispersion rela-
tion, By steps similar to those yielding Eq. (42), Eq. (8)
can be integrated and put into the form

( 3 ).(u-s)-1 tu-z-1)
& 64y's') 2s E u —s+1)

Fin. 2. The cutoff momentum (in units of the Fermi momen-
tum) as function of r„ the unit-sphere radius (in Bohr radii).
The curve labelled "BP" is determined from Pines' expression, .

Eq (41).
(u+s)' —1 (u+s+1q

+ — In~ (44a)
2s &u+s —1 &or not this is a relevant comparison. More conclusively,

the large values of p correspond in turn to large values
of r„or very low electron densities. For these densities
the "condensation" of the electrons into a body-centered
cubic lattice can be expected to set in. There will be
strong electron-electron positional correlations in the
ground state of the system" and the simple Fermi sea
description, which is at the basis of the present work,
will no longer be applicable.

On the other hand, in the passage to the high-
density limit, Eq. (43) can be expected to become quite
reliable. As can be seen from Fig. 2, for small r, the
cutoA' ratio becomes very much larger than the Bohm-
Pines cutoG parameter, which is also plotted for com-
parison. Since

Here we are using Lindhard's" variables s= k/2kp and
u=&o/kvp. Thus, u is the ratio of the plasma phase
velocity to the Fermi velocity. At high electron densities,
s is restricted to very small values. Expanding the
quantity inside the brackets in powers of s and keeping
only the first nonvanishing term yields 2u lnL(u+1)/
(u —1)7—4. Hence the plasmon energy, Apo, depends on
the wave number only through the combination Qs
=2yk/kp. This dimensionless variable measures the
top of the one-electron continuum in units of her„. In
terms of it we have po/co~=u(2&k/kp). Equation (44a)
reduces, with the above high-density approximation, to

3u (u+1~
2&k/kp = —in

~

2 (u—1&

(44)r, 3.01P'In 'P ',
(44b)

the ratio of the cutoG parameters is asymptotically
equal to (2.67 lnp ')& and becomes infinite as r, —+0.
The ratio is already considerably greater than unity
in the range of the naturally occurring electron densities.
This removes a discrepancy which was encountered in
the 6rst comparison'4 of the experimental results of
Katanabe with the Bohm-Pines theory. The latter
gave for the maximum angle of scattering in aluminum
pnp(Ep/E)&=11. 0 milliradians, where E is the energy
of bombardment (25 kev in Watanabe's experiment).
But according to Fig. 2, in place of pap=0. 507 one
should use p=0.74. This increase of 46% raises the
cutoG angle to j.6.0 milliradians. "Watanabe reports

From this simplified dispersion relation, it is possible to
obtain the plot of so/so„as a function 2yk/kp shown in
Fig. 3. The cutoff determined by Eq. (44) occurs at a
very large value of 2&k/kp, for the high-density case.
But for values greater than two, the plasmon energy
lies very close to the top of the continuum (shown by
the straight line in Fig. 3). Thus the tangential portion
of the eigenloss curve already noted in reference 22 in
reference to Fig. 1 now accounts for most of the interval
of variation of k/kp. (It should be mentioned that the

but show only the broad excitation to the continuum at 14.9
milliradians. Meyer himself claims to calculate 11 milliradians by
using the mean separation of the electrons as a cutoff criterion.
As explained above, this criterion has no sound basis and is
actually incorrect for values of r, less than three, for which it
yields too large a cutoft angle. In the present case it would give
16.2 milliradians, so that we are forced to the conclusion that
Meyer's calculated cutoff angle must be numerically in error. Of
further interest is the value of the dispersion coeKcient which
can be inferred from Meyer's Fig. 5. We find 0.53~0.10, which is
significantly less than Watanabe's value and agrees with the
theoretical value including exchange (see Table I).

2'The author wishes to thank Professor K. A. Brueckner for
interesting discussion on this point.

27 Equation (44a) can also be obtained from Lindhard's equation
(37) (reference 16) by setting his expression for the dielectric
constant equal to zero.

