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TABLE II. The states for the two donors described as
states for a composite Saw.

For Case (2), the two donors have suKciently different
energies so that they act independently and the Raw

energy levels coincide with those of the donors as cor-
rected for spin degeneracy. t

It may also be shown that the probabilities of the
various charge conditions as given by Eq. (3./) reduce
to those calculated by the usual Fermi-Dirac treatment.
For example, from Eq. (3.7) we obtain

E2g= —E1—kT ln4

E1~—

(A2.3)

(A2.4)

For Case (1), the energy for binding the second electron
to the Qaw is the same as the 6.rst, but the entropy factor
is less so that the erst donor level lies higher than the
second donor level by kT ln4.

Case (Z) Et—Es) AT

ionization energies EI and E2, consider the two follow-
ing cases:

Case (1) Et=Et

+s/g& —p +ep (E&e E&) (1
—+ep (E2d E&—))$

1—
=[1+,'(e -Ptt'+e Ps')

Xe Per—(1+'(eP-~'+eee') 'e Per)5

t 1+1 —p(sg+Eo)]—1L1+ te p(tts+ttF—)j (A2.7)

This last expression is simply the product of the prob-
abilities given by the usual Fermi-Dirac treatment that
each donor, with effective energy levels of the form
—E&—kT ln2, have an electron. The reader may easily
find that similar equivalences can be established be-
tween the other charge conditions of the Qaw and the
corres ondin states of the two donors.

E2g=' —E1—kT ln2

E1g=' —E2—kT ln2.

(A2.5)
t See, for example, W. Shochley and W. T. Read, Jr., Phys. Rev.

(A2.6) 87, 835 (1952), Appendix B.
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The e8ect of the s-d exchange interaction between the conduction electrons and the Mn ions on the
electrical behavior of Cu-Mn alloys is investigated from the molecular-field point of view. The magnitude
of the anomalous resistivity calculated with the value of the exchange integral for a free Mn+ ion agrees
with the experimental value within a factor of three. Also the temperature dependence of the resistivity
obtained by the molecular-field approximation for the antiferromagnetic spin ordering is shown to be quite
similar to the behavior exhibited by the alloys with more than one atomic percent Mn. For samples with
lower concentration of Mn ions, however, the theoretical result shows only a monotonic decrease of the
resistance below the Noel temperature. It shows neither the resistance minimum nor maximum which has
been found experimentally for the very dilute alloys. The anomalous magnetoresistance calculated on
the same basis is approximately proportional to the square of the magnetization and its magnitude is
in good agreement with the experimental results, especially above the Noel temperature. The magneto-
resistance of ferromagnetic metals is also discussed.

I. INTRODUCTION

~

l ERRITSEN and Linde' have measured the~ electrical resistivity of noble-metal alloys such as
silver and copper containing traces of the transition
elements represented by manganese and iron, and have
found anomalous behavior in the resistivity at low

temperature. According to their experimental results,

*On leave from the Department of Physics, Osaka University,
Osaka, Japan.' A. N. Gerritsen snd J. O. Linde, Physics 17, 573, 584 (1951).

such alloys with several atomic percent Mn show an
abrupt decrease of the resistivity at low temperature,
and as the concentration of Mn ions becomes lower the
resistivity initially rises and then decreases, exhibiting
a maximum value with lowering temperature. Gerritsen2
has also found that these alloys show an anomalous
magnetoresistance accompanying the anomaly of the
resistivity. Korringa and Gerritsen' explained this

s A. N. Gerritsen, Physics 19, 6 (1953).
e J. Korringa snd A. N. Gerritsen, Physics 19, 457 (1953).
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anomalous behavior in electrical phenomena by intro-
ducing localized states with energy near the Fermi
energy.

Recently the situation has been clari6ed by the
experiments on the magnetic properties of Cu-Mn alloys
done by Owen, Browne, Knight, and Kittel4 and by
Owen, Browne, Arp, and Kip. 5 They considered the
anomaly of the magnetic properties to be attributed to
the s-d exchange interaction between the conduction
electrons and the Mn spins and discussed the eGect of
this interaction. Although the eGect of the first-order
perturbation of the s-d interaction was inconsistent
with some of the experimental results, the situation is
quite modified by the second-order perturbation, and
it has been shown that apart from quantitative details,
most of the magnetic properties are at least qualita-
tively consistent with the results predicted from the s-d
exchange interaction. ' Owen et al.' have also discussed
the electrical resistivity and proposed a new mechanism
for the anomalous resistivity due to the s-d interaction.

