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ever, that the shock velocity and temperature can be
substantially increased by merely raising the discharge
voltage since the effect of wall cooling becomes in-
creasingly important as the plasma temperature is
raised. However, it is not improbable that longitudinal
magnetic Gelds along the expansion chamber can be
used to inhibit the heat conduction to the tube walls.
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The relaxation to a Maxwellian distribution of a system of particles interacting through inverse-square-law
forces is investigated in the approximation of two-particle interactions resulting in small-angle deRections
of particle trajectories. The time required for the relaxation of the distribution in the neighborhood of the
average energy is found to agree with the self-collision time defined by Spitzer. The time required for the dis-
tribution to become Maxwellian throughout the range from zero energy to several times the average energy
is found to be nearly ten times the self-collision time. Filling of the high-energy portion of the Maxwell
distribution is also discussed.

I. INTRODUCTION

HK relaxation of the electron or ion component of
an ionized gas to a Maxwellian distribution has

been of some astrophysical interest. Spitzer' has ana-
lyzed various aspects of the relaxation phenomenon such
as (1) removal of angular anisotropy, (2) energy ex-
change, and (3) loss of energy of a particle by "dy-
namical friction. " Sohm and Aller' have presented a
detailed analysis on the relative importance of electron-
electron collisions in establishing the velocity distribu-
tion of electrons in gaseous nebulae and stellar atmos-
pheres. Although the general conclusions reached by
these authors is almost certainly correct, the discussions
were based on the rates of change of the distribution
function and not on an explicit solution of the time-
dependent problem.

In this paper we present an equation for the effect
of particle interactions on the one-particle distribution
function and the results of a numerical integration of
the equation on an electronic digital computer for a
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distribution initially peaked about a particular energy.
The filling of the high-energy portion of the Maxwell
distribution is treated approximately.

IL TIME-DEPENDENT EQUATION

In obtaining an equation which describes the effect
of interactions between particles of charge e and mass m
upon the velocity distribution, we assume that (1) all
interactions are a superposition of two-body interactions
resulting in (2) small-angle deflections of particle tra-
jectories. Although the validity of these two approxima-
tions is not rigorously established, the work of Spitzer,
Cohen, and Routly' and of Gasiorowicz, Neuman, and
Riddell' indicate their essential correctness for many
phenomena. %e shall use the Rutherford scattering law
to determine the probability of deQections of a given
magnitude. Restricting ourselves to isotropic angular
distributions, we can obtain an equation for the time
rate of change of the distribution function, either from
an expansion of the integrand of the Boltzmann collision
integral in powers of the angle of deQection, ' or from
the Fokker-Planck equation, '

' Cohen, Spitzer, and Routly, Phys. Rev. 80, 230 (1950).
4 Gasiorowicz, ¹uman, and Riddell, Phys. Rev. IOI, 922

(1956).
~ The development by this procedure was considered too lengthy

to be given here since the equation given in refer'ence 6 yields the
same result much more easily.

e Rosenbluth, MacDonald, and Judd, Phys. Rev. (to be
published).
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The usefulness of this formulation of the time-
dependent problem is that all solutions of Eq. (1) which
can be obtained by similarity transformations from a
given solution are easily constructed by using the solu-
tion of Eq. (5). The solutions of the time-dependent
Eq. (1) are
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The variable r is related to the time by Eq. (7). The
initial distribution is of course
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where A is a normalization constant, ep is a "character-
istic" velocity, and r is a dimensionless time parameter:

r= (2?re4/n33) (A/woo) (ink) t.

The equation satisfied by h(g, r) is then dimensionless:
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We can relate A and vp to the number density of par-
ticles and the average energy or kinetic temperature
(kT) of the system by

. n= I3A? I?=okT = ', r?4??oo(I4/Io), —-
I2= d$h($, r) P, I4= dgh(g, r)P—(6)

The integrals Io and I4 are constants Las one can verify
directly from Eq. (5)j, determined by the initial distri-
bution. The dimensionless time parameter in terms of
n, kT, I2, and I4 is

2?M4n 1nA (I4) &1
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where n is the number density of particles (per unit
volume). The Maxwell distribution causes the right side
of Eq. (1) to vanish, showing that this distribution is
indeed a solution of the static problem.

Equation (1) can be put into dimensionless form by
observing that the distribution function can always be
written

d?th"?P+
2$?' ~ o

dqh"y4.

Subscripts refer to space points, and superscripts to
time intervals. The condition for stability of the nu-
merical integration of Eqs. (10) and (11) is

ar/(ag)3(( ;S"). -(12)

This condition was used to determine the interval in r
for each successive time step.

An initial distribution was chosen which represents
the shape assumed by a delta function after a time
suKciently short to be neglected (r 10), and yet one
which has sufBcient breadth to be treated simply in a
machine calculation. The initial distribution was chosen
to be a Gaussian centered at )=0.3:

h($,0) =0.01 exp( —10L($—0.3)/0.3jo}. (13)

The distribution function h(g, r) was computed for 24
values of $ at intervals of 4)=0.03 from r=0 to
r=484.17. This initial distribution is a two-parameter

The quantities Io and I4 are calculated from h($,0).

