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Therefore it is sufhcient to prove that
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But these inequalities can be satisded. '
Of course, the above proof can be repeated formally

taking in lieu of f any observable, in particular any
macro-observable.
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Following the theory of Holstein, the density, E&, and the imprisonment lifetime of resonance radiation,
T, has been investigated for a gaseous discharge between parallel plates. A general solution is given. Two
approximate solutions occur according as the number of electronic de-excitations of the resonance state
during the imprisonment time of a photon is much less than or much greater than unity. When this number
is much less than unity, Ã, can be given by a simple relation which compares well with computations based
on the exact solution in the case of Doppler broadening. T is then essentially equal to the decay time as
calculated by Holstein for the decay of resonance radiation following optical excitation. For large numbers
of de-excitations 7 falls somewhat below the decay value and, as expected, 37„is given by its thermodynamic
equilibrium value at the temperature of the electrons.

1. INTRODUCTION

HE imprisonment of resonance radiation in a gas
was originally treated in an approximate manner

by considering the imprisonment as a diffusion prob-
lem. ' ' Recently Holstein4 ~ and, independently, Bieber-
man' have presented a rigorous method for handling
the imprisonment by the use of an integral equation.
These two authors examined the imprisonment in the
case of optical excitation. Bieberman studied the steady
state conditions while Holstein studied the decay follow-

ing the optical excitation. Experimental verification

' K. T. Compton, Phys. Rev. 20, 288 (1922).
s E. A. Milne, J; London Math. Soc. I, 1 (1926).
3 C. Kenty, Phys. Rev. 42, 823 (1932).' T. Holstein, Phys. Rev. 72, 1212 (1947).' T. Holstein, Phys. Rev. SB, 1159 (1951).
eL. M. Bieberman, J. Exptl. Theoret. Phys. (U.S.S.R.) 17,

416 (1946).

of the integral method has been found under both con-
ditions. 78 The present paper applies this integral
method to the case of the imprisonment of resonance
radiation in a gas discharge where the excitation occurs
by electron impact within the discharge.

2. PARTICLE BALANCE EQUATION FOR THE
DENSITY OF RESONANCE ATOMS

Two parameters are of special importance in discuss-

ing the resonance imprisonment in a discharge: The
density of resonance atoms, E„, and the imprisonment
lifetime, T, of a resonance photon within the discharge.

The equation for the density of resonance atoms in

VL. M. Bieberman and I. M. Gourevitch, J, Exptl. Theoret.
Phys. (U.S.S.R.) 19, 507 (1949).

e Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257 (1949).
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the discharge is similar to one discussed by Holstein4:

N, (r)
+ t N, (r)N„(r)

N„(r')= t 'N, (r)N, (r)+ G(r, r') dr'.
"Voi

(2.1)

This equation is a particle balartce equation in which the
creation of resonance states per second per unit volume
at some point, r, is equated to the loss at that point.
The loss is twofold. First, there is the de-excitation of
resonance atoms by spontaneous radiation with a
radiating lifetime, r. Second, there is the de-excitation
by collisions of electrons of density N, with resonance
atoms with a rate coefEcient v. These two terms are
given on the left-hand side of Eq. (2.1). The first term
on the right-hand side gives the excitation by collisions
of electrons with gas at&ms of density Ng with a rate
coeKcient v'. The integral term on the right represents
the number of resonance atoms created because of the
imprisonment effect.

The physical interpretation of the integral term is as
follows. At some point r' within the discharge N„(r')/r
photons are radiated. These photons have a probability
G(r, r') of being captured at r. The product of the
number of photons radiated and their probability of
being captured, when integrated over the discharge
volume, yields the number of photons emitted any
place within the tube and captured at r to form reso-
nance atoms.

The main assumption in the particle balance equa-
tion is the neglect of the diffusion of resonance atoms
directly to the tube walls. When metastable atoms are
present the equation again holds if the diffusion of
metastable atoms is also negligible. Here, however, v

and v' are egectitie excitation and de-excitation rates
and are algebraic functions of the rates of transfer
between the metastable, resonance, and ground states.
The derivation of the particle balance equation when
metastable atoms are present is given in the Appendix.
This equation applies quite well to many types of dis-
charges and, in particular, to the mercury-rare gas
discharges as found in fluorescent lamps. ' "

The density of electrons used in Eq. (2.1) is taken as
the solution of the Schottky diffusion equation for the
corresponding geometry, i.e., a cosine function for a
parallel plane geometry and a zero order Bessel function
for a cylindrical geometry. The geometry also enters
into the volume integration.