The purpose of the present paper is to calculate the
anomalous resistivity due to the s-d interaction and to
investigate to what extent this can account for the
experimental results. The problem of a temperature-
dependent anomalous resistivity was 6rst treated by
Klliott. ' He calculated the anomalous resistivity of
rare-earth metals due to a spin-independent interaction
between conduction electrons and 4f ion cores some of
which are excited in high-energy orbital states separated
from the ground state by the crystalline Stark eGect.
Kasuya' has calculated the resistivity due to an s-d
exchange interaction for the case of the ferromagnetic
iron group and rare-earth metals and has given an
alternative explanation' for the anomalous resistivity
to that given by Mott on the basis of the band approxi-
mation for 3d electrons as well as 4s electrons. Further-
more, Schmitt" has developed a phenomenological
theory for the resistance due to a spin-dependent
interaction and discussed both resistivity and magneto-
resistance of Cu-Mn alloys. The present theory will be
developed along a line similar to the approaches by
these authors.

%e shall consider the perturbing potential consisting
of the spin-dependent interaction and the spin-inde-

pendent interaction between conduction 4s electrons
and 3d electrons localized at impurity ions."The former

interaction comes from an exchange interaction and

40wen, Browne, Knight, and Kittel, Phys. Rev. 102, 1501
(1956).

'Owen, Browne, Arp, and Kip, Phys. Chem. Solids 2, 85
(1957).'E. W. Hart, Phys. Rev. 106, 467 (1957); K. Yosida, Phys.
Rev. 106, 893 (1957).' R. J. Elliott, Phys. Rev. 94, 564 (1954).' T. Kasuya, Progr. Theoret. Phys. Japan 16, 58 (1956).'

¹ F. Mott, Proc. Roy. Soc. (London) A153, 699 (1936)."R.W. Schmitt, Phys. Rev. 103, 83 (1956).
"The importance of considering the interaction between the

spin-independent and spin-dependent perturbation was pointed
out by Dr. V. Heine. See also discussion of reference 12.

the latter comes mainly from an ordinary screened
Coulomb potential around the manganese ions which
are presumably in an Mn++ state. The lattice vibrations
are neglected, and their contribution to the resistance
has been subtracted out in the discussion of the experi-
mental results. The exchange interaction can be repre-
sented as an eGective potential" having opposite signs
for electrons with + and —spins, so that the effective
potential seen by + and —electrons is different. This
diGerence in the potential gives rise to a diGerence in
the scattering probabilities through the cross terms of
the exchange interaction and the spin-independent
interaction. This term is proportional to the total
magnetization of the impurity Mn ions, which in the
antiferromagnetic case vanishes only in the absence of
an external magnetic field. The shift C of the Fermi
sphere is inversely proportional to the total scattering
probability, so that we have for + and —spins,
respectively,

C+ o: 1/(Ws&wM).

Here 8 0 is the sum of the transition probability due to
the spin-independent potential only and that due to the
spin-dependent potential only both of which are equal
for + and —spins, and WuM comes from the cross
eGect of these two interactions. M is the total magnet-
ization of Mn ions and zv is a constant. The resistivity
is inversely proportional to the sum of the shifts of the
Fermi sphere for + and —spins, so that

W , (

Ws —toM Ws+tt M I 2 (2Ws)

The extra term of the resistivity, which is proportional
to M' and vanishes only for the case of antiferromag-
netic ordering in the absence of an external magnetic
field, can make an essential contribution to the magneto-
resistance. The anomalous magnetoresistance of Cu-Mn
alloys and similar alloys can be explained by the extra
term proportional to the square of the magnetization.

