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von Neumann has proved a quantum-mechanical ergodic theorem which deals with a closed macroscopic
system and macroscopic observables. Certain unsatisfactory features of this theorem are probably due to the
overly-strong idealization of a completely closed system.

Since the claims of statistical mechanics go beyond macroscopic systems, there is a need for a more general
theorem. The present paper deals with a system of any number of degrees of freedom and with any ob-
servable, during interaction with a temperature bath. In order to avoid an assumption of randomness, the
bath must be described explicitly and precisely by a time-independent Hamiltonian. The model of the bath
is obtained by taking the Gibbs ensemble seriously, i.e., as a set of NV identical systems interacting through

a potential AV.

The following theorem is proved. The time average of the quantum-mechanical expectation value of any
observable with respect to any initial state is equal to its statistical average, in the double limit N— o, A—0,
for the overwhelming majority of all interaction potentials V.

1. INTRODUCTION AND STATEMENT

T is well known that the ergodic theorem in quantum

mechanics cannot be proved for all observables in

a completely closed system. An ergodic theorem for

macroscopic observables in a closed macroscopic system
has been proved by von Neumann.!

However, the claims of statistical mechanics go
beyond macroscopic systems and macroscopic observ-
ables? The macrocanonical statistical theory claims
that the average properties of a system with a Hamil-
- tonian K(p,g) in loose interaction with a temperature
bath of temperature T are given by the density operator

p=exp(—K/kT)[tr exp(—K/kT) T, (1.1)

so that the statistical mean value (4 )s; of any observ-
able A4 associated with an operator 4 (p,q) is given by

(A)se=tr(4p). (1.2)

To legitimize this claim, an ergodic theorem would
have to prove that the time average of the quantum-
mechanical expectation value of the Heisenberg

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

17, von Neumann, Z. Physik 57, 30 (1929).

2 E. Schrodinger, Statistical Thermodynamics (Cambridge Uni-
versity Press, Cambridge, 1948).

operator 4 (t),
@i=lim(1/7) [ @O, AQ¥OM, (1.3

is equal to (4 ) for any initial state ¥(0) of the system.

Another motivation for seeking a more general
ergodic theorem is the doubtful idealization of a com-
pletely closed system. Fierz® has pointed out that
certain unsatisfactory assumptions on which von
Neumann’s theorem is based, probably arise from the
undue idealization of the totally isolated system. Fierz
conjectures that the introduction of random pertur-
bations would remedy these defects. If these pertur-
bations are not to be mathematical fictions, they must
represent a temperature bath. They will, then, do more

“than merely establish equilibrium in a system of given

energy; they will bring the system to the temperature
of the bath. They will also cancel any conservation law,
such as conservation of angular momentum, for the
system.

It seems difficult and also arbitrary, to invent a
system of perturbations which replaces the temperature
bath; and it appears unavoidable that a full and precise
description of the temperature bath must represent it

3 M. Fierz, Helv. Phys. Acta 28, 705 (1955).
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as a system described by a Hamiltonian. Naturally,
one has to choose a definite model for the temperature
bath.

It is natural to adapt, for this purpose, Gibbs’
canonical ensemble. Instead of merely thinking of
juxtaposed systems, we take the model literally: The
temperature bath consists of a large number N of
identical systems with Hamiltonians K(p:,q;) for the
ith system and an interaction AV (piq1- - - pwgn). The
Hamiltonian of the total bath is

N
H=H+ANV=Y K(pig) FA\V(p1q1- - - pnqn), (1.4)
=1

where ., ¢; stand for the dynamical variables of the ith
system. The spatial separation of the systems is
expressed by boundary conditions which require the
wave function to vanish in those parts of configuration
space where particles belonging to the ith system are
outside the boundaries of this system.

