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Statistics of the Charge Distribution for a Localized Flaw in a Semiconductor
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A localized Qaw such as a vacancy-interstitial pair, gold atom, or small void is considered. It is found
that the charge situation can be described by a set of energy levels which are independent of the Fermi
level but which are temperature-dependent. If the Qaw is electrically neutral for a certain position of the
Fermi level, then as the Fermi level is raised from the neutral level successively above each higher-lying
level of the set, the fiaw acquires an additional electron unit of negative charge. These levels are called the
erst-acceptor level, second-acceptor level, etc. The energy levels are essentially equal to kT in(Z&/Zs),
where 2& and Z2 are the contributions of the Qaw to the state sum for the system for the two conditions
of charge. Similarly, as the Fermi level is lowered below the neutral point, it passes the 6rst-donor level,
second-donor level, etc. , and the Qaw acquires charges of plus one, plus two, etc. The statistics are derived
for the distribution for the various conditions of charge, referred to as 6rst-donor condition, neutral condi-
tion, 6rst-acceptor condition, etc.

1. INTRODUCTION
' 'T has now been well established that gold and copper
~ ~ impurities in germanium introduce a series of levels
in which the impurity center has charges which may
vary from +1 to —3 electronic charges. The most
elegant evidence has been published by Woodbury and
Tyler' and makes use of the fact that an impurity of
charge —2 contributes approximately twice as much
impurity scattering as two separated charges of —1
each.

The statistics of defects with several trapping levels
in semiconductors has been treated brieQy by Lands-
berg, ' and another treatment has been given by
Champness. ' However, a simplified and consistent
scheme which lends itself to incorporation in the
customary energy-level diagrams for semiconductors
has not apparently been published.

It is possible to develop such a scheme which is
applicable in much the same way as the simpler
diagrams for group V donors and group III acceptors
and this leads to a relatively simple conceptual structure

for describing and interpreting the changing charge on
the defect as the Fermi level and temperature vary.

For the purpose of distinguishing between imper-
fections with multiple possibilities for charge condition
and ordinary donors and acceptors, in this article they
shall be referred to as Qaws. The number of Qaws per
unit volume is then Ef. This eliminates difhculties with
subscripts tt (acceptor), d (donor), c (conduction),
i (intrinsic) which might arise from using center, defect,
or imperfection. The theory for Qaws discussed here is
probably applicable to any localized. imperfection, such
as a vacancy-interstitial pair, a small dislocation loop,
or an inclusion, provided that the dimensions are small
compared to a Debye length for the mobile carriers
present. No attempt will be made to ascertain the
limits of validity and the Qaws concerned can be best
thought of as substitutional or interstitial atoms.

The theory is also restricted to such low densities of
Qaws that interactions between them can be neglected.
No consideration is given to special eGects due to de-
generacy in the hole or electron gases.

2. PROPOSED ENERGY-LEVEL DIAGRAM
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FiG. 1. Energy-level scheme for a Raw with possible charge
conditions 1, 0, —1, and —2. (a) The energy levels and their
notation; (b) the energy band diagram; (c)—(f) the dependence
of charge condition upon the Fermi level. [To be consistent with
the text, Ee should be replaced by E~e in (a).j

' H. H. Woodbury and W. W. Tyler, Phys. Rev. 105, 84 (1957).' P. T. Landsberg, Proc. Phys. Soc. (London) A65, 604 (1956).' C. H. Champness, Proc. Phys. Soc. (London) B69, 1335
(1956).

Figures 1 and 2 show the proposed energy-level
diagram and the relationship between Fermi level and
charge. For the particular example considered, it is
supposed that the Qaw may exist in four charge condi-
tions: +1,0, —1, and —2. These conditions are referred
to as the 6rst-donor, neutral, first-acceptor, and second-
acceptor states.

To a good, but not perfect, approximation a Qaw
with the energy-level scheme of Fig. 1(a) acts like a
group of three imperfections consisting of a donor and
two acceptors with ionization energies of E,—E~~ for
electrons and Ej,—8, and E2,—E, for holes, respec-
tively. The functional dependence of the charge upon
the Qaw is closely represented by the combined behavior
of the three separate imperfections.

