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Theory of the Specifi Heat of Suyerconductors Based on an Energy-Gap Model*

NEw'roN BERNARDEst
DepartNtelt of Physics, Uwiversity of 1llinois, Urharta, Illilois

(Received March 28, 1957)

A two-Quid model of a superconductor is proposed, based on an approximation in which one-electron
states within a range of the order of kT, from the Fermi level are forbidden. It is assumed that the corre-
sponding energy gap decreases with temperature and vanishes at the transition temperature; such an
assumption is necessary in order to have a second-order transition. Assumptions are also made concerning
the behavior of the electrons in a superconductor, and general formulas are developed involving two parame-
ters which describe the approximate shape of the gap. Detailed calculations are presented for two diferent
sets of values of these parameters, and our results for the electronic speci6c heat predict the general ex-
ponential dependence on temperature which agrees with recent experimental data for Sn and V.

l. INTRODUCTION conductivity, i.e., no solution of the many-body problem
had been found in which the excited states of the system
as a whole had the characteristic features of a super-
conductor. Following a suggestion of Bardeen, we have
worked out a phenomenological theory of the thermal
properties of superconductors based on a one-electron
approximation.

In this approximation the excited states of a super-
conductor as a whole are described in terms of in-
dividual-particle excitations. According to this picture
the excited electrons in a superconductor behave
similarly to excited electrons in normal metals. Further,
for T&&T, the bulk of the electrons is assumed to form
a "condensed" superconducting component with a
condensation energy p(rt), depending on the number of
excited electrons per unit volume. The energy required
to excite an electron-hole pair, /t. (T), then plays the role
of a gap in the one-electron energy spectrum (Eg in
Bardeen's Kq. 12):

'ANY of the features of superconductivity can be
- ~ approximately described by a phenomenological

two-Quid model. For instance, the Gorter and Casimir
model) is in fair agreement with much of the specilc
heat and critical magnetic-field data and has been
extensively used because of its simplicity. However,
strong deviations from its predictions (sis. , T specific
heat and parabolic critical field) have been observed
recently, and we propose here a two-Quid model based
on an energy gap to account for these new data.

Recent specific heat' ' and thermal conductivity'
measurements, as well as microwave and far infrared
absorption experiments, ' indicate that there is a finite
energy difference between the ground state of a super-
conductor and its first excited state. On the other hand,
a recent microscopic theory put forward by Bardeen and
his group' predicts that the electron-phonon interaction,
when strong enough to overcome the Coulomb repul-
sion, will provide a finite excitation energy of the right
amount. Therefore we can say that there is both an
experimental and a theoretical basis for such an energy
difference.

~(T)= (f)4/clrt)-=. tn

Furthermore we assume that only the excited electrons
(and their corresponding holes) contribute to the
entropy. Experiments by Baunt and Mendelssohn'
which show that the Thomson coefficient of super-
conductors vanishes seem to justify this assumption.

Under these assumptions we can write the free energy
of a superconductor as a sum of two terms: (1) the
temperature-dependent free energy of an electron ideal
gas (the rt excited electrons per unit volume), and (2)
an additional term, p(rt), corresponding to the con-
densation energy of the superconducting electrons. The
state of thermodynamic equilibrium will be found by
minimizing the free energy with respect to n. From the
minimum condition one can eliminate the number of
excited electrons per unit volume from the expression
for the free energy, which then becomes a function of
the temperature alone, enabling the calculation of the
specific heat by differentiation. Unfortunately the
resulting equations cannot be solved analytically (as in

2. ONE-ELECTRON APPROXIMATION

At the time the work to be described here was done,
there was no satisfactory microscopic theory of super-

*This work was made possible by the joint support of the
International Cooperation Administration, Washington D. C.,
and a traveling grant from CAPES (Brazil).

t On leave from Instituto Tecnologico de Aeronautics, Sao Jose
dos Campos, Sao Paulo, Brazil. Now at the Physics Depart-
ment, Washington University, St. Louis, Missouri.

1 J. Bardeen, ENcyctopedka of Physics (Springer-Verlag, Berlin,
1956), Vol. 15, p. 274.' Corak, Goodman, Satterthwaite, and Wexler, Phys. Rev. 102,
656 (1956).