In the absence of an external field, the resistivity is
determined by 8'0 which is the sum of a part from the
exchange interaction alone and one from the screened
Coulomb potential alone. The latter part is tempera-
ture-independent, whereas the former part has a mono-
tonic temperature dependence similar to the expressions
obtained by Klliott, Kasuya, ' and Schmitt. "Therefore,
the present theory does not give rise to the resistance
minimum and maximum which have been found in the
resistivity-temperature curve for very low concentration
of Mn in Cu. The resistance maximum occurs at
somewhat higher temperature than that at which there
is a specinc-heat maximum. "In copper-tin and copper-
gold alloys, a resistance minimum has also been ob-
served. In addition the maximum and minimum cannot

'~ J. C. Slater, Phys. Rev. 82, 538 (1951).
'3 Gorter, Van den Berg, and de Nobel, Can. J. Phys. 34, 1281

(1956).
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be observed for higher concentration of Mn whereas
the anomalous part of the resistivity due to an s-d
exchange interaction is large. Thus, it seems that the
phenomenon of the resistance maximum and minimum
is very complicated and that it cannot be attributed to
an s-d exchange interaction only.

The experimental results concerning anomalous be-
havior of Cu-Mn alloys have- recently been reviewed
and discussed by Gorter, Van den Berg, and de Nobel, "
Schmitt and Jacobs,"and Korringa. 's

II. CALCULATIONS

The interaction between the conduction electrons
and the Mn ions in Cu-Mn alloys can be expressed by

H=Q; P V(r;—R„)—2 P; Q„J(r;—R„)(s,"S„),(1)

where r; and R„represent the position vector of the
conduction electron and that of the Mn ion, respec-
tively. V(r;—R ) is the deviation due to the impurity
Mn ion from the spin-independent periodic potential,
and J(r; R„) —is the effective exchange integral be-
tween the conduction electron and the Mn ion. The
quantities s; and S„represent the spin operators for
the conduction electron and the Mn ion, respectively.
This potential energy can be written in a form of second
quantization as"
H=&—'QgQg V(k,k')e'&"—'~ "(~gg*~g++~g *~g )

—1V
—' Pg P~. J(k,k')e'&~—~'& ""P(ag, +*el,+

—gy Cp )S„"+Gg Gg+„+Gg+ GgM ] (2)

Here we denote the coordinate axes by $, rl, and f' and
take the t axis as the quantization axis of spins, and
5„+ represent 5„&~iS„&.The quantities a~+* and a~+
are the creation and annihilation operators for the
conduction electrons with the wave vector k and with
spin parallel or antiparallel to the f axis, and P is the
total number of lattice points. V(k,k') and J(k,k') are
related to the matrix elements of V(r;—R„) and
J(r;—R„) between two states with wave vectors k and
k' as follows:

V(k,k') =Pe '&" "'~ ' " yq *(r)V(r—R„)q ~(r)dr,

J(k,k')=1Ve '&~ ~'&' " y~*(r)J(r—R„)pa(r)dr,

where y~ represents the wave function of the conduction
electron with the wave vector k. When we approximate
the wave function p& by a plane wave, these two
quantities become proportional to the Fourier compo-
nents of the two potentials V(r) and J(r). In general
V(k,k') and J(k,k') depend upon k and k'.

The perturbation given by (2) is regarded as the

"R.W. Schnntt and I. S. Jacobs, Can. . Phys. 54, 1285 (1956)."J.Korringa, Can. J. Phys. 84, 1290 19S6).

main part of the deviation from the. periodic potential
at a temperature low enough for the eGect of the lattice
vibrations to be negligible. In calculating the resistivity
due to the perturbation (2), we make the following
assumptions.

(1) The energy of the conduction electron can be
expressed by A'k'/2m, m representing an effective mass.

(2) V(k,k') and J(k,k') depend only on ~k—k'~.
(3) The Mn ions can be divided into two groups

containing equal numbers of ions. Mn ions belonging
to one group are subjected to the 6eld H+ and those
belonging to the other group are subjected to the Geld
H—.B+ and H are the sum of the molecular 6elds
and the external field.

(4) Mn ions are distributed at random and there is
no interference of the scattered wave from diGerent ions.

Now we denote the direction of the applied electric
field by x which may be diGerent from the direction of
the $ axis speci6ed above. This electric 6eld which is
denoted below by 8, makes the distribution functions
f+(E~) for the conduction electrons with + and-
spins deviate from their common value in the absence
of an electric 6eld, namely fs(E&), as follows:

f+(E~)= fo(E~) &.h@'+—(E~)&fo(E~)/&E~, (3)

where + and —signs represent the spin direction of
the conduction, electrons with respect to the f axis and
the quantities C + are determined in (7). Strictly, in the
presence of an external magnetic Geld, we should use
fs(E+1JH) instead of fs(E), where y, is the Bohr
rnagneton, but the error is of order pH/E+(1, Er being
the Fermi energy.