"See, for example, J. S. Plasirett, Phil. Mag. 45, 1255 (1954).
'4 See reference 6, p. 117 and reference 9, p. 493.
'~ As mentioned above (reference 21), this calculation neglects

exchange, which may be expected to lower the cutoff. On the other
hand, the large dispersion coeKcient found experimentally by
Watanabe seems to indicate that the positive-ion lattice has an
effect on the dispersion relation which more than compensates
for that of exchange. If one uses Watanabe's experimental (k/kp)'
and (k/kp)' coefficients one finds a cutoff ratio of 0.70 and a cutoff
angle of 15.1 milliradians. Note added sn proof G Meyer, LZ. .—.
Physik 148, 61 (1957)g, has recently also completed an experi-
mental investigation of the 15-ev eigenloss in aluminum. With his
incident energy of 30 kev the cuto6 should be expected at 14.6
milliradians. This is consistent with his measurements which
exhibit the (somewhat broadened) eigenloss at 11.1 milliradians,
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approximations made in deriving Eq. (44b) are not
valid in the vicinity of the cutoff. ) In this tangential
region the stability of the plasma oscillations with
respect to damping might well be questioned. A small
perturbation might shift the plasmon energy down into
the one-electron continuum. More conclusively, as
shown at the end of Sec. V, such plasma oscillations are
not excited by inelastic scattering of fast electrons. An
expression for the fractional contribution of plasmon
excitation to the sum rule is derived there and plotted
as the lower curve in Fig. 3. It will be noted that this
has already dropped by a factor of about two at
2yk/k()=2, or k/k()=y '. This value of k/k() is twice
that given by Eq. (40), and can be taken as the effec-
tive "cutoG" at high density. The eigenloss intensity
relative to the lower-lying continuum is considerably
less than one-half at this point, since the sum rule
weights the intensities according to their excitation
energies. Thus it must be concluded that the cutoG
determined by Eq. (44) is of a rather artificial nature
at high density. The actual eigenloss scattering intensity
undergoes a gradual "cuto6" at momentum values
given by a factor of the order of r,& times the Fermi
momentum.

%e conclude this section with a discussion of the
variation of the intensity of the eigenloss beam as a
function of scattering angle, in the vicinity of the
cutoG. An incident electron, passing through a metal
foil in which there is present a plasma oscillation of the
type treated in Sec. III, experiences the interaction

c(o(x $) spec((k'x cdo c(vsc c(k'x olo

1he second term can cause the incident electron to lose

energy. The squared matrix element for this process is
e'yo', and corresponds to the excitation of the plasma
oscillator from the vth to the (v+1)th state, where v

is the quantum number of excitation, determined in
Sec. III above. From Eq. (33) we can eliminate q()s in
terms of v, to obtain for the squared matrix element an
expression proportional to v. This simple linear de-
pendence on the excitation quantum number is char-
acteristic of the harmonic oscillator. Although the
present method is only able to handle the case of large
v, corresponding to the classical limit, we can treat
also the small v case by applying Bohr's correspondence
prir(cipte. A quantum-mechanical approach, (such as
that of reference 1), will yield the same linear depend-
ence on v and according to the correspondence prilcip/e
must in addition agree with the present result for
large v. The proportionality constant is thereby deter-
mined, and one is able to write down the squared
matrix element for absorption of energy by the plasma,
or in other words, plasmon creation. An important
special case is plasmon creation in the ground state.
By dividing e'(v()' by v, (or, actually, v+1 but the
difference is inappreciable for large v), we obtain the
following squared matrix element:

~

Ps' ~'= G '2s e'Ao)„/VlP. (45)

G is the function deined in Sec. III Lfollowing Eq.
(33)j.For small k, G= 1, and Eq. (45) becomes identical
to Eq (5) o.f reference 1. Equation (8) derived there
for the angular dependence of the intensity of the
eigenloss beam consequently still holds for small angles,
but is reduced at larger angles by the factor G '.

To estimate the reduction in plasmon production as
the angle is increased, we can make a series expansion
similar to that leading to Eq. (9) in Sec. II. Working
to order k4, we 6nd

o),'(o)—k v;)
G=

[( —k. v.)'—A'v j4m']')
= ( ./ )'+2( / )' 'k'( ')

+3o) 'k4(ti')+5'k4/2m'o) '+ (46)

0
0

a~&/v,

Substituting from Eq. (11) and taking the inverse
yields

6 p18 1
G '=1—~'(k/ko)'+

~

~4—~'
( (k/kp)'+ . (47)

5 &35 2 )
FIG. 3. Dispersion relation and angular dependence of eigenloss

intensity for high electron density. The upper curve gives the
ratio of the plasma frequency, co, to the classical frequency, co„,
as a function of 2y times momentum (in units of the Fermi
momentum). y is the ratio of the Fermi energy to Ace„and equals
1.061 r, &, where r, is the unit-sphere radius (in Bohr radii). The
straight line represents the energy (in units of Aa&~) at the top of
the continuum of one-electron excitations. Note how the plasma
excitation energy approaches the continuum asymptotically. The
lower curve gives the fractional contribution of plasma excitation
to the sum rule limit.