~ W. S. Corak and C. B. Satterthwaite, Phys. Rev. 102, 662
(1956).

e J. L. Snider and J. ¹col,Phys. Rev. 105, 1242 (1957).' B. B. Goodman, Proc. Phys. Soc. (London) A66, 21/ (1953).' Blevins, Gordy, and Fairbank, Phys. Rev. 100, 1215 (1955);
Biondi, Garfunkel, and McCoubrey, Phys. Rev. 101, 1427 (1956);
R. E. Glover and M. Tinkham, Phys. Rev. 104, 844 (1956); and
M. Tinkham, Phys. Rev. 104, 845 (1956).' Bardeen, Cooper, and Schrieffer, Phys. Rev. 106, 162 (195/).
The author wishes to thank Dr. Bardeen for communicating thei
results prior to publication.

r r J. G. Daunt and K. Mendelssohn, Nature 141, 116 (1938);
also Proc. Roy. Soc. (London) A185, 225 (1946).

354



THEORY OF SPECIFIC HEAT OF SUPERCONDUCTORS

the case of the Gorter and Casimir model), and we shall
have to use numerical methods.

In Sec. 3 we work out the expressions for the free
energy and speci6c heat for a model of this sort, and in
Sec. 4 we apply the method to a specific case in which it
is assumed that p(n) = —constantX (N. N—)~ .It is
assumed further that the energy of the excited electrons
and holes can be estimated from a temperature-depend-
ent density of states, diGering from that of the normal
metal.

3. FREE ENERGY AND SPECIFIC HEAT

VVe base our discussion on a one-electron approxima-
tion in which, as a consequence of the interactions
leading to superconductivity, the energy of a particular
one-electron level depends strongly on the occupation
numbers of all the other one-electron levels. Above a
characteristic temperature this eGect is small because
there are a relatively large number of electrons outside
the Fermi surface. However, as the temperature
decreases, more and more electrons occupy states inside
the Fermi surface, and as a result the energy shifts
become appreciable. We assume that the nature of the
interactions is such that the levels close to the Fermi
surface are pushed apart and that the eAect is small for
levels far from the Fermi surface. This situation is
represented schematically in Fig. 1. Above the charac-
teristic temperature, 6 would be zero, and both a and k

would vanish too. As the temperature decreases and the
interactions become important, the gap width 6 would
increase, with a tendency to saturate at very low
temperatures. In the same way, just below the charac-
teristic temperature, only the states near the edge of the
gap would be affected; as the temperature decreases,
the interaction extends its eBect to levels farther away.
The whole picture can be described by saying that both
parameters u and b as well as 6 decrease with tempera-
ture and become negligible above the characteristic
temperature.

The existence of an energy gap is equivalent to
assuming a nonvanishing condensation energy, P, for
the superconducting electrons. We assume that the
free energy of the superconducting state may be
written as

FIG.1, Density of one-electron levels in a superconductor according
to an individual-particle excitation approximation.

states in the normal metal, E„(e).The condensation
energy cannot be simply proportional to e, because this
would give a constant gap, and as a result we would not
have a second-order transition at T, without making
rather arti6cial assumptions about N, ( )e

Imposing the minimal conditions on the free
energy, i.e.,

(2)

we can solve for N=N(T), which when substituted
into F,(N, T) leads to

Carrying out the operation indicated in (2), we
obtain

kT ink(T) —=p= —,'(By/Be)r. - (3)

In thermodynamic equilibrium the total number of
excited. electrons per unit volume is given by

~(T) = 1V,(e) de.
1+Le '~"r

If N, (e) has the form shown in Fig. 1, we have

n(T) = (1+a)X (0)kT ln(1+X)
—aE„(0)kT 1nL1+X&'~"g (4)

where X is given by Eq. (3).
At low temperatures, if BP/Bn»kT, we can approxi-

mate (4) by
( B4

N(T) =(1+~@.(O)kT exp~ —— 2kT I

Be i

F,(N, T) =2kT N ink — de, (e) ln(1+) e "r)

+4(N), (1)

where +=number of thermally excited electrons per
unit volume, X=e&'~" (y being the chemical potential),
T= absolute temperature, k =Boltzmann constant,
e= one-electron energy, X,(e) =volume density of
states, and p(e) =condensation energy.