The shift .of the Fermi sphere (3) gives rise to the
electric current density

1 Ak,
I:f'(E~) —fo(E~)3,

V ~ m

where V is the total volume. Inserting (3) into this
expression and replacing the summation over k by an
integration as follows:

V 1(2m)& t.
E&&dE~ sin8d8d p,

Sn-'2 E As ) ~

we obtain
e 1 (2'

i E,&am+(E,),
6m' A E A' )

where Ey represents the Fermi energy. Thus the
electrical resistivity is given by

6s' h ~A'y&
.I ( (c'(Ei)+C' (Ef)& '.

e E,-'*&2mi

The functions C+(E&) are determined by the Boltzmann
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equation

afo(Eg) Ak (af+)
e8+] i

=0,
aEk ts ~ at

(af+/at), ~. „~.for the elastic collisions,

(7) t af+q 1 1lt~ v~2~q ~ af, (E,)
[
E,V.b C+(E,)

& at ).g,.g. 47rh X X(A'& aEg

W(k'+ —+k&), for example, represents the transition
probability from a k'& state to a k& state. The erst
sum in this expression comes from the scattering process
in which the electron spin is not reversed. Only the
f component of the perturbation (2) contributes to this
process so that the spin component S„&of the Mn ion
does not change either. Therefore, this scattering is
elastic. On the other'hand, the second sum arises from
the process which isjaccompanied by a change lof the
spin direction. This'process is due to the $„'and g
components of (2) and is inelastic.

First we shall consider the part arising from the
elastic scattering. Prom assumption (4), the transition
probability is given by the sum of the transition
probability due to each Mn as follows:

W(k'a —+km)

2'
=—1lt 'El V(k' —k)wS„rJ(k' —k) I'8(E~—E')

A

Now we denote the number of Mn ions by E& and the
probability with which S & takes a value of m by m +,
where + and —mean the + and —groups of ions.
Then the summation over e in the above expression
can be replaced by that over m, so that

2m. gg
W(k'&~k&) =—1V '

A
P+ m„+~ V(k —k')

2 m

(af+/at), .~. being the rate of change of the distribution
functions f+(E~) due to the collisions with Mn ions.
This is given by

(af+/at), .g
——Qj,.{w(k~'-+k~) f+(k') [1—f+(k)j

—W(k+-+k'a) f+(k)[1—f+(k') j}
+P,,{W(k'w~ka) f+(k')[1—f+(k)j

—W(k~-+k'T) f+(k)[1—f+(k'))}. (8)

1 t t' 8y t 8y '
XP+ mr„~— V] 2k sin-

~
WmJ] 2k sin —

~

m 2~o I 2& E 2&

X (1—cos8) sin8d8. (11)

Next we shall consider the inelastic collisions. In this
case, since the f' component of the spin of the Mn ion
is changed in the internal magnetic 6eld H+, the energy
of the Mn spin system changes, and the transition
probability becomes

W(k' —~k+) =W(k+—4' —)

2m. E~
X-o~ J(k' —k) ~o

A 2

XQ+{S(S+1)—m(m+1) }w~g+

Xa(Ej,+gtI,H+ Eg ), (1—2)

W(k'+~k —)=W(k —~k'+)
2m Xg

1V
—'i J(k' —k) i'