The function represented by the Grst three terms has
been plotted. as a dashed line in Fig. 4, for the case of
r,=2. As k/ks is increased this approximation becomes
inaccurate and 6 ' decreases more rapidly than the
first three terms of Eq. (47) would indicate. In the
vicinity of the cutoG G ' drops rapidly to zero. The
asymptotic behavior at the cutoG is conveniently
found from the top line of Eq. (46) by factoring the
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Substituting N=1+s+f and s=k/2ko into Eq. (44a),
we find

06-
6'
0.4-

3 Pk~-' — ) ky f kq' P2+f+k/koq
2I f+ ~+I f+

16'' &koJ . ( ko~ I ko~ ~ & f+k/ko

0 I t I I I l t I

0 Ql 02 03 0,4 09 0.6 07

FIG. 4. Eigenloss-intensity reduction factor as function of
plasmon momentum (in units of the Fermi momentum) for r,=2.
The da'shed lines represent approximate expressions. Note the
rapid decrease in scattering intensity in the vicinity of the cutoA
k/kp= 0.73.

denominator and by making the replacements k. v, ~
kvo and co —& kuo+hk'/2m in the nonsingular parts of G.
Introducing y =p—k/ko for the distance from the
cutoG, we have asymptotically

G (nuu, '/2hk') &(io—k v;—hk'/2ns)-')

(mhord '/2k'k') &Lha) —2Eo (k/ko) I;—Eo (k/ko)'j ')
-16-'v-'p-'&(1+f(y)- ')-') (48)

Here we have replaced (ko/2k) Pico/Eo —2(k/ko)
—(k/ko)'j by f(y). This function is a measure of the
amount by which the eigenloss lies above the continuum.
The definition of I; has been given earlier in this sec-
tion. Near the cutoG the dominant contribution to G
comes from electrons near the surface of the Fermi sea,
with I 1. Therefore it is desirable to introduce the
new variable u'=1 —si. The average in Eq. (48) can
now be expressed as the integral

V r kp' r +'
() X—' 2, I ~tok I dN or(1—si')

8oro " 4s'I"

3 2

JN Zi (1—Q /2).

In the present case, the upper limit can be left indefinite,
and the second factor in the integrand neglected. Thus
we obtain the asymptotic equivalences

3 (' Q dQ

&t 1+f(y)— '1 ')--„II, -l l (f ').
2~o (u'+ f)'

The behavior of the reduction factor in the vicinity
of the cutoG is therefore given by

2k/ko (2f+f ) ln(1+2/f) =1. (50)

Making approximations suitable for small y reduces
this Lby means of Eq. (42)j to

f»(f ') = (2+0) 'L2+8v'P'(4+0)/33 (51)

Since it is not possible to solve this simple relationship
explicitly for f as a function of y and then substitute
into Eq. (49), we have instead solved for f from Eq.
(49) and substituted into Eq. (51), thereby obtaining

y as a function of G '. For the particular case of r, = 2
the resulting equation has also been plotted in Fig. 4,
again as a dashed line. The solid line has been drawn
to join on smoothly to the two dashed lines in their
regions of validity, and represents the inferred behavior
of the reduction factor for all values of k/ko. The error
involved in drawing this interpolation curve could be
avoided by explicitly carrying out the integration im-
plicit in the de6nition of G. This can be accomplished in
terms of elementary functions, but the labor involved
does not seem warranted at present. The above approxi-
mate results are sufficient to establish that the angular
dependence derived in reference 1 is substantially cor-
rect, except near the cutoff, where the intensity of the
eigenloss beam drops abruptly. This conclusion does
not apply to the case of high density, however, which
requires special study and is discussed at the end of the
next section.