The electron energy enters into the collision rates
v', v. Kith a Maxwellian energy distribution, detailed
balancing must occur and then

atoms at the temperature of the electrons. The density
of gas atoms, N„will be taken as constant across the
tube. However, we point out that, at high currents, Ng
will vary because of gas heating.

The probability of capture, G, depends on the type
of broadening occurring in the discharge. Holstein~ gives
the form for G as follows:

G(r, r') =srta„/4np +', (2.3)

X'Ng g2 1
kp=

8Ã~ gi spre

)'Ng gg rJ 1
~P )

2g give
tIp= (2kB)'*,

(2.5)

(2.6)

(2 &)

where ) is the wavelength of the resonance radiation,
g2 and gi are the statistical weights of the resonance
and ground states, respectively, e is the multiplicity
of the hyperhne structure under the assumption of equal
intensity and no overlapping, r& is the reciprocal of the
width of the pressure broadened resonance line, k is
Boltzmann's constant, and 0 is the gas temperature.

Equation (2.3) applies when the center of the reso-
nance line is thoroughly absorbed. Equations (2.5) and
(2.6) hold if there is no overlapping of the hyperfine
structure. Thorough discussions covering both the eGect
of the type of broadening upon the probability of cap-
ture and the range of validity of the theory, as will be
applied here, are given in references 4 and 5.

The particle balance Eq. (2.1) is a nonhomogeneous
integral equation. The exact solution" can be given by
an eigenfunction expansion in terms of the normalized
eigenfunctions, N„„, and the eigenvalues, X„of the
corresponding homogeneous equat'ion. This solution is

N„(r) =t'N, r

&& N, (r)+P N, „(r) N, (r')N„„(r')dr', (2.8)

where the homogeneous equation is

where p=
~

r' —r~. For various types of broadening rl
falls in the range 0&m&1. In the particular cases of
Doppler and pressure broadening, m is 1 and ~~, re-
spectively, and

1/ai=kp(sr inkps)l, 1/airs= (slkix), (2.4)

where x represents the radius, E, for a cylindrical en-
closure and one-half the width, I., of a parallel plate
enclosure. In addition,

vN) g= v Ng. (2.2) X~,„(r)= G(r, r')N„„(r')dr' —tN, (r)N„„(r)r. (2.9)
Here N„, is the thermal equilibrium density of resonance

II C. Kenty, J.Appl. Phys. 21, 1309 (1950).
re J.F.Waymouth and F.Bitter, J.Appl. Phys. 27, 122 (1956).

"H.Margenau and G. M. Murphy„7'he Muthematt'cs of Physics
and Chemistry (D. Van Nostrand Company, Inc., New York,
1943), Sec. 14.4. Note difference in nomenclature.
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lI„'cV„„'(r)= I G(r, r')N„„'(r')dr', (2.10)

where
(2.11)

and T„ is the decay time for the eth decay mode.
Except for the term vN, N,„r, Eqs. (2.9) and (2.10) are
the same. This gives a hint as to the method of com-
putation to be used. The decay equation was solved

by the variational method used by Holstein to furnish
the two lowest mode solutions. The homogeneous equa-
tion was then solved by perturbation technique using
the term vE,E„r as the perturbation. Finally, the
eigenfunction expansion was used to obtain the solution
of the balance equation. Because of the rapid conver-
gence of (2.8) two modes were sufficient for the com-
putation range sought.

The actual computation was carried out for a dis-
charge between parallel plates with Doppler broadening
present. The details are given in Sec. 5.

3. IMPRISONMENT TIME OF THE
RESONANCE RADIATION

The density of resonance atoms discussed in the
previous section is the erst parameter of special im-

portance. The average length of time a photon is
imprisoned within the discharge furnishes the second
important parameter. Ke call this time the imprison-
ment lifetime, T, and de6ne it by requiring the total
number of photons escaping the discharge per unit
volume to equal the average density of resonance atoms
divided by the imprisonment time. Thus

(Photons escaping)/volume= —N,/T. (3.1)

The bar here indicates an average over the discharge
volume.

Since the number of photons escaping per unit
volume equals the diGerence between averages of those
radiated within the discharge and those imprisoned,
we have

The eigenfunction expansion (2.8) converges quite
rapidly because the electron density and the lowest
mode eigenfunction have a similar shape. Both are
large near the center and fall monotonically to a small
value near the walls. The integral of the product of the
electron density with any higher eigenfunction will then
be small because of the orthogonality of the eigen-
functions.

