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Galvanomagnetic Theory for n-Tyye Ger-1llanium and Silicon. Hall Theory and
General Behavior of Magnetoresistance*
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Liucotu Laboratory, kfassachusetts Iuststute of Techuotogy, Lesirsgtou, Massachusetts

(Received September 27, 1956)

A general expression for the resistivity tensor, appropriate to n-type germanium and silicon, is deduced
from which the magnetoresistance bp/p and Hall coefBcient E~ relations are evaluated. The angular
dependence of hp/p in germanium shows precisely the qualitative features noted in the experiments of
Pearson and Suhl. Additional details emerge, however, for silicon that were not detected by Pearson and
Herring —presumably because of the restricted range of &or they employed. The field dependence of hp/p
for both germanium and silicon is examined for a number of high-symmetry orientations of the current J
and magnetic B vectors with the finding of a departure from the square law at high fields. A detailed study
of the E~ field dependence ia made for the combinations Jioo, Boio and Jiio, Biip. A minimum is observed in

germanium for the latter case and in silicon for the former case. The minima occur between the limiting
values for b~~, Rsr=1/ugc, and b~0, Rsr (=1/ugc)$3IC(%+2)/(2E+1)2j; these limiting values are
invariant for all alignments of J and B.

HIS paper deals with the magnetoresistance of
m-type germanium and e-type silicon in the

approximation of a constant scattering time. In a
previous paper, ' we obtained an expression for the con-
ductivity tensor for the appropriate combination of
ellipsoidal energy surfaces. The resistivity tensor was
then evaluated in the simpler case of the saturation
limit only. The magnetoresistance calculations are now
extended to intermediate Gelds, and the Hall coe%cient
is determined. Some preliminary interesting aspects of
the Hall coefEcient have been pointed out elsewhere. '

The approximation of a constant scattering time v.

is used here because of the extreme difhculty in making
intermediate-Geld calculations of the magnetoresistance
using an energy-dependent ~. Furthermore, we avoid
the problems involved in a detailed treatment of the
scattering processes, with which we are not concerned
here. Because of this simplification, we shall not present
quantitative comparison between our calculations and
experimental results. It will be found, however, that
there is qualitative agreement between the results
presented here and the experimental data now available.

THE RESISTIVITY TENSOR

The conductivity tensor 0 for either e-germanium or
e-sili.con can be expressed in the form

al CS+ds CS—ds).
0'/0' —

I
cs as as cl+dl

& (1)
C2+d2 Cl dl as )

where
Qgt 3
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The expression for the quantities in Eq. (1), derived in
*The research reported in this document was supported jointly

by the Army, Navy, and Air Force, under contract with Massa-
chusetts Institute of Technology.

1 L. Gold and L. M. Roth, Phys. Rev. 103, 61 (1956);hereafter
called "Part I."

SL. Gold, Phys Rev. .99, 596 (1955).

Part I (which should be consulted for meaning of all
other symbols and general notation) are reproduced for
reference in Appendix I.

The resistivity tensor p, from which the magneto-
resistance derives, is the inverse of Eq. (1).This may
be written as follows:

where

and

p

, IIA SII,
p* det (o/o*)

All a2aS Cl +dl 1

A12= (Cl dl) (C2 d2) aS(CS+ds)i

A 18 (Cl+dl) (CS+ds) a2(C2 d2)

A21 (cl+dl) (C2+d2) as(C3 d3)1

A 22 =ala3 —C2 +d2 1

A 23= (C2 d2) (CS ds) al(C1+dl)

A, l——(cl—dl) (cs—d3) —a2(CS+d2),

ASS= (cs+d2) (cs+ds) as(cl —dl),

A 88= ala2 —
CS +ds yb

(3a)

100
ii0

p/p*
Pll/p = (a2a3 cl +dl )/det(o/0. *)
2 (Pll+P22+P12+P21)/P

a2 —C~—C2
'

+ (dl+ds) —2ascS)/det(o/0*), (5)

where p~~, p~2, etc., are the components

p;8 P*A;8/det (o/——o.*)

det(o/o*) =alasas+2clclcs+2 (cldsds+csdlds+c3dld2)
—[al(cl' —dl')+as(c2' —d2')+as(CS' —ds')) (4)

THE MAGNETORESISTANCE

The double scalar product of the resistivity tensor
with the unit current vector gives the resistance p,.
p/pe=. 1+hp/p*, where Ap/pe is the magnetoresistance.

