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Theory of Cyclotron Resonance in Metals~
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Azbel' and Kaner have shown that a cyclotron resonance phenomenon is possible in a metal under extreme
anomalous skin-eR'ect conditions when the magnetic field is parallel to the metal surface. Here the correct
form of the surface impedance is deduced in a more simple way by using the "ineffectiveness concept" of
Pippard. An approximate criterion is also established for how nearly parallel to the surface the magnetic
field must be. When the oscillating electric field is not parallel to the constant magnetic field, it produces a
polarization of the charge distribution in the metal, and it is shown that this eEect does not destroy the
resonance in contrast to the situation in semiconductors.

I. INTRODUCTION

HE surface currents in a metal at high frequencies
are governed by the usual skin-effect theory,

until at low temperatures and high frequencies we
come into the anomalous skin effect region where the
skin depth 8 becomes comparable with or smaller than
the mean free path / of the electrons in the metal. In
this range the surface impedance has been calculated
from the Boltzmann transport equation by various
authors, ' but the calculations are long and complicated.
In particular AzbeV' and Kaner' have considered the
case when there is a magnetic field H (of magnitude H)
parallel to the surface, and have shown' that this leads
to a cyclotron resonance phenomenon although there is
no useful resonance when the field is perpendicular to
the surface. 4 This resonance is somewhat di6erent from
cyclotron resonance in semiconductors in that a
resonance is in general expected when the oscillating
electric field E is parallel to H as well as when it is
perpendicular, even if, for instance, the Fermi surface
is spherical. In semiconductors, on the other hand, a
resonance is obtained with E and H parallel only if the
Fermi surface is asymmetric and the fields are not
along a symmetry axis. ' This difference is brought
about by the fact that in a semiconductor the skin
depth is large compared with the specimen thickness,
whereas the opposite is true in metals. This fact also
has the following consequence. In a semiconductor a
particular group of electrons (more precisely a particular
closed piece of Fermi surface) gives rise to a single
resonance line around a field H„say, whereas in a metal
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additional subsidiary resonances are expected at all
submultiples H, /n of the field, where rt is an integer.

Now Pippard' has shown that in the absence of a
magnetic field the surface impedance Z„ in the extreme
anomalous limit when b&&l may be calculated correctly
for a Fermi surface of arbitrary shape using a crude but
simple physical model known as the "ineffectiveness
concept. " In this model it is assumed that the electrons
only make an eftective contribution to the current if
they spend most of their time in the skin depth, i.e., if
they are moving at an angle less than 3// with the
surface. The purpose of the present paper is to apply a
slightly adapted version of the ineffectiveness concept
to the case when there is a uniform magnetic field H
parallel to the surface. Thus we shall first give, using
the ineffectiveness concept, a simple phenomenological
derivation of the result of Azbel' and Kaner' for the
surface impedance near resonance (Sec. II). Actually
the result appears to be valid not only near resonance
but over a much wider range of H.'' Throughout we
shall assume that 8/l«1, 3/r«1, and oor5/l«1 so that
relaxation eftects are negligible, 6 where r is the radius
of the orbit in the magnetic field of an electron at the
Fermi surface, co the frequency of the applied fields,
and 7. the relaxation time of the electrons. In Sec. III
we shall consider the reduction in the cyclotron reso-
nance signal when H is not exactly parallel to the
surface.

As already mentioned, the result of Azbel' and
Kaner' indicates that a resonance should be observed
both when E and H are parallel and. when they are
perpendicular to one another, both fields being parallel

to the surface. However, these authors do not appear
to have taken account of the fact that when E is

perpendicular to H, the individual circular motion of
the electrons is strongly coupled to the plasma oscil-

lations of the electron gas as a whole. This eBect in

semiconductors shifts the resonance considerably, 7 and
an analogous theory applied to a metal specimen would

lead one to expect that the resonance is shifted to well
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Z„= (4s.ro/o. ff) & exp (is./4),

8= (s4rl 670'err)

(3)

(4)

where b is defined by

E(z) =Es exp( —z/b). (5)