A 2

XQ+{S(S+1)—m(m+1) }w +

Xa (E& gtiH+ E), —(12')—

where g is the g factor of the Mn'+ ion and p is the
Bohr magneton. With the use of (3) and the energy
conservation relation, we obtain the following relations:

~~~'f (E.') [1—f'(E.)j—~-'f'(E.)[1—f (E.')]
afo(E~) 1—fo(E~')

aEk 1 fo(Ek)

Xh{k C'+(E~) —k 'C' (Eg') }, (13)

where the summation is taken both over ns from S to
—S and over m + and m —.We get the same expression
for the inverse probability. With the use of (3) and the
energy conservation relation for this process, we have

X 8{k,C (Eg) —k.'C+(Eg') }. (13')

-'f+(E ')Ll —f (E )j— +f' (E )L1—f+(E ')j
k k'

afo(E~) fo(E~)

fo(E~)

f~(k') [1-f'(k)j-f+(k)L1-f'(k') j
afo(E.)= BC+(Eg) (k.—k.'). (10)

8Et&t..

Inserting (9) and (10) into-(8) and using (4), we obtain

Here we have used the thermal equilibrium value for
the distribution function m .In so far as the s-d exchange
interaction is isotropic, m does not deviate from its
equilibrium value. Inserting (12), (12') and (13), (13')
into (8), replacing the summation over k by an inte-
gration with the use of (4), and neglecting AH+
compared with E& because we need only 4+(E&) at the
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Fermi surface as seen from (5) and (6), we obtain

(8f+ l

inel. ool.

1 Xz V(2m) & afp(E»)
l
kh E~

4lrh E Q(AP)

XP+{S(S+1)—m(m+1))w +

exp (AH+/k T){exp[(E» —Ei)/k T)+1)
X

exp[(E»+gr H+ Ef)/—kT)+1

X — Jl 2k sin—
l

sin8d84+(E»)
!2&p I 2)

Inserting (11) and (14), (14') into the Boltzmann

Eq. (7) and putting E»=Er, we obtain the equation
which determines the shift of the Fermi sphere C+(Er)
as follows:

Ae 1 E~ V(2m) &—+ —
I l E,~ P+[S(S+1)

nl 4rA E 1V & h')

2 exp(gilH+/kT)—m(m+1))w„~
1+exp (AH+/k T)

X [Ac'+(Ef) BC (E—f)]+$p+ nPw +D

W2 P+ mw +F+2G]C+(Ef) =0, (15)

1 where
Jl 2k sin-

l
cos8sin8d8C (E»), (14)

(8f )
8~ ) lnel. ool.

1 Xg V (2m't ~ &fp(E»)
l
kh E&

4~ill ~ ~EyP)

XP+{S(S+1)—m(m+1)) w„+

exp[(E» —E~)/kT)+1
X

expl (E» grJH~ Ef)—/kT)+—1

li r ~ 8~ '
X — J~ 2k sin —

l
sin8d84 (E»)

l2l. & 2)

1r ( 8)
A= — Jl 2k sin —

l sin8d8,
2p I 2)

1r ( 8)'
Jl 2k sin—

l
cos8 sin8d8,

2)

a=A —8,

1 r t 8yF= Jl 2k si—n- lVl 2k sin — l(1—cos8) sin8d8,
2~p ( 2) 4 2)

1r ( 8)'
G= — Vl 2k sin —

l (1—cos8) sin8d8.
2)

(16)

Equations (15) are the simultaneous equations for
1 0q 2

Jl 2k sin
l

cos8 sln8d8 g)+(E ) (14/) C +(Ef) . We note that the shift of the Fermi sPhere is

2) different for + and —spins. Solving (15), we obtain

2F P + mw„+[C'+(Eg)+C' (Er))-
C'+(Er) —C' (Er) =

l
(17)

( 2G+D P + m.'w ++ (A+B)P +[S(S+1)—m(m+1))w +[1+tanh(griH+/2kT)])
and

[c+(Er)+c' (El)7 '

m Ã, Vr 2m~~
l

E~& 2G+D{P + m'w +++ +[S(S+1)—m(m+1)]w +[1+tanh(giiH+/2kT)])
Sm.eh' S E & ill')

4F'(P„+mw„+)'

(2G+D P + mPw ++(A+ )Bg +[S(S+1)—m(m+1)]w +[1+tanh(AH+/2kT)))

Thus, we obtain the resistivity from (6) with the use of (18) as follows:

3~m 1 VXg
R=—— — 2G+D{P +m'w +++ +[S(S+1)—m(m+1)]w +[1+tanh(giiH+/2kT)))

4 e'AEfE E

r 4(P + mw ")'F'
(19)

42G+D P + m'w ++ (A+B)g +[S(S+1)—m(m+1))w +[1+tanh(AH+/2kT)])
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Here, G comes from the purely spin-independent inter-
action, D, A, and 8 come from the purely spin-de-
pendent interaction, and Ii comes from the cross term
of these two interactions. The F term makes an essential
contribution to the magnetoresistance, as shown in the
next section. The result (19) is independent of the
angle between the external electric field and the
quantization axis of the spins.

III. COMPARISON WITH EXPERIMENTAL RESULTS

l. Electrical Resistivity

In the absence of an external magnetic field and for
the antiferromagnetic ordering of Mn spins which has
experimentally been found, ' ' the total magnetization
of the Mn spins vanishes and the molecular fields H+
and H are equal in magnitude but opposite in sign,
namely

mw„+++„mw„—=0, H++H =0.

Therefore, the resistivity (19) can be written as

3x m 1 VEg
R=—— — G+D S(S+1)

2 e'AUX X

(gpH'i—-', P+ tow + tanh~ ~, (H. 4=0). (20)