For selected orientations of the current J, we find
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of the hp/p is, of course, less than the saturation case,
and the ratio of longitudinal to transverse magneto-
resistance increases as cow is increased. Similarly, for the
transverse magnetoresistance with Joor [Fig. 1(c)j, the
only essential change is an increase in the anisotropy
as ~r is increased.

However, the arrangement Jtro, Bs——0 [Fig. 1(b)$
exhibits new features in the angular dependence as co7

is varied. For cow = I, the m symmetry is distinguished
from the saturation limit in that the maxima are
decidedly Ratter. If A&7 is increased somewhat, as Fig.
1(b) shows for oor=2, intermediate minima appear as
observed by Pearson and Suhl (open circles in their
Fig. 8).

The case of Jrrs with B rotated in the (110) plane
[Fig. 1(d)j also shows new features as oor is varied. For
~v=1.0, the appearance is quite different from the
saturation result, which showed peaks at 45' and
equivalent minima at BppI and Syrup. Here the minima
have become unequal, while the peaks have shifted in
position. This is in agreement with Pearson and Suhl
results as shown by the X's in their Fig. 8.

Finally, the angular variation of transverse magneto-
resistance, with Jrro [Fig. 1(e)j is relatively insensitive
to changes in err. This case corresponds to the closed
circles of Fig. 8 in Pearson and Suhl.

In the qualitative features of the angular dependence
of the magnetoresistance in n-germanium, our results
are, therefore, entirely consistent with experiment.

.082
hp
P

B. Angular Dependence of sky/8 in n-Silicons

The angular dependence of the magnetoresistance in
silicon for co~=0.8 is shown in Fig. 2. Numerical evalu-
ation is based upon I& =5.2.' For Jrpo and Bs=0 [Fig.
2(a)1, the curve differs essentially only in magnitude
from the saturation case. For Jrm and Bs——0 [Fig.
2(b)j, the intermediate peaks found at saturation
disappear as co7- is lowered, having only maxima at B~~p

and minima at Bpp~. The transverse magnetoresistance
with $3=0 and Jpp~ shows no anisotropy at saturation.
In the intermediate region, the anisotropy is small,
with or/2 symmetry as shown in Fig. 2(c).

The arrangement with J~~p with 8 rotated in the
(110) plane [Fig. 2(d) $ shows intermediate minima not
found at saturation. Finally, the transverse case with
J»p shows nothing essentially diferent from the
saturation case.

In the case of silicon there is insufhcient experimental
data to give an adequate test of the theoretical work.
The work of Pearson and Herring' indicates the features
characteristic of the saturation limit, but fails to
delineate the details found here in the intermediate
region. It would be interesting to see further experi-
mental results.
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When 8 is rotated in the (001) plane, with J in the
[100j direction [Fig. 1(a)j there is little change in the
appearance of the curves as co7 is varied. The magnitude

o See Appendix lT-B for elaboration of p/po.' G. L. Pearson and C. Herring, Physics 20, 975 (1954).

FIG. 2. Directional behavior of the magnetoresistance hp/p in
e-silicon for some cardinal current orientations and typical car
values. (a) B rotated in (001) plane and J&oo with &or=0.8;
(b) B rotated in (001) plane and JI&o, o&r=0.8; (c) B rotated in
(001) plane and J'ooI& oor=0.8 (saturation result constant, hp/p
=0.745; transverse magnetoresistance); (d) B rotated in (1TO)
plane, JIIo, oor=0.8; (e) B rotated in (1TO) plane, J&ro, o&r=08.
(transverse magnetoresistance).
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FIELD DEPENDENCE OF MAGNETORESISTANCE

In Fig. 3 the magnetoresistance for the 4- or 8-ellips-
oid model for particular orientations of J and B is
plotted as a function of magnetic field, showing the
departure from the square law at high fields. The ex-
pressions for the field dependence are, for the simplest
cases with J in the (100) direction,
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where again K is the mass ratio 2))1/))22.