Eliminating 5 and o;tr from (2), (3), and (4), we obtain

Z„=2 (2z'a)s/a) & exp(kr/3). (6)

At 6rst sight it is surprising that such crude arguments
correctly give the phase in (6) in agreement with the
rigorous theory, ' but as we shall mention later there
are reasons for this. For instance, it is quite unnecessary
to appeal to the formulas (3)—(5) from ordinary skin
effect theory. The result (6) also follows directly from
Maxwell's equations and (1), except that (6) now
contains an extra unknown numerical factor depending
on the form of E(z), which incidentally does not have
the form (5) in the anomalous skin effect. s We shall
assume this constant to be absorbed into the constant
in u, and thus continue to use {6).

II. THE SURFACE IMPEDANCE

The current density J at any time and place in the
metal may be written in the general form'

r 2d'p dfs
J(t,1)=- ev ev(r', t,') 8(r', t')

I da ~.
&(exp/ —(t—t')/r jdt', (7)

Note added since completing the manuscript. These points
have previously been made by R. G. Chambers, Can. J. Phys.
84, 1595 (1956). I am indebted to Dr. Chambers for this and
other comments.

s R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952).

outside the ordinary range of observation because of
the high plasma frequency in a metal. However, such a
theory would not be valid, and in Sec. IV we will show

by semiquantitative arguments that the cyclotron
resonance in a metal is expected to be unaffected by the
plasma motion of the electron gas. This difference
between metals and semiconductors is again due to the
different relationship between the skin depth and the
sample thickness.

In applying the ineGectiveness concept, the main
part of the calculation consists of obtaining an expres-
sion for the current density J at the surface. Because of
the ineGectiveness assumption, this turns out to have
the form

J=a5Ep,

where Es is the electric field at the surface, and where u
contains an undetermined numerical factor but other-
wise depends only on the shape of the Fermi surface.
From {1)we define an effective conductivity

&eff +)
and then calculate Z„using the ordinary skin eGect
results' in electromagnetic units:

where r' and t' refer to the place and time along the
electron's trajectory at which the electron that 6nally
has momentum p at (r, t) finds itself at time t', fs is the
Fermi distribution function; h is the energy of the
electronic states as a function of the momentum p; v is
the velocity of an electron, and e is the charge on a
proton. The form (7) includes the case of a magnetic
field implicitly through the nature of the electron's
trajectory. Ordinarily the limit of integration c is —~,
but if the trajectory of an electron cuts the surface of
the metal, then c is the latest time prior to t that the
trajectory cuts the surface. This takes account of
diffuse scattering by the surface. ' In the Appendix it
is shown that (7) follows directly from the Boltzmann
transport equation. We shall choose the g axis in the
direction of the magnetic field parallel to the surface,
the s axis normal to the surface pointing into the metal,
and the y axis in the surface making a right-handed
triad with z and x (Fig. 1).

We shall now use (7) to calculate the current density
at the surface. The time spent by an electron within
the skin depth is approximately 2r@ /e„(Fig. 1),
where r rcosg =-,'5,—i.e.,

2r(Hr)y„(Ht)/s„= r.

For tin at 40 kMc/sec, Hi 250/{Mr)', but th——is estimate
may easily be in error (probably underestimated) by a
factor as large as y (see below). The electron travels in a
spiral path with a period of rotation 2s./ce. , where
cu. is the cyclotron frequency eH/m*. The effective
mass m*= (1/2s.) ~

BS,/8$ ~, where S, is the cross-
sectional area of the Fermi surface in the plane p
=constant, as can easily be shown from the work of
Shockley" and Onsager. "Every revolution the electron
returns to the skin depth, and the integrand in {7)
changes by a factor

2' 2' co,
e "=exp — —i

McT etc

Pro. 1.Orbit of an electron passing through the skin depth at the
surface AB. The direction of the magnetic field is along the x
direction pointing into the plane of the paper.

' W. Shockley, Phys. Rev. 79, 191 (1950); L. Onsager, Phil.
Mag. 4B, 1006 (1952).

