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A general expression for the resistivity tensor, appropriate to n-type germanium and silicon, is deduced
from which the magnetoresistance Ap/p and Hall coefficient Ry relations are evaluated. The angular
dependence of Ap/p in germanium shows precisely the qualitative features noted in the experiments of
Pearson and Suhl. Additional details emerge, however, for silicon that were not detected by Pearson and
Herring—presumably because of the restricted range of wr they employed. The field dependence of Ap/p
for both germanium and silicon is examined for a number of high-symmetry orientations of the current J
and magnetic B vectors with the finding of a departure from the square law at high fields. A detailed study
of the Ry field dependence is made for the combinations J1oo, Boio and J110, Bito. A minimum is observed in
germanium for the latter case and in silicon for the former case. The minima occur between the limiting
values for b—w», Rgy=1/ngc, and b—0, Ry= (1/ngc)[3K (K+2)/(2K+1)?]; these limiting values are

invariant for all alignments of J and B.

HIS paper deals with the magnetoresistance of
n-type germanium and #-type silicon in the
approximation of a constant scattering time. In a
previous paper,! we obtained an expression for the con-
ductivity tensor for the appropriate combination of
ellipsoidal energy surfaces. The resistivity tensor was
then evaluated in the simpler case of the saturation
limit only. The magnetoresistance calculations are now
extended to intermediate fields, and the Hall coefficient
is determined. Some preliminary interesting aspects of
the Hall coefficient have been pointed out elsewhere.?
The approximation of a constant scattering time
is used here because of the extreme difficulty in making
intermediate-field calculations of the magnetoresistance
using an energy-dependent 7. Furthermore, we avoid
the problems involved in a detailed treatment of the
scattering processes, with which we are not concerned
here. Because of this simplification, we shall not present
quantitative comparison between our calculations and
experimental results. It will be found, however, that
there is qualitative agreement between the results
presented here and the experimental data now available.

THE RESISTIVITY TENSOR
The conductivity tensor ¢ for either #-germanium or
n-silicon can be expressed in the form

a1 cstds
a'/a*= C3— ds az

cotde

Cz—dz
01+d1 ] (1)

a—dy a3z

where
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The expression for the quantities in Eq. (1), derived in

* The research reported in this document was supported jointly
by the Army, Navy, and Air Force, under contract with Massa-
chusetts Institute of Technology.

1L. Gold and L. M. Roth, Phys. Rev. 103, 61 (1956) ; hereafter
called “Part 1.”

2 L. Gold, Phys. Rev. 99, 596 (1955).

Part I (which should be consulted for meaning of all
other symbols and general notation) are reproduced for
reference in Appendix I.

The resistivity tensor p, from which the magneto-
resistance derives, is the inverse of Eq. (1). This may
be written as follows:

p 1
;—m[lAjkll, ©)
where
An=asa3—c’+d7,
A= (61—d1) (Cz—dz) —as (63+d3),
A13= (01+d1) (63+d3) —az(ca— ds),
A= (c1Fd1) (catds)—as(cs—ds),
Age=a103—c2+d2?, (3a)
A2z= (ca—ds) (cs—ds)— a1 (c1+dy),
A31= (Cl_dl) (63—d3) — a2 (62+d2),
Ase= (catds) (cs+ds)—as(c1—dy),
Ags=a10:—cs+d3,
and

det(o/0*) = a102a3+2c1¢205+ 2 (c1d2d3+ codids+c3d1ds)
—[01(612—d12)+d2(622—d22)+d3(€32—dsz)]- 4
THE MAGNETORESISTANCE
The double scalar product of the resistivity tensor
with the unit current vector gives the resistance p;

o/p*=1+Ap/p*, where Ap/p* is the magnetoresistance.
For selected orientations of the current J, we find

J o/p*
100 p11/p*= (@2a3—ci*+d?)/det(o/c*)
110 %(P11+p22+012+P21)/p*
= [ds (al+a2) - (61'— c2)?
+ (di+ds)*—2ascs]/det(a/0*), (5)

where pi1, p1s, etc., are the components
pix=p*4 j1/det(s/c%).
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Fic. 1. Directional behavior of the magnetoresistance Ap/p in #-germanium for some cardinal current orientations and typical
values of wr=gB7r/mac. (a) B rotated in (001) plane, J100 with wr=1.0 and 2.0; (b) B rotated in (001) plane and J11o with wr=1.0
and 2.0; (c) B rotated in (001) plane and Joo: with wr=1.0 and 2.0 (transverse magnetoresistance); (d) B rotated in (110) plane
and Jio, wr=1.0; () B rotated in (110) plane and Ji1, wr=1.0 (transverse magnetoresistance).