The equation for the decay following optical excita-
tion which was treated by Holstein has the following
form:

There are two points of interest concerning this
definition for the imprisonment lifetime. First, if we
average the particle balance Eq. (2.1), we note that
the two radiation terms appear in the same manner as
the denominator of (3.2). Thus, this definition of the
imprisonment lifetime allows us to replace the radiating
terms of an averaged balance equation by a simple
term in T and, in essence, changes the equation from
an integral equation into an algebraic one. The second
point of interest is this. The value of T, for a given
type of broadening, depends only on the form of N„.
This is obvious from (3.2). In particular, if N„has the
same form as the zero decay mode, (3.2) and (2.10)
then yield T= Tp where Tp is the zero mode decay time
computed by Holstein. If, on the other hand, g„ is a
constant, the denominator of (3.2) occurs in a form
already treated by Holstein for several types of broaden-
ing and a cylindrical as well as parallel plane geometry.
The imprisonment time can then be computed im-
mediately and is found to fall below Tp to an extent
which depends on the type of broadening. These
points arise again in the two approximate solutions to
the imprisonment problem given in the next section.

Large Interaction

For ¹vTo large compared to unity, many de-
excitations occur while the photon is imprisoned and
the resonance radiation approaches thermal equilibrium
with the electrons because of the strong interaction. To
see this result mathematically, we need simply neglect
the radiation terms in the balance Eq. (2.1). Then the
density of resonance atoms for large interaction, E„~,
is given by

or.
N, (v'Nv vtV, g) =0, —

N, i——v'Ng/v.

(4.1)

(4.2)

For a Maxwellian distribution of energies, using (2.2),

(43)

4. APPROXIMATE SOLUTIONS

The approximate solutions mentioned can best be
discussed in terms of the dimensionless parameter
¹vTO which represents the number of electron de-
excitations of a resonance atom during the time a
photon is imprisoned within the tube. N, vTO is a
measure of the interaction of the electron energy with
the resonance radiation and will be termed the inter-
action parameter.

OK

using (2.1).

T=N„/(v'N gN, —vN. N „),

(3.2)

(3.3)

The imprisonment time for large interaction, T~, is
then obtained from (3.2), taking N„ to be constant
across the discharge. Thus

(44)
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The denominator is proportional to the gp used by
Holstein and has been tabulated by him. " Table I
compiles the results for various values of pN [see Eq.
(2.3)] in terms of the ratio Ti/To. To here indicates the
decay time for the particular type of broadening and
geometry considered. Note that the diGerence between
T~ and Tp will generally be largest for the case of
Doppler broadening. The treatment of the Doppler
case then represents the extreme case to be found in a
gas discharge.

It is quite instructive to compare the resonance
radiation output from a Doppler-broadened discharge
under the present conditions with that of a blackbody
at the temperature of the electrons. We expect them to
be equal if we properly specify the width of the reso-
nance line. This is indeed true as elementary calcula-
tions show, if we take the resonance line to have a
frequency width h~ approximately equal to the fre-
quency band between the peaks of the Doppler-
broadened line, "i.e.,

hop= 2ooo(vo/c) Dn(koL/2)]&, (4.5)

where c is the velocity of light. The origin of the de-
pendence of Ti/To on in(koL/2) is then seen to arise
because of the changing band width of the resonance
line with ln(koL/2).

N, (v'No —vN„, )=N„, const. (4.6)

Substituting (4.6) into (2.1), neglecting vN, N„and
comparing the result with (2.10), we see immediately
that const= Tp '. The lowest-mode decay time is
chosen, because the other modes have shorter decay
times and hence die out when the lowest mode occurs
in the steady state.

Averaging (4.6) over the discharge volume and com-
paring with (3.3), we find the imprisonment lifetime
at small interaction, T„ is given by

Sma11 Interaction

When the interaction parameter E,vTp is much
smaller than unity, the electrons play little part in
causing the loss of resonance atoms. The density of
resonance atoms falls appreciably below the thermal
equilibrium value and the product term, vX,S„,in the
balance equation (2.1) becomes relatively unimportant.
If Ã, is similar to 37„, as indicated in the discussion
after (2.9), we can set

TABLE I. Values of the zero-mode decay time, Tp, and the
ratio of imprisonment time for large interaction, Tg, to To. See
Eqs. (2.4) and (4.4).