Measurements are thought of as being made only in
one system (for example, 2=1) which will be referred
to as “the system.” The totality of all systems, de-
scribed by the Hamiltonian H, will be called the bath
(although it contains the system). Since we are inter-
ested only in the physical properties of the system, we
shall consider only observables 4 which are defined
with respect to the system. The corresponding operators
A act only on the dynamical variables of the system,
and are unit operators with respect to other dynamical
variables.

The close analogy between the mental picture of the
ensemble and our physical bath makes it convenient to
express Egs. (1.1) and (1.2) in the simpler form from
which these equations are usually derived.? If ¢,(g.)
are the eigenfunctions of the sth system considered
alone, i.e.,

K(p:q:) 0s(g:) = €s04(g2), 1.5)

then a system of eigenfunctions of the unperturbed
Hamiltonian H) is given by

N
®,(qi- - -QN)=I.;__[1 (@s)i(gs)- (1.6)

Because of the spatial separation of the systems, no
symmetrization of ®, is necessary. Let

A= (B0, AB,). 1.7)

Then the fundamental hypothesis of statistical me-
chanics is that the average value of an observable 4 is
obtained by assigning equal weights to all values 4.,
which belong to the same energy E of the ensemble, so
that

<A>.,t=nz’f_:1A,.,.<1/R), (1.8)

where R is the number of independent eigenfunctions
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(1.6) belonging to an energy E of the ensemble energy
E, i.e., R is the degree of degeneracy of this eigenvalue.
The summation in Eq. (1.8) extends over this degen-
erate subspace I'. The Eqgs. (1.1) and (1.2) are derived
from the assumption (1.8) by counting the number of
terms in (1.8) which have the particular value 4,, and
going to the limit N— .2

In this argument, the interaction between the
systems is used only verbally, to make an exchange of
energy between systems plausible, but it is not included
in the Hamiltonian. Clearly, an ergodic theorem must
make explicit use of the interaction, but it also is clear
that the interaction must not appear explicitly in the
final result, if it is to agree with Eq. (1.8). Hence, the
ergodic theorem must deal with a bath described by a
Hamiltonian A in the double limit A—0, N— . For the
validity of the ergodic theorem, two further conditions
must be satisfied :

(a) The bath should not have any essential de-
generacy, for if it did, an initial state of a given sym-
metry would always maintain this property and no
equal distribution can be expected. In fact, we shall
have to assume that the full Hamiltonian (1.4) is
completely nondegenerate. In the absence of an essential
degeneracy this is a plausible assumption. Since poten-
tial interactions are symmetric with respect to particle
exchange, the removal of essential degeneracy requires
that the interaction V contain also terms which act in
different ways on particles of different systems: e.g.,
different electric fields within each system.

(b) Certain exceptional types of potential ¥V must be
excluded. For, if an eigenfunction ¥, of H should coin-
cide with an eigenfunction &, of Hy, the bath would not
be changed by the “switching on” of the interaction,
i.e., in other words, the Hamiltonian would not properly
represent a temperature bath. Fortunately, it will not be
necessary to specify the properties of ¥ explicitly. It
will be possible to prove the ergodic theorem for the
overwhelming majority of all interaction potentials,
ie., with the exception only of singular cases, and it
will not be necessary to exclude them specifically.

We are now prepared to state the ergodic theorem:
Given any initial state ¥(0) of the bath, and that the"
“unperturbed” energy of ¥(0) is E (i.e., ¥(0) is in the
subspace I'), the time average (A4), differs from its
statistical average by an arbitrarily small number, as
the number of systems &V increases and the “strength”
of the interaction A decreases, for almost all interaction
operators V.

2. PROOF OF THE THEOREM

The mathematical methods to be used are those
developed by von Neumann! and by Pauli and Fierz*
in connection with the microcanonical ergodic theorem.
The following is an adaptation of their calculation to
the present statement.