Similarly for the 3- or 6-ellipsoid model, the field
dependence is shown in Fig. 4. In the longitudinal case
with Jypp, the magnetoresistance vanishes identically
in our approximation; the transverse case cannot be
simply expressed as for germanium and it is given in
Appendix II-B.

THE HALL COEFFICIENT

Fro. 3. Field dependence of magnetoresistance hp/p for I-ger-
manium. The cardinal combinations of current and magnetic
f)eld are (1) J)oo, B)oo,' (2) J))o, B»o, (3) Zoo), B))o, (4) &))o', B)u;
(3) A)o, B)u; (6) A)o, Buo; (7) Aoo, Bo)o=&uo, Boot

Our considerations are restricted to a single-carrier
system, i.e., we suppose that only electrons contribute
significantly to the Hall fields. We define the Hall coef-
ficient in the following way:

.01

g4

I I I I I Ill 1 1
Air ——— LE(B) BXJ—E(—B) BXJj

2 [BXJ[2

1(BX ) (p
—P).

2
f
BX)r /2

where n is a unit vector in the J direction.
This definition holds even if B and J are not per-

pendicular. Also since it includes only the antisym-
metric part of p, it corresponds to the experimental
situation in which the transverse voltage is measured
before and after reversing the magnetic field, and the
magnitude of the two results averaged. For symmetrical
current directions we have

001 ) )))
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Fio. 4. Field dependence of magnetoresistance hp/p for I-silicon
The cardinal combinations of current and magnetic Geld are
(1) Joo) Buo', (2) Boo, Bo)o=&uo, Boo); (3) &uo, Bu)', (4) J))o,
Buo', (3) &1)o, B)u; (6) &1)o, Buo.
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The detailed expressions are given in Appendix III for
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APPENDIX I. CONDUCTIVITY TENSOR

A. Germanium

For the quantities in Eq. (1), we have from Part I:
1 1 ) 3

a,= -P —]1+ bP ~,4~ 6; ( 2E+1 )
~84

0

FIG. 6. Field dependence of Hall coefficient RII for n-silicon for
Jg1o, Bj,10 and J1oo Bo1.o.

the same planes of rotation of the magnetic field as were
considered for the magnetoresistance.

The Geld dependence of the Hall coeScient for ger-
manium is displayed in Fig. 5 for J1pp, 8010 and J110,
$1/0. The former coeS.cient can be written explicitly

1 3E(E+2) ( 2+E
X~ 1+ bm

~

eqc (2E+1)' E 3E )

1 1 3 E—1 1 S1'
cg= —P— b2bs—

4 ' 6; 2E+1 2E+1 4 ~

1 1 E+2 E 11 S2—'ba+Sg'bg
di= —Q — by+

4 ' 6; 2E+1 2E+1.4 '

with the remaining quantities given by cyclic permu-
tations. Here

E—1 q ~
6;=1+ b'+ —(Si'bi+Sm'b2+Sa'ba)', h=

E 3E m2c

and clearly has the limits:

(E+2 q'
ib, (10)

&2E+1 S1'
S2'
S3'

E=et~/tn2, and the S' are, for the four sets of ellipsoids,

I II III IV
1
1 —1 —1 1
1 —1 1 —1

b+~, R~——1-/Nqc;

1 (3E(E+2)i
Ngc & (2E+1)' )

b—+0, E~——

It does not exhibit a minimum as does J110, 81Ip.
The parallel situation for silicon appears in Fig. 6,

but now the minimum occurs for J100, 8010, for which
the Hall coeS.cient is given explicitly:

nqc

(1+b') (1+fP/E) LE+2+3b'j
X (11)

L(2E+1)+(E+2)b'j'+b2/E+2+3P)'

Here ~~ leads to 8~=1/eqc as required, and, for
b—+0 we find precisely the same result as for germa-
nium. Indeed, it is seen that for b—+0, i.e., the low-field
limit, the Hall coefBcient becomes independent of
orientation. The factor 3E(E+2)/(2E+1)' properly
has a value of unity for E= 1 and in the limits of E—+0

and E—&~ approaches zero and 4, respectively.
Finally, the symmetry properties for XII are observed

with such typical equivalences as J110 ~001 Jlppy

~010 JOOTp +lppp etC.