Q '=5/r((1.

This time is sufFiciently short for the exponential factor
in (7) to remain effectively constant at all fields H«H&
for which
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where the second term arises from the change in the
phase of the field E. Thus the second integral in (7)
becomes

(2' m&g)

eI IE;(1+e "+e '"+ .)=
2erg v,E;

w p/1 —exp( —io)j

where h(h —her) is the Dirac delta function, p is the
radius of curvature in the section, p the polar angle
with origin such that v, =O, v„&0 at /=0, and v, is the
component of v perpendicular to H, i.e., vi(&=0) =v„.
Since electrons are scattered diffusely at the surface, an
electron can only contribute electively to the current
at I' (Fig. 1) if it does not hit the surface, i.e., if its
perpendicular velocity component v, makes an angle P
less than g with the surface. This is our form of the
basic assumption of the ineffectiveness concept. If one
takes only these effective electrons into account, (7)
becomes

2eP ( /dript;pp2rE;
J;=y dp»

h' " e 'L1 —exp( —zv))

where we have included a real undetermined numerical
factor y to make up for the approximations of the
model. The quantity pp is p at &=0, and e;, e, , e, are
the direction cosines of v. Using (8), (1), and (2), we
obtain

We use sufBcesi and j for two directions at right angles
in the surface, and also the double suffix summation
convention.

Considering a section of the Fermi surface p, =con-
stant, we have in (7)

dfp dE
d'p = dp b(E——E~) pdp,

dE Vg

calculated correctly we would have to prove (i) that
y is real, (ii) that the 8 in (11) is the complex skin
depth 8 as in Eqs. (1) to (6) and not for instance its
real part, and (iii) that the constant which appears in
(6) in the general case is real. These results can be
proved by making some general assumptions about
E(s), but the assumptions can in turn only be justified
by appealing to the rigorous analysis. Instead of
bolstering up the argument in this way, we shall take
the attitude that the usefulness of the ineB'ectiveness
concept lies in its giving the correct form of the answer
quickly rather than in any rigor. Actually the "in-
effectiveness" model corresponds closely to the rigorous
analysis in many, but not all, important respects.

In (12) we cannot determine p directly by comparison
with the result of Azbel' and Kaner' since this itself
contains an undetermined constant. However for an
ellipsoidal Fermi surface, and H much greater than
H, and H,/por, we can compare our result with that of
Azbel" and obtain

f
Sy' 8~

for large H.
(9) 3'

Although our analysis only applies for B&H&, we
notice that (12) also has the correct form ' for H=O,
so that we obtain

y = Sn/3'* for H =0.

Thus if the relaxation time and the effective mass are
constant over the whole Fermi surface, we can express
the surface impedance for an arbitrary field and direc-
tion in terms of the surface resistance E. in zero magnetic
field.

2ir 2iruq
Z„/E=2C exp(im/3) 1—exp I

— i I, (13)—
(d~r G7~

where
(o,ii);;=a;,5,

4e t' rt ~s& p'pdp'g

+sg=V h'" n„'
I

1—exp( —u)$

(»)

(12)

where C= 1 at H= 0, C= 8/9 at H))H, and H»H. /&or,
and where C may be expected to vary rapidly with H
near H=H~.

III. NONPARALLEL FIELD

whence the surface impedance follows from (6). We
shall now dehne i and j to be the principal directions
of (12) because actually the inefFectiveness concept
only applies when E is along one of these directions. '
Then our result is in agreement with that of Azbel' and
Kaner' although expressed slightly differently, and Z„
for an arbitrary direction' in the surface may be
obtained from Z„, and Z„,. The denominator in (12)
makes the surface impedance go through a resonance
near H= H,/n for por) 1, where H, is such that co,(H.)
=~, and e is an integer. The resonance occurs in both
Z„;and Z„, and, thus, for any orientation of the electric
field in the surface.