Parallel planes a To/pL~ 0.93 0.87 0.544
Tv To 0.96 0.86 1.80/In(koL/2)

Cylinder o Tp/rR 0.94 0.90 0.625
T~/To 0.91 0.81

or, for a Maxwellian distribution:

Planar geometry:

N„,

1+1.21vN, To

vNoTo
(4.9)

Cylindrical geometry:

vNoTp

1+138vN Tp.
(4.10)

In computing (4.9) and (4.10), a parabolic function was
used for Z„, and the correct solution of the Schottky
diBusion equation for E,. This is suKciently accurate
for small values of the interaction parameter. Sur-
prisingly enough, (4.9), and presumably (4.10), are
accurate even for large values of interaction as seen
ln Flg. 3.

5. EXACT SOLUTION COMPUTED TO FIRST ORDER

The exact solution proceeds in the manner indicated
in Sec. 2 and will be carried out essentially to the erst
order: the decay Eq. (2.10) is first solved; this solution
is then used in treating the homogeneous Eq. (2.9);
finally N„ is obtained from (2.8) and T from (3.2)
or (3.3).

The treatment of the decay equation follows Holstein
with some modifications. The discharge is taken to
occur between parallel planes of infinite extent and of
thickness I.The density of resonance atoms is a func-
tion of the coordinate, s, perpendicular to the walls
placed at s=&L/2. Setting $=2s/L, the following
three-parameter function is used to represent the
density of resonance atoms:

N,.'=~.o+~.i(1—P)+~-s(1—84)

=~.olo(g)+~ ilr($)+~.amp($). (5.1)
T8—Tp ~ (4.7)

Using (4.7) in the averaged (4.6) and solving alge-
braically yields

N„=v'N, ToNo/f1+ (vN jV„Tp/N, )], (4.8)

The lowest-mode solution, e=o, is obtained by
varying the e's to satisfy the variational principle
derived from (2.10). Using this variational principle
together with the Ritz variational method, we have'

"See Tables I and II and the equation immediately preceding
Eq. (5.19) of reference 5.

'3 The frequency spectrum of the Do pier-broadened line as it
leaves the tube is described by I o:)~exp(—a) expL —gkoL
Xexp(—oo)g, where a= (ru —oop)c/oopop. See reference 4, Eq. (2.19).

or

P (E;;—noH;;)uo; ——0,

[K—noHi =0, (5.3)
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"I.O + l.o

FxG. i. Spatial variation of E„between parallel planes.

where

esp ——(1—Xp') L/ar, (5.4)

and at is given by (2.4).
K and H are matrices formed from the coeKcients

E;;and H;;. The integral formulas for these coefFicients
are given by Holstein' and Epp, Ep» E»», Hpp, Hp» and
H» were calculated by him. Hp2, H»2, H22 and E02 are
obtained easily. The evaluation of the first integral
appearing in E»2 and E22 is straightforward, the sub-
stitution I=i—

g being used. The second integral
appearing in E»2 and E22 presents some diKculty. The
substitutions $=sc—v and P'=sc+s, however, put the
integral into the form of a Dirichlet multiple integral.
The details are given in the Appendix. K and H are
then found to be

where

Xs =X„p—VrN. pssp,

4n v&
E„„=p„p+p—

1 j.

(5.11)

(5.12)

(5.13)

The normalization here is such that E„ps(0)=1. The
equations are accurate for ln(kpL/2))2. Below this
value, the theory loses validity. Figure I depicts the
shape of E,ps for several values of ln(kpL/2).

The improvement in the value of Xp' or np over that
determined by Holstein using a two-parameter func-
tion is negligible. The importance of using the three-
parameter function lies in the accurate determination
of the o,p's, and consequently of the eigenfunction ~„p',
and of the possibility of determining, variationally,
S„»' and)»

The second eigenvalue and eigenfunction of the
decay equation (2.10) are determined by choosing new
a's such that E„»' is orthogonal to E„p'. This deter-
mines one a in terms of the other two. Since E,»' is
indeterminate within a multiplier, one of the remaining
u's was chosen as unity and the last a was used to
minimize 0,» by trial and error. The method, though
tedious, is straightforward. Table II summarizes the
results. Note that err=3.8np for all values ln(kpL/2).