4W. Pauli and M. Fierz, Z. Physik 106, 572 (1937).
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If ¥, are the eigenfunctions of H, the initial state
¥ (0) is expanded as

T(0)=>" ¢ ¥n. (2.1)
The time average of the observable 4 is
(A)=((¥(0), AT (0))):=3 ca*cn(¥n,A¥m)
X{expli(En—Em)t]), (2.2)

where the operator A on the right-hand side is a
Schrédinger operator. Because all energy eigenvalues
belonging to different states are different by assump-
tion, the nondiagonal elements are cancelled by the
time integration, so that

(A->t=2 !Cn|2(\1,n;A\I,n) (23)
Transformation to the system &, of Eq. (1.6) gives

(A)= z [6n| (¥ n,@m) (21,9 0) (B, AB1).  (2.4)

One might think that it would be sufficient to con-
sider, from here on, only the properties of the matrix
>l en|2 (@) (@4, F,), since the operator 4 is not
restricted to be macroscopic. Actually, the fact that 4
acts only on the variables of the system makes it
highly degenerate in the H, representation, and this is
an essential part of the proof.

Consider now the transformation matrix

Tnm= (‘I’n,‘l’m) (25)

It is known from the perturbation theory of degenerate
Hermitian operators that the expansion of T in powers
of the coupling constant A has a zeroth term:

Tﬂm= Tnm0+>\Tnml+ e

This operator 7° maps the degenerate subspaces I' of
H, into themselves, i.e., it forms the ‘“‘correct linear
combinations” of the &, belonging to a given eigen-
value E. Since we are ultimately interested in. the limit
A=0 and since, by assumption, ¥(0) belongs to I, we
may limit the summations in Egs. (2.1), (2.2), (2.3),
and (2.4) to the subspace T, i.e., to functions ®, which
belong to E and functions ¥, which are linear com-
binations of these. In the following, we may replace
‘I’n by Zr T"mocl)m,

The operator 4 acts, by assumption, as a unit
operator on all factor functions (¢,); of Eq. (1.6) except
when i=1. Therefore all matrix elements (®,,4%;)
vanish, unless all functions ¢,; (45%1) are the same for
both the products @®,, and ®;. Furthermore, the two
functions (¢,)1™ (¢1) and (¢,):1%¥(g1) belonging to the
product functions ®, and ®,, respectively, must have
the same energy eigenvalues ¢, because otherwise the
energies Y ;.Y (&) i=E could not be equal. If K ($1,q1)
is nondegenerate, this shows that nondiagonal matrix
elements (®,,,4®;) are not contained in the sum (2.4).

(2.6)
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If K(p1,q1) is degenerate, it is possible to choose the
degenerate eigenfunctions ¢,, « so that the nondiagonal
elements (s, «,4 ¢5,5) vanish. With this choice, the only
surviving matrix elements are diagonal with respect
to all subscripts, and Eq. (2.4) reduces to

(4).
f

R

2 lea|24ul (24,%.) |2,
1
1

2.7)

L

where R is the number of functions &, in T'.

Every numerical value 4;;=4, occurs many times
in the sum (2.7) because 4, depends only on the
functions (¢.)1(g1), whereas numerous possible choices
of the functions (g,):(4%1) are compatible with
> (e)s=E. If d, is the number of different functions
®,; which lead to one value 4;;=4,, and M the num-
ber of different values 4, in T,

M
> d,=R.

y=l

(2.8)

It is convenient to introduce double subscripts for
&;,,), so that the first subscript denotes the corre-
sponding value of 4;;=4,. Then Eq. (2.7) can be
written ’

_ M R dy
(A)e= Zl 4, le cnl? :4:1[ (@,T2) |2 (2.9)
With the new notation, Eq. (1.8) reads
o
(AYse=3 4,(d,/R). (2.10)

y=1
To compare (4 )e with {(4);, we form the expression

(A)s—(A)2)?
M R dp
= AL |eal? Ell (@I |*—(d/R) ] (2.11)

v=1 n

Since the normalization of ¥ (0) requires 3 |¢.|2=1,

(ye=(AY = (ﬁ A&/ R)MR/d)}

R
XZ_II Cn| { (Po¥n¥0)— (&/R)}),  (2.12)
in which, for any function F,
dy
(P,F,F) =?1| (®n,F) |2 (2.13)

Here, P, is the operator of the projection into the
subspace spanned by the d, functions &, which belong
to (®.,A®,0)=A4,. We now use Schwarz’s inequality to
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estimate the difference.