B. Silicon

The conductivity tensor is again given by Eq. (1),
where now

1 )1 E E1'
I
—+—+—++—b~'

l~
2E+1 &Ag 62 63 ' 6, )

bgb3 1
C1=

2E+1 s 5;
bj )E 1 1q

dl= ] + +
2E+1 &&g &2 Agi

1 E—1
~ =1+—b'+ b'

E E
APPENDIX II. SPECIALIZATION OF THE MAGNETO-

RESISTANCE LEQS. (5)j FOR PARTICULAR
PLANES OF ROTATION OF THE

MAGNETIC VECTOR

A. n-Germanium

1. B in a (100) plane (83——0)

(a) For J,oo (loegitldinal),

p/p~=Q ~LI+ybm slI120+b2 cosmg(s —xb2 sinme))
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where
2(E—1)P ( E+2

g= 1+ O' I,
3K(2K+1) 0 3E )

y=, s=
2E+1 2K+1

Sq —— xbP sin28(A —xbP sinP8)
2K+1

Sp= xb' sin'8(A —4xb'+Sxb' sin'8)
2E+1

8 is angle between B and z' axis.
d ={(1+yb') (1+s'b') —xpb' sinP28xL(4s+ x) (1+yb')

—2 (s—1)')+p
b' sin428(2y+x) x')

B. n-Silicon

1. B in a (100) plane (Bp——0)
E+2

x I1+
1 BE

sin'28,
2yE

and 8 is the angle between B and the $100$ axis.
(b) For Jpp& (transverse),

(a) Fol Jrpp,

(b) For Jppr&

p hgh263
(FpFp+Fp')

p* det'

p hgh253
(FrFp FpP), —

p* det'
p/p*= 4 '$1+yb' ', b4 sin'—28-(x+2y)x),

(c) For J»p,

p/p*= 'd, 'L2+-yb' —(y+x) b' sin28

+b'(s ——,'xb' sin28)'(1+sin28) j.
2. B in a (110) plane (B&=Bp, Bp/0)

The calculation is facilitated by rotation of the coor-
dinate axes to x'—+110, y'—+110, s'—&001.

(a) For Jrrp (lorpgitudimal),

P/P*=P (det') '(FrFp+FpP),

(b) For J»p (trrpnsperse),

p/p*= P(det') (FpFp —F4P),
where

P = (A —xbP sin'8)
I (A+xbP sinP8)P —2x'b4 sinP28),

iE+2~ E—1

( 3E ) 3E
det'=FrF&p+2F pF pF p FrF4'+F pF p'+—F&p',

I"g=Sg —S2,

Fp ——Spl 1+ b'sin'8 I+Sp,
2K+1 ]

Fp——Spl 1+ b cos'8 I,
2K+1 )

Fp
——Sp —',b' sin28+Sg,

2K+1
E+2

Ii 5 =So b sin8 —S~b cos8—S2b sin8,
2K+1

Iie=S~ b cos8 —SJb sin8,
2K+1

Sp =A (A+xb' sin'8) —x'b' sin'28,

(c) For Jrrp,

p 1 dgh263
L(Fr+Fp)F p

—2FpFp+(Fp+Fp)'$,
p* 2 det'