A. Angular Dependence of Ag/p in
n-Germanium

(The expressions for p/p* for particular directions of
J and planes of rotation of B are given in Appendix II.)
The angular dependence for intermediate values of
b=wr is shown in Fig. 1 for comparison with the
saturation case and with the experimental results of

Pearson and Suhl.® For numerical evaluation we have
used, as in Part I, the value of the mass ratio K=m,/m,
=16.9 from cyclotron resonance.*

3 G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).

4TIt has been pointed out that if one takes into account the
anisotropy of 7, K should be replaced by K= (mi/ms)(r2/71).
[See Benedek, Paul, and Brooks, Phys. Rev. 100, 1129 (1955),
and L. Gold, Phys. Rev. 104, 1580 (1956).]
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F16. 2. Directional behavior of the magnetoresistance Ap/p in
n-silicon for some cardinal current orientations and typical wr
values. (a) B rotated in (001) plane and Jio with wr=0.8;
(b) B rotated in (001) plane and J110, @r=0.8; (c) B rotated in
(001) plane and Jooi, wr=0.8 (saturation result constant, Ap/p
=0.745; transverse magnetoresistance); (d) B rotated in (110)
plane, Ji1, wr=0.8; (e) B rotated in (110) plane, Ji10, wr=0.8
(transverse magnetoresistance).

When B is rotated in the (001) plane, with J in the
[100] direction [Fig. 1(a)] there is little change in the
appearance of the curves as wr is varied. The magnitude

GOLD AND L. M. ROTH

of the Ap/p is, of course, less than the saturation case,
and the ratio of longitudinal to transverse magneto-
resistance increases as w7 is increased. Similarly, for the
transverse magnetoresistance with Joo; [Fig. 1(c)], the
only essential change is an increase in the anisotropy
as wr is increased.

However, the arrangement Ji10, B3=0 [Fig. 1(b)]
exhibits new features in the angular dependence as wr
is varied. For wr=1, the = symmetry is distinguished
from the saturation limit in that the maxima are
decidedly flatter. If wr is increased somewhat, as Fig.
1(b) shows for wr=2, intermediate minima appear as
observed by Pearson and Suhl (open circles in their
Fig. 8). _

The case of Jy10 with B rotated in the (110) plane
[Fig. 1(d)] also shows new features as w7 is varied. For
wr=1.0, the appearance is quite different from the
saturation result, which showed peaks at 45° and
equivalent minima at Bgo: and Big. Here the minima
have become unequal, while the peaks have shifted in
position. This is in agreement with Pearson and Suhl
results as shown by the X’s in their Fig. 8.

Finally, the angular variation of transverse magneto-
resistance, with Ji1o [ Fig. 1(e)] is relatively insensitive
to changes in wr. This case corresponds to the closed
circles of Fig. 8 in Pearson and Suhl.

In the qualitative features of the angular dependence
of the magnetoresistance in #-germanium, our results
are, therefore, entirely consistent with experiment.

B. Angular Dependence of Ap/p in n-Silicon®

The angular dependence of the magnetoresistance in
silicon for wr=0.8 is shown in Fig. 2. Numerical evalu-
ation is based upon K=35.2.4 For J10 and B;=0 [Fig.
2(a)], the curve differs essentially only in magnitude
from the saturation case. For Ji0 and B3;=0 [Fig.
2(b)], the intermediate peaks found at saturation
disappear as w7 is lowered, having only maxima at By
and minima at Boo;. The transverse magnetoresistance
with B3=0 and Joo; shows no anisotropy at saturation.
In the intermediate region, the anisotropy is small,
with w/2 symmetry as shown in Fig. 2(c).

The arrangement with Jy;0 with B rotated in the
(110) plane [Fig. 2(d)] shows intermediate minima not
found at saturation. Finally, the transverse case with
J110 shows nothing essentially different from the
saturation case.