() (A< g A2/ R (R/ )

=1

EJeal LT~ G/ (210

According to Eq. (2.10) the first sum is the statistical
average (A%)s of the operator 42. In order to simplify
the expression further, we use Schwarz’s inequality
again on the second sum in Eq. (2.14), noting that

Y lea|2=1:
(A (A< A0 Z(RIBIE

X I:(PV‘I’n;\I,n) - (dV/R):F

We cannot expect that this quantity is arbitrarily
small, in general, since we have not eliminated the
exceptional interactions V' which would certainly make
an ergodic theorem invalid. The averaging over poten-
tials ¥V will be done in the same manner in which von
Neumann! averaged over systems of observed quan-
tities. We average Eq. (2.15) over all possible inter-
actions V in the following sense: A given V leads to a
unitary transformation matrix 7° in R-dimensional
space which rotates the system ¥, with respect to that
of the ®,. The averaging consists in assigning suc-
cessively all possible values to 79, the unitary matrix
in R-dimensional space. The quantity of interest is,
then, the geometric average of

(2.15)

x=§<k/d.>>§li T PH T~ /BT, (2.16)

Von Neumann! and Pauli and Fierz* have shown that
this average is bounded by the inequality

{x}n< fa W (w)udu—+exp[ —xa(R/M)*+x+2 InR].

(2.17)
Here, a is a positive number
a>2M(R—2)7, (2.18)
k is defined by
k=1—In2, (2.19)

and W () is the geometric probability that x is between
u and u+du.

In order to estimate M, the number of different
values 4,, we note that it certainly cannot be larger
than the number of different system eigenstates ¢,
compatible with ¢, < E.
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In the course of the limiting process where the
number of systems, IV, increases indefinitely, the mean
energy, U= (E/N) remains fixed. At the same time,
the number of accessible system states increases. The
asymptotic value will depend only on the number of
system states whose energies approach the total energy
NU. We consider a system of » particles at very high
energies e~NU. At sufficiently high energies, all
physical systems behave like ideal gases, i.e., the poten-
tial energy becomes unimportant. For ideal gases, the
number © of states of energy e is given by?

InQ=3%nlnet- -, (2.20)

in which the omitted terms do not contribute to the
asymptotic dependence on N. The total number M’
of states of a perfect gas for energies from 0 to e=E is

E
M'Sf drde= SuN Uttin (2.21)
0

constants independent of V again being omitted. Since
our idealization of the system as a perfect gas is valid
only for very high energies, the actual number of acces-
sible states M will be

M=M'+c, (2.22)

where ¢ is independent of E, if E is only sufficiently
large. On the other hand, the total number R of states
®, is, according to well-known results of statistical
mechanics,? given by

kInR=NS, (2.23)

where .S is the (statistical) entropy of the system which
is, like U, independent of V.

Since M increases like a finite power of N, the expo-
nential increase of R with NV dominates, and the ex-
ponent in the second term of Eq. (2.17) becomes
negatively infinite for any positive number ¢. But, for
the same reason, the number ¢ in the inequality (2.18)
may be chosen arbitrarily small, so that the first term
in Eq. (2.17) can also be made to vanish as IV increases.

We have shown that the average over all potentials
vanishes in the limit:

lim {(<A>¢—<A>st)2};\v=0. (2.24)
N—00,\—0

Since the averaged quantity is positive, we may say
that it is zero for the overwhelming majority of all
potentials V. This concludes the proof of the theorem.
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