In (1) the factor of 2 takes into account the free

energy of the holes; also N, (e) may depend on a parame-
ter and is not necessarily equal to the volume density of

which corresponds to the classical statistics approxi-
mation.

It will be possible to express the free energy as a
function of the temperature alone, once we have solved
Eq. (4) for N as a function of T. This'cannot be done
analytically because the right hand side of that equation
also involves e, through X. Nevertheless, the derivatives
of P, (T) with respect to T can be formally expressed in
terms of the derivatives of F,(n, T) and e with respect
to T and e. We are particularly interested in the second
derivative, since

C.(T)=—T(ds, /d T').
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Thus
(B'F, B'F, drs )

C.(T)= —Ti +
E BT' BmBT dT)

3.0

(BE BE dN& Bet) de
C.(T)=2( + I+-

EBT Bls dT) Be (IT
: where

~) ~
—e/kT

E= ~ N, (e) de
1+)te ~(AT—

since (BFe/B'I) equilibrium =0.
Combining Eqs. (1), (3), and (5) leads to

(6)

LO

O.l

dEeleetrous dEholes

+ +
dT

C, (T)=
dT

is the total energy of the excited electrons. %e may
write

which has an obvious interpretation.
Our program is to calculate C, (T). In order to do this

we will calculate E. If N, (e) has the form shown in
Fig. 1, we have l.o 2.0 5.0 4.0

E=N (0)k'T'f()t), (7)

where ~X~ ~&1, and fP,) is given by

P, (2 5+1)(~+1)
Detailed calculations are described in the following
section.

FIG. 2. Calculated values for the reduced speci6c heat, in the
case of an energy gap h(0'K) =3.0kT, at O'K. C,=C,(T) /C„(T). —

pm+1 )t(ss+r)(~+i) t= T/T, . Curve —(1) corresponds to the choice a=0 and b=O; curve

f(),) (1++)p ( 1)se + p ( 1)ee (2) corresponds to a=0.50 and b=1.0. The experimental points

+1)s ( +1)s are for Sn, and were taken from reference 2.

a and b having the meaning given in Fig. i.
All the variables will be expressed in terms of their

values at T., i.e., y= n/r4, t= 1/x= T/T—„c—,(f)—=—C, (T)/
C„(T,), and

8
C(N) =—

8

Combining (6) and (7) then leads to

6 ' d)tdf
c,(f) =—1 2f()t)+t——

dt A

3 Gf+—bg(y) —»2—=cr(f)+cs(f) (g)
dt

4. RESULTS FOR THE SPECIFIC HEAT

In order to make use of the preceding results we must
assume a functional relation, g(e), between the con-
densation energy p(e) and the number of excited
electrons e per unit volume. Since there is no indication
either from theory or experiment for the form of g(n),
we assume the simplest interpolation formula that
satisfies the boundary conditions on the gap; vis. ,
g(e)=(1—I/e, ). This choice corresponds to a con-
densation energy

(b(e) = —(b/2')kT, (e,—I)'.

Based on this assumption, the equations become, in
terms of the reduced variables,

y(f) = (1+u) ln 1+exp~ ——(1—y) ~

ln2 E 21 )dy/Ch

0.397 1.4&
0.14 0.74
0.057 0.34
0.011 0.092
0.0025 0.026

g Ce(t)

1.10 0.438 1.40
1.50 0.126 0.6&
2.00 0.040 0.30
3.00 0.0055 0.073
4.00 0.0009 0.017

c1(t) c~ (t)

0.&52 0.524
0.270 0.405
0.091 0.205
0.015 0.05&
0.001 0.016

t'—~ » 1+exp~ —(2&+1)—(1—y) I, (9)
2f

(10)y —g
—(&5&)0—u)

)

TABLE I. Calculated speci6c heat for Model (1): a=0, b= 0
6=3.0. Here 1=1/ee= T/T„y=ee/es„and c,(t—)—=—C,(T)/C„(T,). —
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and
y (1—y) ) b 1+a a(2b+1)X"-+

dy

dt M 1+a a(2b+1)X"

2 ln2 1+)I, 1+X' +'

0.5
o(t)

0
LO 2.0 4,0

FIG. 3. Empirical values of the parameter e,
as a function of temperature.