In the case of silicon there is insufficient experimental
data to give an adequate test of the theoretical work.
The work of Pearson and Herring® indicates the features
characteristic of the saturation limit, but fails to
delineate the details found here in the intermediate
region. It would be interesting to see further experi-
mental results.

5 See Appendix II-B for elaboration of p/p*.
8 G. L. Pearson and C. Herring, Physica 20, 975 (1954).
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FIELD DEPENDENCE OF MAGNETORESISTANCE

In Fig. 3 the magnetoresistance for the 4- or 8-ellips-.
oid model for particular orientations of J and B is
plotted as a function of magnetic field, showing the
departure from the square law at high fields. The ex-
pressions for the field dependence are, for the simplest
cases with J in the (100) direction,

2 (1) o)
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Fi16. 3. Field dependence of magnetoresistance Ap/p for n-ger-
manium. The cardinal combinations of current and magnetic
field are (1) J100, Bioo; (2) J110, Biro; (3) Joo1, Biro; (4) 110, Buws;
(8) J110, Bux; (6) J1ao, Buro; (7) J100, Boro=J110, Boor.
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Fi1c. 4. Field dependence of magnetoresistance Ap/p for n-silicon
The cardinal combinations of current and magnetic field are
(1) Joor, Buro; (2) J100, Boro=J110, Boo1; (3) Ju1o, Bur; (4) J1no,
Buio; (5) J110, Bun; (6) J110, Buro.
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00 SATURATION. -

Fia. 5. Field dependence of Hall coefficient Ry (in reduced units)
for n-germanium for Joo1, Boo and J110, Bifo.

2o [ (2]

™

(transverse, Bow),

where again K is the mass ratio m,/m..*

Similarly for the 3- or 6-ellipsoid model, the field
dependence is shown in Fig. 4. In the longitudinal case
with Ji00, the magnetoresistance vanishes identically
in our approximation; the transverse case cannot be
simply expressed as for germanium and it is givenin
Appendix IT-B. )

THE HALL COEFFICIENT

Our considerations are restricted to a single-carrier
system, i.e., we suppose that only electrons contribute
significantly to the Hall fields. We define the Hall coef-
ficient in the following way:

Ry=-——[E(B)-BXJ—E(—B)-BX]J
3 T ALE® BXI—E(-B)-BxJ]
=1(BX“)'(P—5)‘OI
2 |IBX «|?

)

where « is a unit vector in the J direction.

This definition holds even if B and J are not per-
pendicular. Also since it includes only the antisym-
metric part of p, it corresponds to the experimental
situation in which the transverse voltage is measured
before and after reversing the magnetic field, and the
magnitude of the two results averaged. For symmetrical
current directions we have

J Ry
100 %[(le“—Pu)Ba“ (P31—913)32]/ (B2+Bs)2
110 3[2B3(p21— p12)+ (B1— Bs) (p31—p13 9)

~+psa—p23) /[ 2B*— (B1+Bo)].

The detailed expressions are given in Appendix IIT for
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Fic. 6. Field dependence of Hall coefficient Ry for #-silicon for
J110, B11o and J100, Bozo.

“the same planes of rotation of the magnetic field as were
considered for the magnetoresistance.

The field dependence of the Hall coefficient for ger-
manium is displayed in Fig. 5 for Jie, Bowo and Jyo,
Bizo. The former coefficient can be written explicitly

1 3K(K+2) K, ) /

=n_qc (2K+1)2
[w(;—t:)%}

and clearly has the limits:

b—w, Rp=1/ngc;
' 3K(K+2)
b—0, Ry=— w)
nge\ (2K4-1)?

It does not exhibit a minimum as does J110, Bito.

The parallel situation for silicon appears in Fig. 6,
but now the minimum occurs for J1g0, Bowo, for which
the Hall coefficient is given explicitly:

3K
Ry=—
ngc

(1459 (1+8/K) [ K+2+382]
[@K+1)+ (K+2)6 P+5[K+2+36F

Here b— leads to Ry=1/ngc as required, and for
b—0 we find precisely the same result as for germa-
nium. Indeed, it is seen that for 5—0, i.e., the low-field
limit, the Hall coefficient becomes independent of
orientation. The factor 3K (K+2)/(2K+1)? properly
has a value of unity for K=1 and in the limits of K—0
and K— approaches zero and 2, respectively.