Near resonance, the phase factor in the impedance
becomes very important, and to show that it has been

We shall now discuss the question, how nearly
parallel to the surface must the magnetic Geld be for
the resonance to occur) Figure 2 shows the trajectory
of an electron when the magnetic field in the xs plane
makes a small angle g with the surface. We shall assume
that E is along the x direction since this avoids the
question of polarization effects (Sec. IV). Suffices II and

will denote components parallel and perpendicular
to the magnetic field and not to the x axis. E& only
produces a translation of the trajectory in the y
direction and will be neglected, while EI~ produces an
acceleration along I every time the electron passes
through the skin depth.

For unaccelerated motion in a magnetic field, p~ 1
is a

constant of the motion, so that an electron travels in. a
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FIG. 2. Trajectory of an electron when I is
not parallel to the surface.

helical path with its axis parallel to the 6eld. Thus if
the electron starts its path at the surface, it will tend
to move away from the surface, particularly if it has a
large e~~, so that after a while it ceases to return within
the skin depth each revolution and therefore ceases
to take part in the conduction process. In particular
an electron with e~

~

——v& travels a distance 8 downwards
in the s direction in each revolution if f=P, where

f =o/2rrr. (14)

For this angle and a spherical Fermi surface we
therefore obtain the following picture of the conduction
process. This number of electrons passing through the
skin depth is determined as in Sec. II so that there is no
change in the impedance on this account. However,
half of these electrons ( ( v~ ~/v, ( )1) never return to
within the skin depth of the surface and do not con-
tribute towards any resonance. A fraction 2~/&or

(&or))1) of the electrons have
( v~ ~/v, ( (2v/cor and

return to the skin depth tor/2v times making their full
contribution to the resonance as in (12).The remaining
electrons make some contribution to the resonance.
Similarly the amplitude of the resonance at other angles
is a function of f/P and &or which begins to fall off
considerably at P=f . This function could easily be
calculated by using the ineffectiveness concept except
that we do not know at what stage to introduce the
constant y. For instance, the effect of y in (12) could
be interpreted as meaning that the eGective conducting
surface layer has a thickness p8 instead of 8, in which
case the. angle determining the reduction in the reso-
nance would be ~ instead of f .

For a nonspherical Fermi surface, the amplitude of
the resonance may, however, be greater for P=f than
for /=0 for the following reason. The form of the
resonance in the resistive part of the surface impedance
is more like a dispersion curve than a resonance one.
Thus if m* varies by more than a factor of 1.5 over the
Fermi surface, the diferent contributions tend to
cancel one another resulting in a very much reduced
resonance. In this case having f &0 would select a

band of the Fermi surface for which m~
~

=0 and m*= con-
stant, so that the resonance of these electrons by them-
selves would be observed. '

For tin at resonance at 40 kMc/sec we obtain

P =0.4' by using the effective mass corresponding to
the resistance minima in the resonance curves of
Fawcett, " but the resonance may be observable at
considerably greater angles for one or both of the
reasons discussed. The results of the present discussion
are at variance with Azbel' and Kaner's assertion'
that the condition for an observable resonance is
l(&(8/r)&. This angle is 7' for tin under the same
conditions, so that it may be difhcult to distinguish
between them experimentally in this case.

IV. PLASMA EFFECTS

In Fig. 3, ABCA represents the orbit of an electron
which for the sake of convenience we assume has no
velocity component along H. If the electric field E is
applied perpendicular to H, an electron with speed v

is accelerated in the direction of its motion as it passes
through the skin depth, so that its speed is increased
to v+Dv. In the absence of further electric fields it
would then describe with the same angular velocity cu,

the orbit ADEA which has a larger radius than the
unaccelerated orbit. Thus the electron density at E
would increase at the expense of that at C, and a
space charge would be set up (Fig. 3). This inhomoge-
neity of charge and the consequent electric fields have
not been taken into account in Sec. II, in Azbel"s
calculation' based on the Boltzmann equation, nor
apparently by Azbel' and Kaner, ' and we shall now
do so. In semiconductors these eGects, known as plasma
or polarization eGects, modify and shift the cyclotron
resonance considerably, but we shall see that we expect
this to be not so under anomalous skin-effect conditions
in metals. No polarization arises when E is parallel to H,
and we shall not discuss this case further.

