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The Majorana theory for a particle with mass is reformulated in terms of a two-component field. In this
form it is seen that the theory goes over continuously to the Weyl-type two-component equation as the
mass tends to zero. The asymmetries obtained in 8 and u decay experiments are shown to imply only that
the neutrino mass is small—not that it is zero. Also the asymmetries are shown to be no more implied by
the use of a two-component theory than by the use of a four-component one. Two-component theories do
imply certain relations between mass, parity nonconservation, and double 8 decay. That there are asym-
metries is due to the fact that the interactions necessary to describe the physical world are not reflection-

invariant.

I. INTRODUCTION

N the following the Majorana theory is reformulated.
There are two objects in mind. First we want to
investigate the relation of this theory to the “two-
component neutrino theory” suggested by Lee and
Yang! and Landau and Salam.? Secondly it would seem
worthwhile to have this theory developed completely on
its own rather than as an afterthought when treating
the Dirac equation. (In the development a number of
interesting aspects of quantized field problems are seen.)
In the new form we can at any stage put the mass
equal to zero. The result is then just the “two-compo-
nent neutrino.” However, it will be shown that this
limit is not necessary to describe present experiments.
For a sufficiently small neutrino mass the theory is
essentially indistinguishable by experiment from the
case of mass zero.

The reformulation also suggests a slightly different
view on parity. This view is shown to be in agreement
with the treatment of parity in discussing the electro-
magnetic field. It is also such that when “parity” is
conserved there are no left-right asymmetries to be
observed. From this viewpoint the mere use of a two-
component theory by itself has no more implications as
to whether 8 and u decays®* are asymmetric than does
the use of a four-component theory. The essential
point is that the experiments tell us only that the weak
interactions responsible for these decay processes are
not reflection-invariant. It is noted that from this point
of view parity nonconservation in the decay of K
particles into 2= and 3w modes is neither more nor less
peculiar than for decays involving neutrinos.

In Sec. II the wave equations for the Majorana
neutrino are deduced from the Dirac equation. After
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obtaining these equations we forget their origin. The
theory of free particles described by these equations is
developed in Secs. IIT-VI. Their interactions are con-
sidered in Sec. VII. Section VIII discusses the differ-
ences between finite and zero neutrino mass.

The Appendix is devoted to an alternative derivation
of the Majorana equation.

II. THE MAJORANA ABBREVIATION

Let us write the Dirac equation® in the form
(v*9utr)¥ =0, ¢Y)
where
YRy Eyyh=2g",
and
=1, gi=s

The charge-conjugation matrix C discussed by Pauli®
has the properties’

CyrC-t=yw*, C=C, C*=C-L, )

Taking the complex conjugate of Eq. (1) and multi-
plying by C-! gives

(v*9utr)CH*=0. ©)
Introduce the matrix v® by
VP =rrye 4)
This has the properties
(=1,

Let us introduce the projections with respect to the
subspaces v5=z£1 respectively by means of

yiyd= — by, ClyPRC = —45,

Ye=31£7NW, re=301E7)r~ ©®)
With this notation Eq. (1) becomes the two equations
Y+ =0, (6)

and
Y-+t p=0. (7

5 Units such that #=c=1 are used. 2°=¢.

6 W. Pauli, Revs. Modern Phys. 13, 203 (1941).

7* and ~ denote complex conjugate and transposed respec-
tively.
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Similarly Eq. (3) becomes
Y+, CT * 1 CY_* =0, (62)

Y-#3,C W *4-kCY, *=0. (7a)

The Majorana abbreviation is obtained on putting®

and

Yo=Cl,* ®
Equations (7) and (6) become
Y0+ kCY, *=0, ©

and
Y+40,C7 Y i =0. (10)

By using the properties (2) of C it is readily shown that
Eq. (10) is just the complex conjugate of Eq. (9).
Equations (6a) and (7a) are then identical with Egs.
(9) and (10). Hence the equations of the Majorana
neutrino are

70,9+ rd* =0, (11a)
and the complex conjugate
1%0,9*+x$=0. (11b)

Here #n*=Cvy_* and ¢=1y;.
By a straightforward application of the relations of
Eq. (2), we have

0¥+t =5 (1) {yry v}
=3(1+7"){2"}.