Finally, the symmetry properties for Ry are observed
with such typical equivalences as Jii, Boor=J100,
By10=J o1, B1o, etc.

(11)
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APPENDIX 1. CONDUCTIVITY TENSOR
A. Germanium
For the quantities in Eq. (1), we have from Part I:

117 3
a=|- = 1+—b12),
45 A\ 2K+1
1 17 3 K—171_ S
1= —Z— bobs— ],
(4% aok+1 7 2k+1l4 T A,
1 17K+2  K—111_ SybetSib
ae[te L2, ]
45 A E+1 0 2k+1la T A,

with the remaining quantities given by cyclic permu-
tations. Here

. . . gBr
(S1%01+Se?ba+Ss%3)%, b=—v
maC

1 K-1
Ai=1+—b+
K 3K

K=1m;/mq, and the S* are, for the four sets of ellipsoids,

I II III IV
S 1 1 -1 -1
St 1 -1 —1 1
Sg¢ 1 —1 1 -1
B. Silicon
The conductivity tensor is again given by Eq. (1),
where now
1 1 K K
)
2K+1\A, A2 A3 i A
babs 1
= )
2K+1 i A;

h (K 1 1
= ( +—1+ ), etc.,
2K+1\A; Ay, Ag

1 K-1
Ai=14+—b——b2
K K

APPENDIX II. SPECIALIZATION OF THE MAGNETO-
RESISTANCE [EQS. (5)] FOR PARTICULAR
PLANES OF ROTATION OF THE
MAGNETIC VECTOR

A. n-Germanium
1. B in a (100) plane (B;=0)
(a) For Jioo (longitudinal),
p/p*= A1 14-yb? sin?0-+ b2 cos?d (z— xb? sin%0) ],
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where
-1

2K —1)? ( K42
— 1+ 32
3K(2K+1) 3K
3 K+2
2k+1 2K+1
A= {(149b%) (14-220%) — 1b* sin?20x[ (4z+x) (1+yb?)
—2(z—1)*]4-308 sin®20(2y-+x)a2}

2

y:

K42 x
X{14+—h———sin?20 },
3K 29K

and 6 is the angle between B and the [100] axis.
(b) For Joo1 (transverse),

p/p*=A"11+9yb—
(C) For J 110y
/ot =3A 24y

1b% sin?20- (x+2y)x ],

(y+x)b? sin26
+b%(z— 320 sin26)%(1+sin26) ].
2. B in a (110) plane (Bl’—-‘-Bz, B37£0)

The calculation is facilitated by rotation of the coor-
dinate axes to &'—110, y—110, z—001.

(@) For Jiio (longitudinal),
p/p*=P (det') 1 (FFs+Fs?),
(b) For Juo (transverse),
p/p*=P(det’)(FoF3—F ),
where
P=(A4—xb? sin®0)[ (4 +xb? sin%f)2—
K+2 K—1
( 3K’
det’=F1FoF3+2FFsFo—F1F 2+ FoF ¢+ FsF ¢,
F1=50—2S,,

2x%b* sin?20],

A=1+

», x=

3
Fz‘—"So(l-I- b? Sin20)+52,
2K+1

3
F3=So(1+
2K+1

b coszﬁ),

3
Fy=S;—— %bz Sin20+S1,
2K+1

K42
Fs=Sy b sinf—.51b cosf—Ssb sind,
2K+1

K+4-2
F6=Su——b COS@—Slb sin0,
2K+1

So=A4(A-+-xb? sin’0) — x2b* sin?29,

K—1

S1=—2b? sin26(4 — xb? sin%),
2K+1

Se= n 1x62 sin®d (A4 —4xb*+ 520 sin’6),

6 is angle between B and 2’ axis.