III. NUMERICAL INTEGRATION

The numerical integration was carried out by using
the difference equation for Eq. (5):
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TAnLE I. A comparison of the latest distribution h(g, 484.17)
with the Maxwellian distribution.

h(g, 484.17)

The time is then given by

t=0.00212[m& (3k') «/vrne4 inA jr. (16)
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function since the center and width of such a Gaussian
are variable. We did not consider variations of the
initial distribution of Eq. (13), with the consequence
that all initial velocity distributions obtained from
h(g, r) by Eq. (9) have a half-width in energy at half-
maximum of approximately five-eighths the average
energy.

vp= 2.976(H)i= 2.976(3kT/tip) i. (15)

IV. RELAXATION TO MAXWELLIAN DISTRIBUTION

A plot of h(g, r) for a sequence of values of the dimen-
sionless time parameter is given in Fig. 1. For compari-
son the Maxwellian distribution hsr (g) corresponding to
the same average energy and number density is also
plotted. The function h~($) is the final steady state
which should be approached for suKciently long times.
In Table I the numerical values of hiu ($) are given for
each of the 24 space points along with the values of
h(g, r) for r=484.17. Although the latter distribution
is rather close to Maxwellian, the low-energy portion
of the spectrum is overpopulated and the Maxwell
"tail" at high energies is not yet full. An upward diffu-
sion in energy must still occur before the Maxwell dis-
tribution is achieved.

These results are more easily interpreted after ~ is
related to the time. First we shall give the distributions
derived from h($,0) and h~(():

f(v,0) =62.93 (I/vps)

&& exp( —10[v/vp —0.3)/0.3j'},
fsr (v) =110.51 (rs/vp') exp( —13.285 (v/vp)') . (14)

From fsr(v) we find that vp is related to the rms ve-
locity by

We can also express t in terms of r and the relaxation
time t, called by Spitzer' "the self-collision time":

t, =pm&(3kT) &/8&(0. 714rne4 lnA. (17)

V. DIFFUSION OF PARTICLES INTO
THE MAXWELL TAIL

For values of $ above the main portion of the distribu-
tion, an approximate equation can be obtained from
Eq. (5) by neglecting all integrals from $ to infinity and
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FxG. 1. Relaxation to Maxwellian distribution in a gas
with inverse-square-Iaw forces.

We find t= (0.0121m)t, . The relaxation time t, is really
the average time required for a particle having an
energy equal to the average energy to suffer a 90'
defiection of trajectory and a 100% change in energy.
We dedne a corresponding relaxation time from our
calculation as the time required for the distribution
function to achieve the Maxwell value in the neighbor-
hood of the maximum at )=0.3. This occurs at x =60
or t=0.73t,. The relaxation time defined in this way
agrees quite well with the "self-collision time. "We see
from the distribution obtained at ~=484.17 or t =5.9t„
however, that the concept of a relaxation time can be
misleading. While the distribution in the neighborhood
of the average energy is Maxwellian within a few per-
cent, at an energy six times the average energy only
75% of the Maxwell amplitude has been achieved.
Certainly more time is required for the higher energy
parts of the Maxwell distribution to be filled. This
aspect of the problem was not treated in detail by the
machine calculations although Eq. (5) is approximated
by a much simpler equation for large values of $.
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into Eq. (18):
f(k, ) =g(k, ) exp( —8), (19)

Bg/Br= (2I4/3P)PB'g/BP (2 $+g )Bg/Bpj (20)

The function g($,r) becomes a constant as h(g, r) ap-
proaches a Maxwell distribution. For a detailed analysis
of the time-dependent behavior of h(g, r) at high
energies, one would use for an initial g ($,r) the function
reached after the lower energy portion of the distribu-
tion has reached nearly a Gaussian dependence. The
approach of g($,r) to the final constant value at any
energy then can be found from numerical integration
of Eq. (20).

%e should expect g to have the behavior of a diffusion
wave; i.e., g is constant for small values of g and is zero
for large values of P, with a transition region connecting
the two asymptotic values of g. To examine the change
in g($,r) with time, we can look at the motion of the
points on the curve g(P, r).

(BEIB~).= (2I /3P)
X {2 ~+P'+ (B'P/Bg'), /(B~/Bg), 'j (»).

Now we let q= P and find

(Bn/Br) g

=2I4{2n g**+3—g~(B'g/Bg'), /(Bg/B g),') . (22)

The first two terms in Eq. (22) clearly represent an
upward diffusion of particles to higher g. For large g
we can neglect the second term. The last term in Eq.
(22) will tend to increase the width W of the transition
region in g. If g is the value of q which corresponds to the

extending the finite integrals to infinity.

Bh/Br = (2I4/3P) (B/B&) (g'Bh/BP+2nh),

n =3I2/2I4. (18)

The only solution of the static equation which vanishes
at infinity is hiLf($)=A exp( —n$). [This is also the
static solution of Eq. (5) if A =4nI2(n/vr)~. j Introduce
the function g($,r), defined from

midpoint of the transition region where (B'g/Bg'), =0,
the last term is clearly of order g&/W and is positive on
the left and negative on the right. Ke can write

g=4I4nr, (23)

and by comparing Brl/Br at the left and right of g, we
also have

or
BW/Br-10I4(g&/W),

W (2/n'*) q&. (24)

Although Eq. (24) is only qualitative, it does indicate
that the width of the transition region in m increases
more slowly than p, the upper edge of the Maxwell
region in g($,r). Consequently g($,r) maintains its
diffusion character. Equation (23) can be used to esti-
mate the time required to fill the Maxwell tail to
velocity ~.

t =m'v'/12gre4N ink. (25)

This time is independent of the average temperature of
the gas and is approximately equal to the self-collision
time for particles of velocity w given by Eq. (17).

In discussing the filling of the high-energy portion of
the Maxwell distribution, we have not considered the
eGect of collisions which result in large-angle deQections
of particle trajectories. The quantity ink defined in
Eq. (1) gives approximately

~frequency of small energy exchanges)
!in'.

(frequency of large energy exchanges'

For an electron gas lnh. 10—30', and therefore accord-
ing to Eq. (25) the large-angle collisions resulting in
large-energy exchanges are also unimportant for 61ling
the Maxwell distribution at high energies.
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