As a preface to the exposition, it should be noted that
by definition a donor with energy level E~ has a net
charge of +1 when the Fermi level Zt is well below Ee,
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and is megtral when Ep is well above Eq. To a 6rst
approximation, E& is the ionization energy; this energy
is defined for the system consisting of perfect crystal
except for the donor and one electron and is the energy
diGerence between the lowest energy state with the
electron on the donor and the lowest energy state with
the electron far from the donor. Actually, entropy
plays a role in the Ej~ of Fig. 1 and Ej~ is actually a
difference in free energies as described in Appendix 1.

Similarly, an acceptor is eeltral for EJ below E, and
negatively charged for Ep above E .

The 6gure 0 on the diagram lies below all the acceptor
levels and above the donor level so that when the Fermi
level lies in the interval corresponding to zero, the Qaw

is neutral. This is the significance of the 0 on the
diagram.

On the basis of these de6nitions, it is readily seen
that the state of charge of the Qaw varies with height
of the Fermi level as shown in Fig. 1(c) to (f). The net
charge on the Qaw will then vary as shown in Fig. 2.

Now the model of Fig. 1 actually contains some
meaningless possibilities. For example, the state of
charge zero can be obtained in addition to the manner
shown by putting one electron on E&& and one hole on
either E&, or E2 . Such hypothetical excited states will

not in general represent at all correctly the excited
states of the Qaw when in the neutral state.

It is thus evident that several features of the combi-
nation donor and acceptor model have no counterpart
in a general model of a Qaw. Nevertheless, the diagrams
of Figs. 1 and 2, when properly interpreted, do usefully
describe the most important aspects of the Qaw.

3. INTERPRETATlON AND USE OF THE
ENERGY LEVEL DIAGRAM

In this section we discuss the unique way of ascribing
a set of energy levels to a Qaw and using them to
determine the average charge and the probability of
various charges on the Qaw. For this purpose a set of
de6nitions is introduced to describe the state of charge
of the Qaw and certain energy levels. Thus, if the Qaw

has charge +2 it is said to be in the second doeor-
conditiom. In general, such a condition of charge will be
degenerate and may have excited states. Thus, if /2&
Qaws per unit volume are in the second-donor condition,
they will be statistically distributed over all the various
possible energy states.

Similarly, the number of Qaws with zero net charge
is Eo and these are said to be in the neutral condition.
The conditions of negative net charge are de6ned in a
similar manner as acceptor corcdi ti ops.

As discussed below, a set of energy levels is intro-
duced. These have to do with transitions of one charge
unit in condition of charge according to the following

scheme:

~ - 2d, E~~, 1d, E~q, 0, E~„1a,El, 2a, ~ ~ .

Fn. 2. The depend-
ence of the charge on
the Qaw upon the Fermi
level.
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Thus, each energy has a subscript corresponding to
state of higher magnitude of charge of the pair to which
it is related.

The values of the energy levels are defined as follows:
Consider a Qaw in its most positive condition, say, with
charge +n; that is, the nth-donor condition. Let an
electron be removed from the conduction band and be
put into the flaw, reducing the charge to +(n—1).
Then the increase in free energy E—TS for the semi-
conductor will be (as shown in Appendix 1)

Qp f E g~Ep

where E ~ is the change in free energy associated with
adding one electron to the Qaw. It includes all eGects
due to spin degeneracy and excited states for both
states of charge. Obviously, if the Qaw is initially
positively charged, it can bind an electron from the
conduction band and E g will lie below E..

Similarly, E~ ~~g is de6ned in terms of adding an
electron to the (I—1)th donor condition to produce the
(m —2)th donor condition. The zeroth-donor condition
is the neutral condition and adding an electron to it
produces the erst-acceptor condition and increases the
free energy by Ej,—EJ.

Now since each additional electron is put upon a less
positive or even more negative Qaw, it is probable that
each E value will continuously increase in the sequence,
going from nd through neutral and into the acceptor con-
ditions. Finally, an E, value will be reached, which is
larger than E.. Such a negatively charged Qaw will be
unstable (except possibly in a degenerate m-type semi-
conductor) and will lose its mth negative charge to the
conduction band. Similarly, a donor condition ed with

energy E & lying below E. will be unstable and will

lose a hole to the valence band.
On the basis of this set of de6nitions, it is evident

that, for any given Qaw, a uniquely defined energy-level

diagram like that of Fig. 1 will be obtained when the
set of E„q and E values is plotted on same scale as

E.and E,.
From the energy-level diagram, the distribution of

charge values for the Qaw is found as follows: For a
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TABLE I. Relative probabilities for various charge conditions.