m (2kT)

At higher temperatures than the Neel temperature,
we can put P mw„+=0 and H+=H—=0, and the
resistivity becomes

3~m 1 VEg
R=—— — [G+DS(S+1)],

2 e'AUX X
(H,„,=O, T)Tsr), (21)

where the contributions from $, ri, and t components of
the exchange interaction are equal. Thus, the resistivity
above the Neel temperature becomes independent of
the temperature. Actually, even above the Neel
temperature, however, the molecular fields II+ and H
acting on each Mn spin are not quite zero though their
average values over all the Mn spins vanish. Thus, the
effect of the short-range order on the resistivity would
be more signi6cant than that on the magnetic proper-
ties. This effect gives rise to a gradual increase of the
resistivity even above the Neel temperature superposed
on the rise of the normal resistivity due to the lattice
vibrations. At temperatures below the Neel temperature
the expression (20) decreases, and at absolute zero it
reaches the value

3~ nz 1 VEg
Rr=p =—— — (G+DS')

2 e' @Eye E
(H, t,

——0, T=O). (22)

The difference between the value at absolute zero and

that above the Neel temperature is given by

3~m 1 VEg
~R=—— — DS.

2 e'AEVI (23)

If we use here the value of the Fermi energy Ey ——1.1
X10 "erg, X/V=8. 5&(10"per cc for pure copper, the
free electron mass, and S= sz, and if we estimate (D)&
to be equal to the exchange integral for a free Mn+ ion
J=3.5&(10 " erg, we obtain AE.=0.06 p,ohm cm per
atomic percent Mn. This value is smaller than the
experimental value"" 58=0.2 p,ohm cm per atomic
percent Mn by a factor of 3. This means that we should
take 1.7Jo as a value of D&, where Jo is the exchange
integral for a free Mn+ ion."Since D is really a weighted
average of the square of the Fourier component of the
exchange integral J(k—k') as seen from (16), this
agreement is satisfactory.

The functional form of (20) is similar to that obtained
by Schmitt" for the inelastic scattering only, and its
temperature dependence is described by the curve
(Fig. 2, o.=0) of his paper. "However, our result in-
cludes also the elastic part. Moreover, Schmitt assumed
the ferromagnetic ordering of Mn spins at low temper-
ature. In our result, the last term of (19) which vanishes
in the antiferromagnetic case would give an additional
important contribution in the case of ferromagnetic
ordering. In the antiferromagnetic case the temperature
dependence given by (20) can be 6tted to the experi-
mental result for the alloys with more than one atomic
percent Mn by a suitable choice of the parameters.
However, the minimum and maximum found experi-
mentally for lower concentration cannot be explained
by our result.

Rr p C(2+2S'D/—G—),

R(Tst) =C)2+2S(S+1)D/Gf,

3x m 1 VEg
C— G)

4 e'ART X
(H,„t——0).

(24)

The corresponding experimental values are approxi-
mately Rr p ——4.6 pohm cm and R(Tz)=5 pohm cm.
Inserting these values into the above expressions, we

"The result (21) has also been obtained by Rodriguez (unpub-
lished). Owen ef al. based their discussion of the resistance on
this unpublished calculation but the analysis contains a numerical
error so that their 6nal estimate of the resistance should be
larger by a factor of 48.

2. Magnetoresistance

Now we shall estimate the ratio of D to G with the
use of the data obtained by Schmitt and Jacobs" for a
sample containing 1.8 atomic percent Mn. In the
absence of an external magnetic field, from (21), (22)
the values of resistivity at absolute zero and above the
Neel temperature are
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Magnetic 6eld,
kilo-oersted s 7.4 7.2 6.1 6.0 5.0 4.9 3.9 3.8

Temperature, 'K 20.4 2.5 20.4 2.5 20.4 2.5 20.4 2.5

(100(~)/S). p 5.5 5.5 4.6 4.5 3.9 3.6 3.1 2.7
4.8 4.0 3.3

—(10006Rgr), ~,
pohm cm

9.4 13.2 6.6 9.0 4.8 6.2
9.7 7.1

2.8 3.5
4.3

TAsx.E I. Experimental and calculated values of magneto-
resistance for a sample containing 1.8 atomic percent Mn at
20.4'K and 2.5'K. Experimental values have been read from the