In a metal, a space charge such as shown in Fig. 3
cannot exist and dies away in about 10 "sec."In fact
it could never build up, and what actually happens is
that a small space charge is produced which sets up a
vertical electric Geld. This field is strong enough to

4 +—k~

FIG. 3. Production of space charge.

"E.Fawcett, Phys. Rev. 103, 1582 (1956)."J. Stratton, Electrovtagrtetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), p. 15.
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stop further electrons coming down to a depth further
than C (Fig. 3). The resulting orbit looks like AFGA'.
The amount of space charge required to set up these
fields is exceedingly minute and in any case tends to
zero as E tends to zero. To obtain the terms in the
current linear in E, we may neglect this charge and also
consider that A' is within the skin depth if A is.

Thus to calculate the surface impedance in the
presence of polarization, we would have to include
in the transport equation (7) an unknown vertical
electric field E, which is determined by the condition
that the resulting transport maintains the charge
density uniform everywhere. This problem has not
yet been solved generally. However we assert that an
electron when it reaches the skin. depth again at A'

(Fig. 3) after one revolution, has on the average the
same drift velocity as it had when leaving the skin
depth after being accelerated at A. It therefore con-
tributes to the current as in Sec. II and is ready to be
accelerated further, leading to repeated acceleration
in the same direction, and thus, resonance if co=co..
Although we cannot prove our assertion in general, we
shall now show that it is correct in a simple case which
would appear to contain all the physical essentials of
the situation.

Consider an electron traveling unperturbed in the
orbit ABCA (Fig. 3) with speed v. Its position is given

by
yp ——(v/o~, ) sincp, t,

sp ——(v/o~, ) (1—coscp, t) .
If it receives a single impulse at A which increases its
speed to v+hv, its motion in the absence of polarization
is along ADEA and is given by

v+Av v+Av
yi —— simp, t, zi= (1—cosa', t).

Its speed at all times is v+Av, so that the magnetic field
has reversed the drift velocity in half a cycle. In

F-zo

s(t) =«(t).
The solution of (17) and (18) is

ss ——(v/(o, ) (1—cospp, t),

ys ——(v/o~, ) sinews, t+td, v,

vvs=v cosa) j+6v,
E,= epphv/m*,

(18)

(19)

giving the orbit AI'GA'. Thus the drift velocity remains
constant as if no magnetic field were present instead of
being reversed after half a cycle. Thus, in a semi-
conductor like InSb with a high carrier concentration
where plasma eGects are strong but where the orbit
radius is still less than the skin depth, we would expect
no resonance in our approximation because the 6eld
accelerates an electron at A (Fig. 3) and decelerates it
half a cycle later at G. However from (19) after a full
cycle at A' the velocity is again v+tII, v In a .metal,
therefore, under anomalous skin eGect conditions, an
electron contributes to the surface current just as in
Sec. II and it is immaterial whether or not the drift
velocity is reversed at G because the electric field does
not penetrate as deep as this. Thus if we apply the
periodic field E„(Fig. 4), bunches of electrons are
accelerated or retarded every half cycle, the 6eld
E„,E, p (Fig. 4) is set up so that each bunch sees a
constant E, on its path, and we obtain at the surface
repeated resonance acceleration or retardation in phase,
which is only limited by the relaxation time, r.

Another way of stating the situation makes it clearer
why only the drift velocity at AA' matters and not
that at G (Fig. 3). Neglecting pola, rization, the last
integral in (7) can be written in the form

(20)

semiconductors like germanium with a low carrier
concentration, where the radius v/pp. is small compared
with the skin depth, and where plasma e8ects are
absent, this leads to a resonance since E also reverses
in half a cycle. However in the presence of polarization
the equations of motion are

dv„/dt = —oi,v„dv, /dt = —(e/m*)E, + o~v„, (17)

where E, is determined by the condition that the
vertical charge density is the same as if the electron
had not been accelerated, i.e., in our case by the
condition

it
Ezb

FIG. 4. Electric Gelds at resonance with polarization. E„ is the
applied 6eld at the surface; E,=E„for 0 &z&v/cy„E, =E,q for
v/ru, &z &2v/ar, .