Charge
condition

3a (-3)
2a (-2)
Ia (—I)
0 (0)

&d (+I)
2a (+2)

Increased probability
for one more electron

expLP (By' —E3,)j
exp| P(By —B2a)3

expt p(By —Eio)g

expt p(Ey —EIa)g

exp| P(Ey —E2a)j

Relative probability of being in
charge condition

O'Sg =eXP)P (3By —EIrs —E2a -Elks) j
TVs =expEP(2Ey —EIa-Bs )j
O'Io =eXP P(By —BIo)

Wo =I
WIa =expf p(EIa —Ey )j
W2d =ezp(P (EIa+E2rI —2')j

given temperature with

P= 1/kT (3 2)

and a given Fermi level Ep, the ratio of the number
N&„tlat of Qaws in charge condition +(e—1) to the
number Ã ~ in charge condition e is shown in the
Appendix to be

N(„,) „/N„g ——exp+(Ep —E„g)j. (3.3)

Thus, if E& lies above a level, the charge state having
one more electron is favored. The favoring factor is in
fact exactly that associated for the simple Fermi-Dirac
distribution. For example, for a simple donor level
(neglecting all degeneracy), the probabilities f„and f~
of the level being occupied by an electron or a hole are

f = f1+exp(&(E~—E~)j) ' (34)

f.=1—f.=f-exptP(E —E )j, (35)
from which it follows that

Ne/Nr~ f„/f~=exp/P(Er ——Eq)j (3.6)—
According to the analysis in Appendix 1, this same

relationship applies to pairs of charge states differing
by an energy E & or E as the case may be.*

The relative probability of ending any one of the
various charge conditions may readily be determined
by a straightforward calculation from the factors (3.3).
For this purpose, consider Table I.

The Grst column lists the charge conditions. The
second column is the factor giving the ratio of proba-
bility of the upper condition of the table compared to
the lower condition; these factors are simply those of
Eq. (3.3).Each factor is greater than unity if the Fermi
level Ep is greater than the free-energy increase due to
adding one more electron to the center. From these
factors the third column is readily obtained; the relative
probability of unity for the neutral condition being
picked for symmetry.

The absolute probability is obtained by normalizing
which consists simply of dividing each entry in column
three by the sum of column three: This leads to the

*The equilibrium and nonequilibrium behavior of Qaws has
been investigated from the point of view of the Qaw as a recom-
bination center, using the principle of detailed balancing. This also
leads to equations like (3.3). It is planned to submit to this journal
a manuscript on this subject by C.-T. Sah and W. Shockley.

following form of expression for the distribution among
charge conditions:

N g=NsW g/QW's (3 7)

The dependence of the distribution on Ep may be visual-
ized as follows: If

EId +EF+EI (3.8)

then 8'0 is larger than any other 5'. In fact, if EI —EI&
is several tenths of an electron volt and Eg lies near
the middle, the other Ws add very little to the sum of
column 3 and the probability of the neutral condition
is nearly unity. The probability of differing from the
most favored case by two units of charge is very small
and varies with Er as exp(&2PEs).

It is evident that whenever Eg lies between two
energy levels, then the charge condition common to the
two energy differences tends to dominate the proba-
bility.

When Ep equals one of the energy levels, then the
two adjacent conditions are equally probable, each
having approximately probability ~~.

As EJ rises from between EI& and EI, the probability
of the neutral condition decreases from nearly unity to
about -', for Ep E& and the—n—falls as exp( —PEF)
until Ep= EM, thereafter the probability of the neutral
condition falls as exp( —2PEs). lt falls as exp( —3PEs)
after Ep crosses Es,.

From these examples it is seen that, except when Ep
equals an energy level, one charge condition dominates
the probability distribution of charge conditions.
Furthermore, it is evident that these charge conditions
correspond to the integral charge cases of Fig. 2. Thus,
Fig. 2 does represent adequately well the average
charge on the Qaw when the energy levels are as
interpreted in this section.

As shown in connection with Eq. (3.6), the transition
from one charge condition to another in Fig. 2, is well
represented by a Fermi-Dirac distribution function.