curves obtained by Schmitt and Jacobs. ' The double values are
due to the hysteresis eGect.

altered. This justifies the neglect of this term in the
discussion above of the magnetoresistance. The value
of R„ is estimated as about 0.82C and this corresponds
to 32% of Rr 0. For a low magnetic field applied in
the direction of the preferred axis of spins below the
Neel temperature and in any direction above the Neel
temperature, the change of the second term of (19)
proportional to D can be shown to be proportional to B2.

Above the Neel temperature, we can expand m +
and tanh(gpH+/2kT) with respect to H+. Then, we see,
as mentioned above, that the term linear in B+vanishes
and the term quadratic in B+ arises from the term

—(10006Ra)„i„
pohm cm

9.1 9.5 6.4 6.4 4.6 4.1
7.3 4.9

2.9 2.3
3.4

—P +m.w + tanh(AH+/2kT). (27)

+ See reference 14.
b Note added in proof. —The experimental values of (m)/s given in the

paper of Schmitt and Jacobs" have been referred to an S value of 2 instead
of 5/2. Therefore, the calculated values in this table should be reduced by
about 35%. I should like to thank Dr. R. W. Schmitt for pointing out this
fact.

obtain

D/G= 0.045, Rr 0 =2.56C~ R (T~) =2.78C. (25)

When the magnetic Geld is applied, the change of the
resistivity consists of two parts, one from the second
term of (19) which is proportional to D and the other
from the third part 'of (19) which is proportional to F'.
We shall see later Ithat the former part contributes
about ten percent of the latter and for the present we
shall neglect the former part. Then, neglecting the small
change of the denominator due to the external magnetic
Geld in the third term of (19), we conclude that the
magnetoresistance has a negative sign and is propor-
tional to the square of the magnetization —',X&P + mw„+.
The coefficient of proportionality is large and when the
magnetization is saturated, hR/Rz 0

———0.68, as shown
later. For a low magnetic Geld, the magnetoresistance
is proportional to the square of the magnetic Geld and
also to the square of the susceptibility. The suscepti-
bility shows a maximum at the Neel temperature so
that the magnetoresistance is expected to show a
maximum at that temperature.

Now we shall go back to the general expression of
(19). For an infinite magnetic field and any 6nite
temperature, (19) gives

D 16S' F'q
Z„=C) 2+25'— (H. = ). (26)

G 2+25'D/G G')

The first two terms in this expression are just E& 0

given by (24) and they are smaller than R(T&) by
2CSD/G=0. 22C. The third term of (26) becomes
1.74C, where using (16) we have put F'/G' approxi-
mately equal to D/G. If we assume that the second
term in (19) changes monotonically with temperature
and magnetic field, then we see that its maximum
change is less than ten percent of the third term of
(19) when the temperature or the magnetic field is

Tanh(gyH+/2kT) can be expanded as AH+/2kT for
small B+.On the other hand, the average magnetization
(m)=P mw is given by the Brillouin function
SBs(ASH/kT). This behaves like ,'S(S+1—) (glJH/kT),
so that for small magnetic field tanh(gpH+/2kT) can
be expressed as —[3/5(S+1)$(g mw„+)'. Thus,
above the Neel temperature and for a small magnetic
field, we have

RIr p 2+25(5+1)D/G S(5+1)

16 D—(m)'. (28)
2+25(5+1)D/G G

Here we put F'/G D and A+B D. If we use D/G
0.045 estimated in (25), we see that the first term is

only six percent of the second term. This situation
would not change much below the Neel temperature.
From (28), we obtain

(29)

Schmitt and Jacobs" have measured the magnetization
(m), and the magnetoresistance for the same sample.
The following table shows the values of the magneto-
resistance and the magnetization for a 1.8 atomic
percent alloy obtained by Schmitt and Jacobs'4 and the
calculated values of the magnetoresistance.

The Neel temperature of this concentration seems to
be about 15'K, and the resistance at 20.4'K was
calculated from (29) using the experimental values of
(m). At 2.5'K the resistance was calculated from (19)