where Eo is the memory that an electron with
momentum y at 2 has of the drift velocity it picked up
from the field Ev(f') at a depth f below the surface.
Ep has a large cusp at s—/=0 due to the electrons
moving parallel to the surface at s(v, =0), and the
small wavelength Fourier components of Eo due to this
cusp determine the surface impedance in the extreme
anomalous limit. ' Thus Z„ is determined only by
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Es(z,f;v, =0) for s —(=0 I.n the presence of polari-
zation effects, (20) should be replaced by

but since 8, depends linearly on E„this can be written as

In the example with a pulsed field E„(Fig. 4), we

saw that

Es(s,i; v. =0)=Zs(s, f'; tt, =0) for s f=—0
so that the surface impedance is the same. The fact that

Es(s,f; v, =0)= —Zs(s,f; v, =O) for s /=2—v/oi,

is immaterial in the extreme anomalous limit.
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APPENDIX

Chambers' has derived the expression

follows directly from (A.1) and J=—(2e/hs)f fvd'p if
we assume a constant relaxation time.

We first observe that (A.1) satisfies the following
boundary conditions which are usually required by
physical considerations. Thus f +fs —in regions where
E=O. At a surface scattering electrons diffusely,

' '4

(A.1) gives f=fs for electrons leaving the surface.
Similarly at a surface reflecting electrons specularly, f
is the same for electrons arriving at and reQected from
the surface.

We next note that the independent variables in
(A.1b) are t, r, p, f', t" and that r' has the form

r'= r+F(T,p),

where F is a function only of p and T=t—t'. Also

Br'/Br = I and Br'/Bt =BF/BT, (A.3)

where I is the unit tensor. Now since r' represents the
trajectory of an electron, the function F is determined
by the law of force acting on the electron. Consider an
electron traveling along its trajectory and arriving at
the point r at time t with momentum p, and suppose it
then travels an extra distance br in a time Q. We have

r'=r+F(t t', p)—
= r+Br+F(f+Bt—t', p+Bp),

where
br=v(r, t)bt, 5p=[—eE(r, t) —evXH]bt.

where
f=fo+& (A.1a) Thus we obtain

8 8
v(r, f)Q+ Bt+[—eE(r,t) —evXH].—ht=0,

t9T Bp
0 f

df'( —e)E(r', f') v(r', f')
d8&.

and by using (A.3)f' f' df"
5Xexp (

—
~

(A.1b)
&g r(t")) ter Br'

= —v (r,t) —[—eE (r,t) —ev XH] . (A.4)
81' Bp

We can now proceed to differentiate (A.1) and hence
verify that it satisfies (A.2). In the following manipu-
lation, we assume for simplicity that r(p)=constant
and replace J"dt,"/r by (t t')/r, since t—he extension of
the proof to the more general case is straightforward.
Thus

By dfs
(—e)E(r,t) v(r, f) ——

Bt d8

dfp t 1
Br' B

' dt' ' [—eE(r', t') v(r', t')]
d8~ Bt Br'Bf Bf Bf f fo-—+v —+ (—eE—evXH) —=—,(A.2)

Bt Br Bp (p)

for the electron distribution function f(r,p, f) in a
transport process. The symbols have the meaning
defined in connection with Eq. (7), and the integrations
with respect to t', t" are carried out along the electron's
trajectory. This expression was derived by Chambers
from "kinetic" arguments similar to Shockley's method"
of "tube integrals. "However in view of the generality
and usefulness of the result (A.1) as a starting point
for the study of many transport phenomena, it seems
worthwhile confirming its validity further by showing
that it is also an exact solution of the Boltzmann
transport equation"

where BfjBr means grad f. This we shall now do.
Incidentally the expression (7) for the current density

'3 In fact it would be rather surprising if (A. I) did not satisfy the
Boltzmann equation since (A. ib) and (A.2) have been derived
from the same physical principles.