As an example of this system of treatment, the case
of two separate donors treated as a composite Raw is
given in Appendix 2.

Nr Q,r N„. — (A1.1)

APPENDIX 1. DERIVATION OF THE
DISTRIBUTION LAW

The relative probability of different charge conditions
on the Raw can be derived by 6nding the distribution
that maximizes the probability. For this purpose we
describe the possible states of the center in terms of its
net charge, which is s electronic charges, and its state
of excitation i, the various states of a degenerate energy
level having different i values. The number of Qaws in
excited state i of charge condition s is E„.Evidently
the total number of Raws Ey is given by



STATISTI CS OF CHARGE D I STRI BUTION

The total number of electrons in the Qaws

ef——Q„.sN„., (A1.2)

where, for reference, a flaw of zero charge is said to
have zero electrons; it can be shown that the zero of
electron number is not important. If the energy of
state (s,i) is E„(for example, the state of zero energy
might be chosen as most positive Qaw in lowest state
and all electrons at the bottom of the conduction ban. d),
then the energy of the distribution is

Ey=+„E.~ (A1.3)

In order to maximize the probability of a given distri-
bution, the number of ways Wy of arranging the
distribution N„on the flaws must be known. This is
evidently the number of ways of selecting groups of
size N„ from a total number g N„and can be ex-

pressed in terms of the E„values as

Wi= (2 N-)!/II-(N- t) (A1.4)

In order to allow the Qaws to interact with electrons
we also introduce a distribution in the conduction band
in the customary manner by dividing the states into
groups of Q; of energy E; occupied by e; electrons.
The values for the number of ways W of achieving
the distribution, the total number of conduction-band
electrons n and their energy E„are

(A1.5)

(A1.11)

where Eg is the Fermi level and is also the chemical

potential for electrons, being the change in free energy

F=E—kT lng, (A1.12)

when one electron is added. The usual Fermi-Dirac
distribution arises from setting the coefBcient of bn;

equal to zero.
Setting the coeQicient of bE„equal to zero gives

(A1.6)

(A1.7)

The over-all most probable distribution results from

maximizing
lnW = inWy+ InW„ (A1.8)

subject to constraints on total energy, total number of
electrons, and number of Qaws. Using the I.agrange
multiplier method, we require that

lnWy+lnW P(Er+E„)+@(my+—n)+yNf (A1.9)

be an extremum. This leads, in the usual way, to the
conclusion that

P= 1/kT (A1.10)

so that
N„=N, e~[P(sE, E.;—)+~j

Thus, the number of centers in condition s is

(A1.14)

P,= —kT lnZ„ (A1.17)

the increase in free energy resulting from moving one
electron from the conduction band to convert a Qaw

from state s to state s+1 is

F,+i F, Ep=+—kT l—n(Z, /Z, +i) Ep-
=E(s+1, s) Ep, (A1.18—)

where
E(s+1, s) = kT ln(Z, /Z, +i) (A1.19)

gives the de6nition of the energy levels used in Sec. 3.
In terms of this deinition of E(s+1, s), we have

N,+i/N, =exp(P/Ei —E(s+1, s)1). (A1.20)

This is the equation used in Sec. 3 of the text and shows

how the interpretation of E(s+1, s) as a free-energy

di6erence arises.

APPENDIX 2. TWO SEPARATE DONORS
TREATED AS A COMPOSITE FLAW

The case of two separate donors treated as a com-

posite Qaw is presented here to show the relationship of
the Qaw energy levels E~~ and E2~ to the binding ener-

gies E~ and Eg of the two donors. Choosing the zero

of energy as discussed in Appendix 1 [see Kq. (A1.3)
where the energy E, is taken as zero), the energy re-

quired to ionize donor "1"and put the electron into

energy E, is Ei. (That is, Ei is absolute value of energy
below E,.) On this basis for the zero of energy and on

the basis of two possible spin states for a neutral donor,
the states for the two donors are as shown in Table II.

Table II leads to three state sums Z2~, Z~~, and Zo

as defined in Eq. (A1.15), and using these in Eq.
(A1.19) one obtains two energy levels:

Eme= kT ln(Z2e/Zip)
kr ln(ee '+ee ') kr ln2 —(A2.1)—

Eie=kT ln(e ee'+e ee') —kT ln2. (A2.2)

N, =P, N„=1V~ exp(y+PsEp)g; exp( —PE„.)
=Ny exp(y+PsE p)Z„(A1.15)

where Z, is the state sum over the states of the Qaw

for charge condition s. The quantity p is a normalization
constant. It is also the electronic part of the chemical
potential for Qaws.