neglecting the change of the second term. The agree-
ment is quite good above T&, but below T& the calcu-
lated. . resistance is about 70% of the measured value.
It is estimated that including the second term in (19)
would increase this by approximately 10%.It was also
implicitly assumed in using (19) to calculate the
resistances below T~ shown in Table I, that the mag-
netic field is parallel to the preferred direction. How-
ever, it seems more reasonable to suppose that the
experimental values correspond to an average over-all
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TABLE II. EfFective s-d exchange integral.

1. Anomalous g value of Mn ion'

2. Relaxation time for Mn spin

3. Anomalous resistivity

4. Anomalous magnetoresistance

5. Weel temperature' anomalous width
of Cu nuclear resonance

J(0)
y

2
J 2k sin— sin8dt3

2

g 2

0
J 2k sin — (1—cos8) sin8d8

2

r
1.9.8J 2k sin — V 2k sin — (1—cos8) sin8d8)

2 2 2
8 ~

l 2
V 2k sin — (1—cos8) sin8d8

2

Complicated: the precise q dependence of the Fourier component of the exchange
integral determines the nature of the effective spin-coupling between spins.

& See reference 6.
b R. Behringer, Phys. Chem. Solids .(to be published).

Geld direction, but such an average has not been
calculated. In any case the resistance is independent
of the direction of the applied electric Geld, as observed
experimentally, unless higher order interactions in-
cluding spin-orbit coupling are taken into account.

IV. CONCLUSIONS

The present calculation on the basis of an s-d inter-
action gives an anomalous resistivity which is smaller
than the experimental value by a factor of about 3.
This means that the eBective exchange integral D& is
larger than the free-ion value by a factor of 1.7. This
value is quite reasonable. The temperature dependence
is in good agreement with the experimental results for
the alloys containing more than one atomic percent Mn.
However, the present theory does not give the maxi-
mum and the minimum in the resistivity es temperature
curve which have been found for lower concentration.
The magnetoresistance obtained here agrees quite well
with the experimental values. Thus, it can be concluded
that the s-d interaction is the essential factor for the
electrical properties as well as the magnetic properties
of Cu-Mn alloys, but that the phenomenon of the
resistivity maximum and minimum might not be
explained by this interaction only.

Table II conveniently summarizes the effective s-d
exchange integral responsible for several quantities.
For the estimation of the calculated values in this
paper, it was assumed that J(q) is constant and equal
to the value for a free Mn+ ion. Such an assumption
makes all effective exchange integrals in this table
equal to the free-ion value.

The present calculation can easily be extended to the
case of ferromagnetic metals. For pure ferromagnetic

metals, the perturbing potential does not include any
spin-independent part so that we have no contribution
from the cross term in (19). Moreover, when all the
localized d-spins of the ions are in the same spin state,
the potential becomes periodic and there is no elastic
scattering. Hence subtracting out the mean magnet-
ization of each atom, we can replace p ms' in the
second (elastic) term of (19) by g(m —(m))'w and
putting E&=37, we obtain the resistivity due to s-d
interaction for ferromagnetic metals as

3xm 1 VE= — —D{g—„(m—(m)A„)'w +P„(S($+1)
2 e' AUX

~(m+1) jw $1+tanh(giiH/20T) jl, (3o)

where B is the sum of the internal Geld and the external
Geld. The interesting fact about this expression is that
the expansion of (30) with respect to the external field
below the Curie temperature includes a term linear in
the external Geld in contrast to the antiferromagnetic
case. Thus, we can expect a decrease of resistance
proportional to the external field for ferromagnetic
metals from the same s-d interaction mechanism.
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