Xexp[—(f—f')/ ] . (A.s)

If we make the substitution (A.4) in the last term of

"K.I"uchs, Proc. Cambridge Phil. Soc. 34, 100 (1938).
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(A.5) it becomes

8$ 8$—v —(—eE—evXH)— (A.6)
8r Bp

since p depends on r and p only through r'. We also have

Bfo Bfo Bfo dfo Bfo
=0, = v, vXH=O. (A.7)

Bt Br Bp d8 Bp

It is now easy to verify that we really have a solution
of the Boltzmann equation by substituting (A.ia),
(A.5), (A.6), (A.7) into (A.2). Incidentally, if in

(A. ib) we neglect the effect of the electric 6eld on the
trajectory of an electron, and thus drop the term in
E in (A.4), then we obtain those terms in the Boltzmann
equation which depends only linearly on the electric
6eld.
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Selection Rules for the Absorption of Polarized Electromagnetic Radiation
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Group-theoretical methods are employed to obtain the selection rules for the absorption of polarized
E1, 3f1, and B2 electromagnetic radiation by mobile electrons which are near energy-band extrema. Both
the single-valued and double-valued groups appropriate to several symmetry points in the reduced zones of
simple-cubic, face-centered-cubic, body-centered-cubic, and hexagonal-close-packed lattice symmetries are
considered. The symmetry properties at various points in the reduced zone are also used to derive expres-
sions for the electron energy as a function of the wave vector k in the neighborhood of nondegenerate ex-
tremum states.

The results obtained are applied to a consideration of the change in optical selection rules when single
crystals of indium antimonide are subjected to a shearing stress.

I. INTRODUCTION
' 'T has been shown by Bloch' that the behavior of
- - mobile electrons in the periodic potential 6eld of a
crystal can be described in terms of eigenfunctions of
the form

P|,——e'"'rs|, (r),

where the modulating function uz(r) has the periodicity
of the lattice, and where k is the wave vector for an
electron with a given energy E(k). The corresponding
energy eigenvalues fall into allowed and forbidden
regions in k-space, with energy discontinuities occurring
at the Sragg refiection planes

k n=(ms. )iu, (2)

where n is a unit vector normal to a lattice plane. The
lattices in k-space bounded by these planes are the
Brillouin zones. It can be shown that, owing to the
translational symmetry of the lattice, the k-space under
consideration can be reduced to a single unit cell in the
reciprocal lattice, with the electron wave functions
being multivalued functions of k. The unit cell is called
the 6rst Brillouin zone or the reduced zone. '

The set of symmetry properties associated with a
given point in the reduced zone determines the selec-
tion rules for the absorption of polarized electromag-
netic radiation and the functional dependence of the
electron energy on the wave vector k. The selection
rules referred to in this paper are those which are in
addition to the selection rule obtained from the law of
conservation of linear momentum,

k;+ii=kr,

where k; and kr are the initial and final wave vectors of
the electron, and q is the wave vector of the electro-
magnetic field. Only the vertical transitions (d,k=0)
will be treated in this paper. 4

The contention is made that a knowledge of the
selection rules for the absorption of polarized radiation
by electrons near energy-band extrema could lead to
further information about the 6ner details of the band
structure. Although there are, in general, a large num-
ber of possible initial or final states, the selection rules
couM help to eliminate some residual ambiguities in the
description of the band structure as obtained from other
types of experiment. This point has been illustrated by

' F. Bloch, Z. Physik S2, 555 (1929).
2 The term "electron" will be used to denote electrons or holes.

See for example J. R. Reitz, Sold State Physics, edited by F.
Seitz and D. Turnbull (Academic Press, Inc. , ¹wYork, 1955),
Vol. 1, Chap. I.

4 Since the de Broglie wavelength of an electron near a zone
boundary is of the order of magnitude of the lattice constant, the
assumption of vertical transitions is equivalent to the assumption
that the lattice constant is small compared to the photon wave-
length.