U. PREDOMINANCE OF COLLECTIVE EXCITATION

As emphasized in reference 1, a fast electron passing
through a metal foil can lose energy by either of the
two alternatives of collective or one-electron excitation.
Having studied collective excitation in the preceding
sections we now want to conclude our discussion with a
quantitative treatment of the alternative mechanism
of one-electron excitation. This is facilitated by a sum
rule which was encountered in Sec. III of reference 1
(where it was noted that the differential stopping power
was independent of the interaction between electrons),
but which seems to have first been recognized by
Nozieres and Pines. ""In the notation of reference 1,
their sum rule requires

G ' 32''P4/3 ln(f '). (49) Q f o"=N, (52)

The numerical coeKcient in Eq. (49) is of the order of
unity, so that small values of G ' occur only very near
the cutoff. The function f(y) can be determined by
explicitly carrying out the summation over velocities
which is indicated in the dispersion relation, Eq. (8).

where

f o"= (2m&o oaks) I V(p.)-oI' (53)

The matrix element is taken between the ground state
and the eth excited state, and the sum is over all
excited states. As they state, the proof is quite straight-
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forward. It is most easily carried out by considering

n nO nO

= —(2m/fi'k') ([[H,Vpi, ],Vp g])0= 2E. (54)

Equation (52) then follows, since there is no preferred
directio~ in the ground state and the individual sums
for +k and —k are equal. Equation. (54) is a generaliza-
tion of the Nozieres-Pines sum rule to excited states
where this equality of individual sums no longer holds.

Designating the one-plasmon state of momentum Ak

by n=1, let us now evaluate the oscillator strength
fio~. From Eq. (45) and the definition of H' in terms
of pl,"we find

giving

(55)

cv&o has been replaced by cu, the frequency of a plasma
vibration of wave number k. Both co/co~ and G '
approach unity as k —+ 0. Thus in this limit the sum
rule is exhausted by the collective excitation alone.
by substituting from Eqs. (11) and (47) into Eq. (55)
we can determine for any particular value of k the
fraction of the sum-rule limit accounted for by the
plasmon state. The sum rule itself then gives the fraction
of the total contributed by one-electron excitation:

P f„o"/N =1—((v/(u„)G
—'

nial
= (192/175)y4(k/ko)'+ . (56)

It is interesting to note that, to order (k/ko)', the fallof'f

in eigenloss intensity is just that required to compensate
for the rise in cv/~, and avoid exceeding the sum-rule
limit. To this order, the collective excitation continues
to exhause the sum rule —failing to do so 6rst in order
(k/ko)'. The first term of Eq. (56) is an accurate repre-
sentation of the one-electron contribution only for rela-
tively small k/ko. It yields about 10% at the cutoff,
for r, =2, while the actual one-electron fraction must
increase much more rapidly in the neighborhood of this
value of k/ko and becomes unity when it is attained.

For the case of high electron density the one-electron
excitation contribution to the sum-rule limit has a
considerably different rnornentum dependence, and
assumes almost the entire value of the sum already
for momentum values much smaller than the cutoff
momentum, as determined from Eq. (44). The eigenloss
therefore undergoes an effective cutoff in the region of
these much smaller momentum values. The fading out
of the eigenloss intensity can be studied in detail by
making the high-density approximation of neglecting
the —i''k'/4m' term in the expression for the reduction
factor and by carrying out an integration similar to
that in Eq. (42). Using the variables already introduced

"See reference 1, p. 557.

in the preceding section for treating the dispersion
relation at high density, one 6nds

4(2yk/ko)' N2 —1

From this equation and Eq. (44b) the fractional plasma
contribution to the sum rule, (co/&u„)G ', has been
computed as a function of the dimensionless variable
2yk/ko and plotted as the lower curve in Fig. 3. The
plasma contribution drops below 50% at a momentum
value approximately equal to r,: times the Fermi
momentum.

VI. SUMMARY

Although the work in this paper has been carried out
outside the framework of the Bohm-Pines theory, we
feel that the latter provides the only complete treat-
ment of all the properties of metals connected with the
Coulomb interactions of the electrons (cohesive energy,
specific heat, etc. , as well as plasma oscillations). We
have not employed in the present work the theory of
Bohm and Pines simply in the interest of simplicity,
and are con6dent that the results obtained can also be
deduced from their more general theory. In addition
we have been motivated to treat the plasma oscillations
without the introduction of collective coordinates so as
to avoid some of the uncertainties associated with the
subsidiary conditions. %e do not regard the latter as
serious difficulties and feel that the Bohm-Pines theory
is valid in its essentials. The relatively small cutoff
wavelength found in Sec. IV does, however, focus
attention on the question of the subsidiary conditions.
With these larger values of P the plasma oscillations
account for an appreciable fraction of the total number
of degrees of freedom in most metals. It would also
seem that the range of the residual screened Coulomb
potential must be shorter than determined by Pines,
since it is intimately related to the cutoff wavelength.