However, in the two-dimensional space of ¥, we have
F(1+H)~1.
Therefore, the #* are two-by-two matrices satisfying®
= 2g. (12)

Equations (11) with n* satisfying (12) are the analog
for the Majorana neutrino of the Dirac equation in the
form of Eq. (1). It is a convenient form in which to
show that ¢ satisfies the wave equation. Thus on
applying 77¥9, to Eq. (11a) we obtain

170*9,0 ,p+kn"*9,8* =0,
or
o e +0*07}0,9,6— ¢ =0.
Upon using Eq. (12), this is
(O—-x)¢=0. (13)

For many purposes it is more convenient to have the
equations in a form analogous to the Dirac equation

written as
aw 1
—=—a VY+xBy.
a1

8 Tt is readily shown that this identification is compatible with
the wave equations and the transformation properties. However,
since we want to start afresh from the final equations obtained,
we omit the proof. .

9 Equations of the form (11) with 9* satisfying Eq. (12) seem
first to have been studied by H. Jehle, Phys. Rev. 75, 1609 (1949).

CASE

This is readily obtained on specializing the representa-
tion of the 5#’s. Thus let ¢* (i=1, 2, 3) by a set of
Pauli matrices. There exists a matrix 4 such that®®

Ao#*47 v =—q¢i, A=—A, A=A"'=A* (14)
Let

nt=—1iAdo", (15)

where ¢°=1. It is readily verified that these matrices
satisfy the relations of Eq. (12). Inserting these
matrices in Eq. (11a) and multiplying by 4 gives

1040 ,p=rA ¥,

or
o 1
i—=—0-Vo+rd¢*. (16a)
o i
The complex conjugate equation is
] 1
i—A¢*= ——0-VAd*+«o. (16b)
lil i

We shall take Egs. (16) as the fundamental descrip-
tion of the Majorana neutrino.!! The method by which
they were obtained? will be forgotten. It should be
noted that when x=0 we have identically the “two-
component neutrino.” From now on this terminology
will be dropped, and we shall only speak of the theory
with k=0 or k0.

III. TRANSFORMATION PROPERTIES

Since this point is somewhat controversial, we would:
like to state quite explicitly what we mean by invari-
ance. A set of equations is invariant under a group of
coordinate transformations if the following conditions
are satisfied:

(1) We can find a law by which we can associate the
wave functions describing a given state in the new
coordinate system with the wave functions describing
the same state in the old system.

(2) From the law of association and the equations in
the old system we can find the equations for the new
wave functions in terms of the new coordinates.

(3) The new equations obtained must have the same
form as the old equations.

10 These properties are readily verified by noting that, in the
conventional representation of the Pauli matrices, 4 =¢2.

1 Since completing this work I have seen a preprint of an
article by James A. McLennan, Jr. [Phys. Rev. 106, 821 (1957)].
It is pointed out that Egs. (16) describe the Majorana neutrino.
It should be emphasized that essentially all the results in the
present paper for the case k=0 have been obtained independently
and previously by McLennan.

12 An alternative derivation of Egs. (16) using a specific repre-
sentation for the matrices of the Dirac equation is given in
Appendix A.



REFORMULATION OF MAJORANA THEORY OF NEUTRINO

Three possibilities exist:

(a) It is impossible to find a law of association with
the required properties. Then we must conclude the
equations are not invariant.

(b) The law of association is unique.

(c) There are several satisfactory laws of association.

The possibility (c) is important for the following
reason: Suppose we are considering free fields and
several laws of association are found. We cannot,
a priori, decide which is the “correct” law. Let inter-
actions be introduced. If we want to know if the
equations are still invariant, we must try all of the
possible laws of association found for the free fields.
Thus only if no choice of association results in the same
form of the equations with interaction in the new
coordinate system can we say that the system is non-
invariant under the given coordinate transformation.

Are Egs. (16) invariant under the full homogeneous
Lorentz group? To prove invariance we must exhibit
the law of association.

(a) Proper Transformations

It is readily shown that an appropriate law of
association is
¢’ (') =A¢(x), 17

where
(18a)

for a rotation of angle 6 around the spatial direction g,
and

A=exp(30e-q)

(18b)

for a Lorentz transformation with velocity v in the
direction q. From these two fundamental transfor-
mations all proper Lorentz transformations can be
constructed.