We are interested in solutions of (9), y~& 1; we see
that when t=1, y=1 is a solution, while at low tem-
peratures y(t) = (1+a) exp( —b/2t)/ln2. In other words,
at the transition temperature e=n„sothat the con-
densation energy vanishes while at low temperatures the
number of excited electrons per unit volume decreases
exponentially.

We have calculated the specific heat under two diGer-
ent assumptions, cia. , (1) a=0, b=0, 6=3.00kT, (1—y),
and (2) a=0.5, b=1, 3,=3.00kT, (1—y); the total
number of states is conserved in the second model, but
not in the first one. Tables I and II show the results of
our calculations, and in Fig. 2 the specific heat is com-
pared with the latest measurements on tin. 2

Model (1):a=O, b=O, and /), =3 00 T.he .—calculated
specific heat is much too large for 1/t(1.10 (not shown
in Fig. 3), and this is essentially due to (a) nonconserva-
tion of the total number of states, and (b) the assump-
tion g(y) = (1—y) which may not be valid, for y close to
unity. Nevertheless for 1/1) 1.10 our results, if multi-
plied by 1.50, are in very good agreement with the
experimental values for Sn and V. However we
cannot justify this factor of 1.50 without assuming
X,(e)&X„(e).Hence we assumed b= eo, and a suitable
a(t) was found empirically (Fig. 3) in such a way that
the over-all effect was to multiply our curve (1) by 1.50.
This model is not too realistic since the low-lying levels
are hardly affected even at low temperatures. Further-
more the total number of states is not conserved.

Model (2): a=0.5, b=1.0, and 3,=3.00.—For this
model, which conserves the total number of states, the
calculations are in very good agreement with experi-
ments, except again for 1/t(1.10, where the calculated
values are too small. However, the calculated discon-
tinuity in the specific heat at the transition temperature,
c,(1)—c„(1),is 0.65 whereas the experimental values
are close to 1.7. In fact, any values a=constant and
b= ~a, predicts the same jump, 0.65, in the specific heat,

TABLE II. Calculated specific heat for Model (2): a=0.SO,
b=1.0, 6=3.0. In this table t=1/z= T/—T., y= s—/a„and c,(t)—
~*(T')/~ (I'.).

X dy/dt A(t) C2(t) Cs(t)

1.00 1.00 1.00
1.10 0.895 0.84i
1.50 0.230 0.177
2.00 0.065 0.061
3.00 0.0082 O.oi 1
4.00 0.0009 0.0025

1.00 1.65
1.41 1.86
1.15 0.55
0.525 0.15
0.137 0.022
0.036 0.0014

0.00 1.65
0.94 1.95
0.56 1.11
0.31 0.46
0.086 0.11
0.023 0.024

and the assumption g(y) = (1—y) must be the source of
this error.

S. CONCLUSIONS

From our calculations we can conclude that an
energy-gap model of a superconductor can provide a
specific heat in agreement with experiment. The gap at
O'K should be of the order of 3kT„decreasing with
temperature, and vanishing at T„where the transition
to the normal state occurs. Furthermore, the density of
one-electron levels near the Fermi level in the super-
conducting state should increase as compared with the
density of one-electron levels in the normal state. This
increase may be of the order of 50% at T=0.25T..
Below this temperature there need be no further in-
crease in the density of one-electron levels in the
superconductor, since most of the electrons (about
99.8%) have already condensed at T=0.25T,. Pre-
liminary measurements of the spin-lattice relaxation
time in superconductors being carried out at the Univer-
sity of Illinois' indicate an increase in the density of
one-electron. levels near the edge of the gap. We may
hope that further developments of the microscopic
theory of superconductivity will provide a quantum-
mechanical basis for such an energy-gap model. "
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