B. n-Silicon
1. B in a (100) plane (B3;=0)
(a) For Jmo,

1A2A

(Fst-i-F %),

p om—
o
(b) For Joo,

A1AsA3

—(F1Fy—F¢),

p_.
p—_ det
(c) For Jno,
p 1A
ot 2 det!
where

1
A1—1+E[bz+(K 1677,

[(F1+F2)F3— 2FsF s+ (F5+Fe)*],

Ay= 1+§[b2+ (KE=1)b2], As= 1+;§,
det'=F1FoF3+2F FsF o+ F1F2+ FoF d—F3F 2,

F1=A431Kxb* sin*204* cos™[ E+-1xb* sin?207],

Fo=A-+%1Kxb* sin?20+8* sin®0[ E+41xb* sin?20],

F3=A-+31xb* sin%20,

Fy=1b? sin20(C+H%xb* sin?26),
Fy=b cosf (D 1xb* sin?26--yb? sin%),
Fe="0 sinf(D-+3%xb* sin?26-+yb? cos?),

1 /K- 1) Ay (K—1)
g=—(— = ,
2K+1 2K+1 K
17 K*—1
A=—n— A32(1+2K)+——-—A3b2],

2K+1L K

1T K—1
=— A32+2A3( )62],
2K+1L K

1T K—1
_— A32(2+K)+2A3( )zﬁ],
2K+1L K

1 K—1 (K—1)
E=————[3A32+2A6 B4As J
2K+1 K K
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2. Bin a (110) plane (B;= B, B;30)

The calculation is facilitated by the same rotation of
axes as for #-germanium.

(a) For Jno,
p Al
—=——(F\F3+Fs),
p* det’

(b) FOI‘ JIIO,
P AAa

(FoF3—F4),
p* det’

where

1 K-1
A=14—b+——p*sin%,
K 2K

Ag=1+40——p* sin%,

det'=FFyF3+2F FsFs—
F1=1+420>—2zxb? sin%,
Fy=14-2b40? sin’0(y+b*/ K — ) — xyb* sin%,
= (14-0) (14-8*/ K) — " sin®[ y+ 0%/ K+ (v-+35) ]

F1F{+FF+F3F¢,

. +xyb* sin%,

Fy=10 sin20 (y+b*/ K — xyb? sin%),
Fg=b sinf(z+ub*— xb* sin%),
Fe=b cosf(z+yb®— xwb? sinf),

K-1 3 K+2

Xx= y y= ) = )
2K 2K+1 2K+1
1+K+K? 4K—1 4—K
CK@QK+1)  2K+1 2K+

3. Field dependence of p/p* for J190 and Bojo

The field dependence of p/p* for J100 and Boyo is given
by
p A(A+EW
P*_ A2+D2b2
where 4, D, and E are the expressions in Sec. 1.

)

APPENDIX III. SPECIALIZATION OF EQS. (9) FOR
PARTICULAR PLANES OF ROTATION OF
THE MAGNETIC VECTOR B

We use here the same notation as in Appendix II.

A. n-Germanium
1. B in a (100) plane (Bs=0)
(a.) FOI‘ Jmo,

b
Ru=— g5 b2(y+a) (5= abf)+ (1+565) =),
2

L. GOLD AND L. M. ROTH

(b) For Jo(n,

*

RH=£~I;A‘1{zb2(1+yb2)—b12b22[x(y—l—2x)b2—2x(z—1)]},

(C) For J110,

3k

b
RH=—Z-I;—A“1|:2(1+yb2) —b1box(3— 1) — 02022 (2y+x) .

2. B in a (110) plane (By=Bs, B35%0)
(a) For Ji,
b P(d t/)1

Ry=—p*

—————(F4Fs+F3Fy),
B bcosd

(b) For J110,
*

p
RH=EP(det')—1[(F4Fs+F2F5) sinf

+ (F4F5+F2F6) COng,

B. n-Silicon
1. B in a (100) plane (Bs=0)
(a.) For J1oo,

p* fA1AAs\ f FuF5+FoFs
s
B\ det/ sind

(b) For J001,

1A2 3
RH:E( )[(F4F5+F2Fe) 51n0

+ (F4F6+F1F5) COSB],
(C) For Jno,

p* A 1A 2A 3 1
w5 (o ) (o)
B\ det’ cosf—sind

X (FiF g+ F\Fs— F.Fs— FoFs).

2. B in a (110) plane (Bi= B,, B3;#0)
(a) For Jio,

(AAs) (F4F5+F3Fs)
det’ cosf
(b) For Juo,

*
RH=%[(F4FG+F2F5) Sind+- (FuF s+ FyF'g) cosd].