It should be emphasized that all of the results ob-
tained in Secs. III, IV, and U are subject to corrections
due to electron exchange and to the positive-ion lattice.
The hrst type has been estimated in Sec. II in con-
nection with the dispersion relation and has been found
to be relatively minor. The second type can, on the
other hand, radically affect the nature of the plasma
oscillations. These cannot only be shifted in frequency
but in some cases be severely damped. This latter is
easily understood on the basis of Fig. 1, which indicates
the ideal case where the lifetime of a plasmon would be
in6nitely long. This is because, for momenta smaller
than the cutoff value, the plasmon energy is cleanly
separated from the lower lying continuum of one-
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electron transition energies. "This ceases to be the case
when the lattice sufBciently modulates the electron
wave functions that it furnishes to the electrons to an
appreciable extent multiples of the reciprocal lattice
vectors. By virtue of this additional momentum con-
veyed by the lattice, the one-electron transition energies
are no longer limited to small values but instead form
a continuum which extends up to and beyond the
plasmon energy. As a consequence the plasma excita-
tion will show up in the electron energy-loss experiments
as a broad eigenloss which may in some cases lose its
identity and merge with the background of the one-
electron continuum. In these cases both collective and
one-electron transitions are involved and a point of
view which took only one aspect of the phenomenon
into account would be inadequate. A quantitative
treatment of some actual cases of this type would be
quite desirable, but must remain a subject for future
study.

APPENDIX I. EXCHANGE CORRECTION TO
DISPERSION COEFFICIENT

We follow the procedure outlined in the text and
linearize the integral exchange operator which appears
as the erst mathematical expression following Eqs.
(12a—c). Assuming the A;&+i to be real and calculating
only to lowest order in k, we Qnd that the matrix ele-
ment of this perturbing operator for the transition
between the unperturbed state y; and the state y;e+'"'
ls

—(2 e'/V) pic;/ik; —k;i'.

Therefore in place of the matrix element for the Har-
tree 6eld alone, —eq p, wlllch appears in Eq. (5) and is
given in Eq. (7), we should have

If we further introduce

L'~'= L*~f—v,
X=Goy

(14)

(»)
(16)

(17)

(18)

k' 1
(2o)

24p2N2
i k;—k, )'

we obtain from Eq. (5) the homogeneous linear
equations

Q;(L;;+L/ )a;=La;. (19)

A set of a s which satisfy these equations can be con-
sidered an "eigenvector" of the linear self-adjoint
operator L;;+L;, associated with the eigenvalue X.
Purely for the purpose of solving the formal mathe-
matical problem posed by Eq. (19) pp and k can be
considered as given, and, in searching for an eigen-
solution, 'A can be considered to vary. This is permissible
since the electron charge appears only in X and nowhere
else in Eq. (19).The procedure thus amounts to finding
what strength of interaction will sustain a plasma oscil-
lation of a speci6ed frequency and wavelength. Once
the relationship is established, it can be used to 6nd
the plasma frequency as a function of wave number,
for the naturally occurring value of the electron charge.

Since we are interested here only in solving Eq. (19)
for small k, we can use perturbation theory to evaluate
the shift in X caused by the perturbation I.; . The
"zero-order eigenvector" is given, to sufhcient accuracy„
by a;=E &, so the perturbation in X is

6'A= Qa,L@'a,=N QLg'—

where

(42re2/O2V) P;(1—f,~)A;,

f;;=02/2lk; —k (13)

It is not necessary to evaluate here this double sum
over the I ermi sea, since it is essentially identical to
the well-known expression for the exchange energy per
electron, "

2'Throughout this work we have ignored the damping of the
plasma oscillations by two-electron excitation —via short-range
collisions. Although this becomes appreciable at the short wave-
lengths, according to the estimate of Nozieres and Pines (reference
10, Eq. (28)g, it varies smoothly with wavelength and is unlikely
to obscure the much more abrupt cutoff discussed in the present
work, which is due to one-electron excitation. (In this equation
the quantities v& and or~ should evidently be replaced by their
reciprocals). In any ease, the cuto8 determined here is the maxi-
mum possible.

Thus we find

22r 228 1

N' /k; —k;is

64p„2= —X 2AX= —4p„46K= —E ks/222,

which, in conjunction with Eq. (9), yields

2 —~2 $2(e2) g p2/222

(21)

(22)

(23)