where
1

6&=1+—tb'+ (K'—1)b&'j
E
1 b2

hp ——1+—
I
b'+(K —1)bpPj hp=1+—

E E
det'= FrFpP p+2F4F pFp+FgFP+F pFp' FpF4', —

F~=A+~~Exb4 sinP28+b' cos'8LE+q'xb4 sinP281,

Fp A+xpKxb4 sin——'28+b' sin'8I E+xpxb4 sinP28 j,
Fp=A+ pxb' srn'28

Fp
——~~bP sin28(C+xpxb4 sin'28),

Fp
——b cos8 (D+qxb' sin'28+ yb' sin'8),

Fp
——b sin8(D+ p'xb4 sin'28+ yb' cos'8),

(E—1)P

2K+1 0 E ) 2K+1 E
1 E'—1

d '(1+2K)+ hpb'
2K+1 K

1 (E 1)—
B~pP+2~pl Ib',

K+1. & K

1 (E—1i
D= hp'(2+E)+2hpl Ib'

2K+1 EE i
1 E 1(E—1)'—

Bd,pP+2hp b +6p

2K+1. E E
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2. B in a (110) plane (B~——Bs, BsYO)

The calcu1ation is facilitated by the same rotation of
axes as for n-germanium.

(a) For Juo,
p

(F~Fs+Fso)
p* det'

(b) For Jup,

(b) For Jppy,

Rn ———5 '(ebs(1+yb') —bPbss[x(y+2x) b' —2x(s—1)]),
Bb

(c) Fol Jup,

6 '[s(1+yb )—bzbzx(s —1) bP—bs x(2y+x)]8

where

p
(FsFs—F4'),

p* det Z. B in a (110) plane (B~——Bs, Bs WO)

(a) For Jyzp,

1 E—1
6=1+—b'+ b' sin'8,

E 2E
b P(det') '

g (FsFs+FsFs),8 b cos8

As=1+b'—
E—1

b2 sin'0, (b) For Jup,

Fs ',b' sin28——(y-+b'/E —xyb' sin'8),

Fs——b sin8(s+Nb' —xb' sin'8),

Fs ——b cos8(s+yb' —xwb' sin'8),

E—1 3

2E 2K+1

+xybs sin'8,

det'=F]FsFs+2F4FsFs FgFs'+—FsFs +F3Fs',

F~=1+sP—sxb' sin'8,

Fs =1+eh'+ b' sin'8 (y+ b'/K sx) xyb—s sin'8—,

Fs (1+b') (1+b'——/E) —b' sin'8[y+ b'/E+x(a+ yb')]

Rn ———P(det') '[(F4Fs+FsFs) sin8
8

+ (F4Fs+FsFs) cos8],

B. n-Silicon

1. B in a (100) plane (Bs=O)

(a) For Jgpp~

p* f&x&s&s'1 (FsFs+FsFsI

B ( det' ) ( sin8

(b) For Jpp~,

1+K+K'

E(2K+1) 2E+1 2K+1

p' I'AiAsAs&
R~=—

~ ![(FsFs+FsFs) sin8
B4 det' )

3. Field dependence of p/p* for J~pp and Bp~p

The 6eld dependence of p/p* for J happ and Bp~p is given
by

p A (A+Eb')

p* A'+D'bs

(c) For Juo,

p*(&i&phoae ( 1

B & det' ) ~cos8—sin8)

+ (F4Fs+F1Fs) cos8],

where A, D, and E are the expressions in Sec. 1.

APPENDIX III. SPECIALIZATION OF EQS. (9) FOR
PARTICULAR PLANES OF ROTATION OF

THE MAGNETIC VECTOR 3
We use here the same notation as in Appendix Il.

A. n-Germanium

1. B ina(100) pla, ne (Bs=0)

X (FsFs+FxFs F4Fs FsFs)— —

p (AAs) (F4Fs+FsFsi

B Edet') ( )cos8

Z. Bin a (110) plane (Bq ——Bs, BsAO)

(a) For Jup,

(b) For Juo,

Ilier

= [(FsF's+F oF's) sin8+ (F4F—s+FsFs) cos8].
8

(a) For Jgpp,

b2
Rn = p*A '[bP(y+x) (s —xbs')—+(1+ybs') (s —xbP) i, —
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