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Effective Gyromagnetic Ratio for Triangular Ferrimagnetic States*
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It is shown from the semiclassical equations of motion and the molecular-field approximation that the
triangular ferrimagnetic state can also be described by an effective gyromagnetic ratio. This effective ratio
depends explicitly on the ratio of the inter- to intra-sublattice molecular field constants rather than on the
static sublattice magnetizations as in the antiparalle] state. It is estimated that the shift in g values for
FeCr204 should be observable if there is a transition from a triangular to an antiparallel state.

I

N extension of the two-sublattice models of ferri-
magnetism was made by Yafet and Kittel' to
take account of large interactions within the sublattices.
In so doing, they introduced the concept of triangular
ferrimagnetic states in which the original sublattices
are further subdivided and the resulting magnetization
vectors are no longer completely parallel (or anti-
parallel) to each other or to the net magnetization.
This theory has been elaborated by Lotgering,? and he
has found some experimental evidence for the existence
of triangular states in the chromium spinels, MnCr;O4
and FeCr,0y, from the values of their low-temperature
magnetizations. _

In this paper, we shall be concerned with the question
as to whether the existence of triangular states will be
reflected in the properties of these materials in mag-
netic resonance experiments, as is the case with sub-
lattices generally in the more usual ferrimagnetics. In
particular, one would like to know whether they can
also be usefully described by an effective gyromagnetic
ratio® in spite of the fact that there may exist large
magnetization components transverse to the direction
of the applied field.

We shall consider the three-sublattice system illus-
trated in Fig. 1. If we let A;; be the molecular-field
coefficient between the sth and jth sublattices, and H
the applied field, then the total field on the 7th sub-
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F16. 1. Relative orienta-
tions of the sublattice mag- 1
netizations for the case
discussed in the text.
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lattice is

In this equation, we have used the minus sign for
convenience in discussing the predominant cases of
antiferromagnetic couplings. Using the general relation
\ij=M\ji, we can write the fields explicitly as

Hi=H-AuMi1—N oM+ (A2—A13) M3, (1a)
Hy=H— (A22—N25) M2—A12M;—A2sM, (1b)
Hs=H— (As3—Nos) Ms—A1sM;—A2sM, (1c)

where M=M,+M;.

In the equilibrium case, when H=0, the sublattice
magnetizations must be parallel to the total field on
them. If we designate the static magnetizations by
M), we see from Egs. (1) that

(A 12—A15)M =0,
AeM %A M0=0,
A1sM %A M0=0.,

Thus, we see that A;2=MX\13=N\, and that a condition on
the static magnetizations is

M,*+sM°=0, 2)
where

B=NAzs/\. 3)

These results agree, of course, with those of Lotgering.

If we choose the direction of the net magnetization
(which is the same as that of M®) to be the z direction
and write M ;9= M, then, in terms of the components,
(2) yields

M+BM=M+B(Me+M;)=0, 4)
Mo+ M 3.'= Mo+ M3,2=0. (5)
I

If H>0, and is in the z direction, the sublattice
magnetizations will deviate slightly from their static
values, so that, taking account of (5), we can write:

Mi,=m1a, M yy=my,, M15=M1+m12,
(6a)

M23=Mz+m2z; M2V=Mu+m2w M= Motms,,
(6b)
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M= -Ms+m3m M3y= “"Mrl'msy, M3.=Ms+tms,,

(6¢)
where M , and M, are large static components.
The undamped equations of motion of this system are

dM,;/dt=y:M;XH,, )

where v; is the gyromagnetic ratio of the sth sublattice
and the H; are given by (1).

If we substitute (6) into (7), use (3) and (4), and
keep only first-order terms in the small deviations from
the static values, we get

mlzgoy (83.)

mz:/')’2= ""m3z/"!_3 _
= —R[Mz(mly‘l—ﬂmy)—Mv (m11'+3m1')]’ (Sb)
as/iv1= — Hmy AN Mmy—Mmy),  (8c)

thay/iyy=—H (mao+ 1) B
— N[ Mo (mp+Bmy)— M, (m14-Bm.)], (8d)

tivgy/iys=—H (ma— M ) N
—NM s(mry+-Bmy)+My (mi+Bm,)], (8e)

where my.=mi+imy, etc., and we have defined
m=m,}m; From these equation and (4), one easily
finds the general relation:

C(rar/v1)+ (tiay/v2)+ (ma/vs) ]
+$H (m1+-|—mz*_+m3,.) =0.

If the +: are all different, the determination of the
normal frequencies of the system of essentially eight
variables described by (8) is quite tedious and we will
not discuss it further. However, we can discuss very
easily a simpler case which should give us many of the
essential features.

If we now assume that y2=7vy3=4, and add (8d) and
(8e), we find that the system -of equations becomes

m 0,

May/iy1=— Hmy+N (Mm.— Mum.),

/iy =—Hmy—N(Mmy—Mm,),
with the use of (4). But these equations, together with
(8a), are exactly those describing a system with two
antiparallel sublattices and small components trans-
verse to the applied field. Therefore, we can make use
of previous results,® and say at once that in the limit

of strong molecular fields the normal frequency of the
lower branch is given by

wo= (v*)ot:H,

where (y%) is the effective gyromagnetic ratio for
this example of a triangular state. It is given by

(Y®)ete= (M1+M)/[(M1/y1)+(M/7)], 9
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and depends only on the static components of the mag-
netization which are parallel to the applied field, the
large transverse components # , and M, having dropped
out of the final result.

The triangular case is, however, significantly different
from the usual antiparallel case in that the static
magnetization components must satisfy the constrain-
ing Eq. (4). If we use (4), we can rid (9) of its apparent
dependence on M, and M. The final expression for the
effective gyromagnetic ratio of the triangular state is
then given by

(¥9)ete= (6—1)/LB/v1)— (1/7)].
III

(10)

We can profitably compare (1) with ¢ for the usual
antiparallel case which, in a corresponding notation
and with p=|M1/M |, becomes

Yett= (p—1)/[(o/v1)— (1/7)].

It is easily shown that

R=(y"ets/Vets= (8B—1)/{B—14+A[ (vets/¥1)— 11}
=@B—=DL(v/v)p—11/{(e— D[ (v/¥)B8—1]}, (11)

where A=p—p. The case we are considering will gen-
erally correspond to 8>p.2 We see from (11) that in
general (v%)esr can be expected to differ the most from
the corresponding antiparallel value when 8 is much
different from p and also when the two sublattice

gyromagnetic ratios are quite unlike.

Lotgering has found ~1.3 for iron and manganese
chromites. We can get an estimate of the value of R for
these cases if we use the spin-only values of p. Using
g values of 2.1, 2.0, 1.97 for the Fe, Mn, and Cr sub-
lattices, respectively,* we find that,

for FeCryOs, R=1.5;
for MnCr;04, R=1.1.

Thus, we see that if FeCr,O, has a transition from a
triangular to an antiparallel state, the corresponding
change in g value should be observable.

By using methods similar to those used before for
the limit of large molecular fields,® one can easily show
that the equation of motion for the total magnetization
can be taken to be the usual macroscopic equation but
with the effective gyromagnetic ratio being used. In
other words, one can use

dM/di= (v*)essMXH

for further analysis of the response of the system to
applied fields rather than being forced to deal with the
more unwieldy set of sublattice equations.
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