Once the decay Eq. (2.10) is solved, the nonhomo-
geneous Eq. (2.9) can be treated, in the range desired,
by erst-order perturbation theory. The eigenvalues
and eigenfunctions of (2.9) are then"

(2 ln (kpL/2)
K=i 2

8/5

2
2

20/9

8/5 )20/9, (5.5) is the normalized eigenfunction of the decay equation,
8/3 ) and

H=i
2

4/3
8/5

4/3 8/5
16/15 128/105 ~. (5.6)

128/105 32/21 )

4~ms= 4 sp4~p&ed(/&e.

Vfe note for future reference that

(5.14)

The determination of the 'Ap' and E„p is as follows.
Equation (5.3) was solved numerically for crp and then
(5.4) was used to determine Xp. With np known, (5.2) is
solved to obtain the a's, and from these and (5.1),
S„p is determined. The computation was carried out for
ln(kpL/2) = 2, 3, 5, po. From these values the following
equations are deduced:

esp=
J p pN, dg/¹. (5.15)

E„is now determined by the eigenfunction expansion
(2.8). In particular the average density of resonance

0.0329
o,p ——4.8491 1—

ln(kpL/2) —1.5836

TABLE II. Values of the eigenvalues 0!„, and eigenfunction
multipliers a„, for the first two decay modes (rs=0, 1) as a

(5.7) function of 1n(kpl/2).

gpp =0.193/Pln(kpL/2) —1 5707,

0.940
gp2

——0.464 1—
ln(kpI/O) —1.5&2 .

(5 8)

(5.9)

1n {koL/2) ao

2 1.703
3 1.806
5 1.831

oo 1.849

6.5
6.9
6.9
6.9

aoo

0.414
0.113
0.051
0.000

aoi

1.019
0,673
0.551
0.487

ao2

—0.512
0.132
0.306
0.402

alo

—2.2-0.2—0.0
0.0

ax& a12

4.5 1.3
7.4 6.2
7.4 6.4
7.4 6.4

~01=~ —~00—~02

'4 L. Schiff, QNaesara Mechanics (McGraw-Hill Book Company,
(5.10) inc. , New York, 1955), pp. 151 ff.
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atoms, is of practical importance. Averaging (2.8),
using (2.11) and (5.11),we have

X,v'El, Tp

T
To
I,O

2

aeymptotic
vo luce

I i
l

I

—ln(k L/2)

2&=5

0.4

TQ 1—r„P„

r„=¹T„v—.
(5.16)

(5.17)

0
IO

2 5 5 7
I,O

2 5 5
IO

New To

T E„ t' v¹Ã„)
Tp X,v' 4 v'Xp ) (5.18)

I.O

7
5

Nr

Nre
IO"

7
C

exec t ~ In(koL/2) 2
e 3 OOal

opproximote-

IO~

lp
I I i

3 5 7 I p-I
I ~ I ~ I

5 ? IP
N errTO

FrG. 2. Ratio of resonance atom density to its equilibrium
density es the interaction parameter. The approximate expression
is derived from Eq. (4.9).

and p„are similar to f ' and f„p being evaluated,
however, with the eigenfunctions of the nonhomogene-
ous equation. They can obviously be obtained directly
from the g „p and p„p by using (5.12).

With a Maxwellian distribution of energies. , (5.16)
can be used to give the ratio of the average density of
resonance states to the thermal equilibrium value:
¹/X„.The resultant curve is given in Fig. 2. For a
non-Maxwellian distribution, the ordinate is interpreted
as vX,/v'N„ i.e., the ratio of the number of de-excita-

tions of resonance atoms to the number of excitations

per second per unit volume. The agreement between
the approximate expression (4.9) and the exact com-

putations is within 10% over the range shown. Indeed,
the exact value of the ratio must have an asymptotic
value, for large interaction, of unity while the approxi-
mate expression has an asymptote 20% lower. The
two curves must consequently cross again at some value

of 1V,~T&, beyond which the exact calculations are
given. Thus, the exact and approximate expressions

agree well even in the range in which agreement is not
at 6rst expected.

The imprisonment time is given by Eq. (3.3) in the
form:

FrG. 3. Ratio of imprisonment time to decay time es
the interaction parameter.

where

vX,X,
=vX6 TpX

p Xy

(5.19)
and Ã„/v'E, is given by (5.16).