The ratio of probability of charge condition s+1
compared to s is

N,+i/N, = (Z,+i/Z, ) exp(PE~). (A1.16)

Since the free energy per system in a set of systems
with energy levels E„is

ln (Ny/N„) PE„+PEps+ad =0, —(A1.13) In order to visualize how these levels are related to the
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Charge
condition

+2
+1

0

Energy
No. of ways of
forming state

No. of
flaws

Emg

Aa
Eo

TABLE II. The states for the two donors described as
states for a composite Saw.

For Case (2), the two donors have suKciently different
energies so that they act independently and the Raw

energy levels coincide with those of the donors as cor-
rected for spin degeneracy. t

It may also be shown that the probabilities of the
various charge conditions as given by Eq. (3./) reduce
to those calculated by the usual Fermi-Dirac treatment.
For example, from Eq. (3.7) we obtain

E2g= —E1—kT ln4

E1~—

(A2.3)

(A2.4)

For Case (1), the energy for binding the second electron
to the Qaw is the same as the 6.rst, but the entropy factor
is less so that the erst donor level lies higher than the
second donor level by kT ln4.

Case (Z) Et—Es) AT

ionization energies EI and E2, consider the two follow-
ing cases:

Case (1) Et=Et

+s/g& —p +ep (E&e E&) (1
—+ep (E2d E&—))$

1—
=[1+,'(e -Ptt'+e Ps')

Xe Per—(1+'(eP-~'+eee') 'e Per)5

t 1+1 —p(sg+Eo)]—1L1+ te p(tts+ttF—)j (A2.7)

This last expression is simply the product of the prob-
abilities given by the usual Fermi-Dirac treatment that
each donor, with effective energy levels of the form
—E&—kT ln2, have an electron. The reader may easily
find that similar equivalences can be established be-
tween the other charge conditions of the Qaw and the
corres ondin states of the two donors.

E2g=' —E1—kT ln2

E1g=' —E2—kT ln2.

(A2.5)
t See, for example, W. Shochley and W. T. Read, Jr., Phys. Rev.

(A2.6) 87, 835 (1952), Appendix B.
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The e8ect of the s-d exchange interaction between the conduction electrons and the Mn ions on the
electrical behavior of Cu-Mn alloys is investigated from the molecular-field point of view. The magnitude
of the anomalous resistivity calculated with the value of the exchange integral for a free Mn+ ion agrees
with the experimental value within a factor of three. Also the temperature dependence of the resistivity
obtained by the molecular-field approximation for the antiferromagnetic spin ordering is shown to be quite
similar to the behavior exhibited by the alloys with more than one atomic percent Mn. For samples with
lower concentration of Mn ions, however, the theoretical result shows only a monotonic decrease of the
resistance below the Noel temperature. It shows neither the resistance minimum nor maximum which has
been found experimentally for the very dilute alloys. The anomalous magnetoresistance calculated on
the same basis is approximately proportional to the square of the magnetization and its magnitude is
in good agreement with the experimental results, especially above the Noel temperature. The magneto-
resistance of ferromagnetic metals is also discussed.

I. INTRODUCTION

~

l ERRITSEN and Linde' have measured the~ electrical resistivity of noble-metal alloys such as
silver and copper containing traces of the transition
elements represented by manganese and iron, and have
found anomalous behavior in the resistivity at low

temperature. According to their experimental results,

*On leave from the Department of Physics, Osaka University,
Osaka, Japan.' A. N. Gerritsen snd J. O. Linde, Physics 17, 573, 584 (1951).

such alloys with several atomic percent Mn show an
abrupt decrease of the resistivity at low temperature,
and as the concentration of Mn ions becomes lower the
resistivity initially rises and then decreases, exhibiting
a maximum value with lowering temperature. Gerritsen2
has also found that these alloys show an anomalous
magnetoresistance accompanying the anomaly of the
resistivity. Korringa and Gerritsen' explained this

s A. N. Gerritsen, Physics 19, 6 (1953).
e J. Korringa snd A. N. Gerritsen, Physics 19, 457 (1953).