Figure 3 gives the results of the computation of
T/Tp for a discharge between parallel plates with
Doppler broadening as a function of the interaction
parameter, vN, Tp, for several values of in(kpl/2). The
results are independent of the type of energy distribu-
tion. For small interaction, the imprisonment lifetime
approximately equals the decay time. The diGerence is
due to the somewhat diGerent forms of E, and E„.The
asymptotic values of T for large interaction are also
indicated.

The effect of the diGusion of resonance atoms to the
tube walls under the equations given is easily seen.
DiGusion causes the resonance density to resemble the
lowest order decay mode for reasons already discussed.
Thus, the diGusion will tend to improve the convergence
of the series. The imprisonment time for the range of
computation used can thus change but'slightly. The
density of resonance states will fall but in a manner
which should be well represented by (4.9) or (4.10)
with a term added in the denominator to represent the
diGusion loss of resonance atoms. This term would be
approximated to TpD„/4', where D„ is the diffusion
coefficient for resonance atoms and A.' is the diffusion
length for the geometry in question.

6. CONCLUSION

An exact computation has been carried out to 6rst
order for the density of resonance atoms and the im-
prisonment lifetime of a photon within the discharge.
The particular case of a discharge between parallel
plates with Doppler broadening was investigated, and
good agreement was found between the exact computa-
tion and the approximate expressions given. Since
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No= v"'N, +v"Ng,

N2= v"'N, +v "N
(I.3)

(I.4)

Doppler broadening represents an extreme type of
broadening (see Sec. 4), the approximate expressions
should yield valid results when applied to other ge-
ometries and types of broadening. The inclusion of the
diffusion of resonance atoms shouM oGer no special
problem, and the results to be expected in this case
have been indicated.

APPENDIX I
The mercury atom is taken as the model for comput-

ing the effect of metastable atoms on the particle balance
equation for the resonance atoms. In mercury the two
metastable states (6 2I'0, 6 2P2) bracket the resonance
states (6 2I'r). No other excited states are close enough

to require consideration in determining transitions
among the states.

Let v„denote the transition rate by electron colli-

sion from the nth to the mth level. Using the subscripts

0, 2, r, g to denote the 'I'o, 'I'2, resonance, and ground

states, respectively, we can equate transitions to and
from each metastable level as follows:

No(Por+V02+Pog) = PgoNg+V20N2+VroNr& (I 1)

N2(vp, +vpo+ vpg) = vgpNg+ vo2N 0+v„oN, . (I.2)

Di8usion of metastable atoms directly to the walls has
been neglected.

Solving (I.1) and (I.2) algebraically, we obtain

Upon using (I.3) and (I.4), (I.6) then has the form (2.1)
if we set

V = Vgr+VorP +V2rP

V= Vro+Vr2+Vrg (Vorv +V2 V )

(I.7)

(I.8)

The statement of detailed balancing (2.2) is still valid.
This can be veriied in a straightforward, though
lengthy, manner by using detailed balancing for the
individual transitions and the definition of the v's with
superscripts given, in (I.5).

$= (u v), —$'= (u+v), 4dudv=df'dg

p&&+&& 1 p&&+a 1 u2V2(u2+. V2)

Ig2=16, ' dud v. (II.2)
u—v=1 u—v=1

The integration boundaries enclose a diamond-shaped
area. Since the integrand is even in I and v, the integral
is four times the integration in the upper right quadrant
of the diamond. Therefore

APPENDIX II

Let I;; denote the second integral appearing in the
definition of E;; as given. by Eq. (5.11a) of reference 5.
Then, with m=1,

where
V 6= Pro(P2r+ V20+ P2g)+ V20vr2&

P 6= Pgo(V2 +P20+ P2g)+ V20vg2

P 6= Vrp(vor+ P02+ Vog)+ P02Vro&

Vg 5= PO2(Vor+V02+Ppg)+V02Vgp&

(I.5)

1 1—u F2~2 N2 ~2

lg2=64, dN dv.
~o o

(II.3)

The integral is now in the form of a Dirichlet multiple
integraP':

5= (Vor+ V02+ Vog) (V2r+ P20+ V2g) V20V02. (II.4)
The particle balance for resonance atoms, including

metastable transitions, is
We then obtain I&2= 112/45. In a completely analogous
manner we find I22——96/35.

"P Franklin. , 3Iethods of Advanced Calculus (McGraw-Hill
Book Company, Inc. , New York, 1944), Sec. 99.

N ,(N, (v„o+v,p+v„g)+r 'j
= (VgrNg+VorNP+V2&N2)N, +r ' GN, 'dr' (I.6).