A=exp(310-q)

(b) Spatial Reflections

The coordinate transformation is

x=—af =1

(19)

In analogy with Eq. (17) the first attempt is naturally
to try

o' (@) =Ad(),
or

¢ (x) =A~"¢’ (o). (20)

Inserting (20) in Eq. (16a) gives
d 1
i—¢’ (&) =-AoA™1- V¢’ (&) +-kAAA*¢'* (x),
at 7
or, upon using Eq. (19),
96/ («) 1

= ——Aa- VAT (&) A AN ().
at i
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However, for this to have the same form as Eq. (16a)

we must-have .
AoA 1= —g.

There is no such A since the matrices ¢ and —o are
nonequivalent. This is readily seen by remembering that

[ot,07]_=2ielkg*, (21)

The matrices —a¢ then satisfy the equation obtained
from this by changing the sign on the right-hand side.
Does this mean that Egs. (16) are not invariant under
reflection? It means only that the attempt of Eq. (20)
was rather unfortunate.

An appropriate law of association is, indeed, readily
obtained. Let

¢’ (#)=A¢*(x), or ¢*(x)=A""¢'(x)). (22)
Inserting in Eq. (16b) gives
¢’ (") 1
(e ) a4y w @)
+rAAAH*P* (7). (23)

In order that this be of the same form as Eq. (16a),
we must have

Ado(Ad) =0, (24a)
and

AAA*=4. (24b)

From Eq. (24a) we can conclude that A4 is a multiple
of the unit matrix, i.e.,
AAd =el,

or

A=ed. (25)

The only effect of the mass term is to give the condition
of (24b) which restricts the constant e. Thus, using the
properties of Eq. (14) gives

e=—¢*, (26a)
or

e=1p, (26b)
where p is a real number.!?
(c) Time Reflections
The coordinate transformation is
x'=xt V=—1.
By similar arguments we obtain
¢’ («') =Ag*(x),
A=pA, (27)

and the presence of the mass term requires u to be real.’®
The conclusion is then that Egs. (16) are indeed
invariant under the full Lorentz group. The only effect

where

13 The involuntary character of the reflection transformations
requires u, p both to have absolute value unity.
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of the mass term is to slightly decrease the possible
choices of the law of association. Alternatively, any
interaction which is invariant for «#0 is certainly
invariant when x—0, while an interaction which is not
invariant for k=0 is also not invariant for 0.

Since the relation of Eq. (22) is somewhat different
from the customary associations for space reflections,
it may be well to show that this is really the same as the
association one makes in electrodynamics. The Maxwell
equations,

vXH=0E/dt, vXE=-—0H/d:,
v-H=0, v-E=0,
can be rewritten simply™ in matrix notation. Let
Vi=H,—iE, 1i=1,2, 3.
Then the two curl equations are
W S-v
=, (28a)
a1
where the matrices S7 are given by
(S ix=1eij (29)

(eijr is the alternating symbol). It is readily seen that
the S7 have all the properties of spin 1 matrices. The
divergence equations are simply

S-vS-qy=q- V¢,

with q an arbitrary space vector. The full content of
Maxwell’s equations are then Eq. (28a), (30), and their
complex conjugates. [For the present purposes we can
ignore (30).] Therefore the basic equations are (28a)
and

(30)

aw* v
——=S*.—y*,
at 7

(28b)

Are these equations invariant under the reflection
x¥'=—ux! /=17 One immediately sees (by the same
argument as for the ¢’s) that S and —S are not equiva-
lent. Hence an association of the form

¥ (o) =AY (2),
will not be possible. However, the association
¥ (o) =AY* (),
is feasible. Indeed, using the representation of Eq. (28)

we see at once that A=1 is satisfactory. What is the
transformation? Written out in components this is

H/—?;E/-_‘—Hri-iEz,
or
Ei,= *E,‘, Hi’=Hi.

These are, of course, the conventional transformations
that one assumes for E and H.

14 This form has been used by J. R. Oppenheimer, Phys. Rev.
38, 725 (1931).

CASE

A somewhat more convincing proof that the associ-
ation of Eq. (22a) is satisfactory is found below. When
we introduce interactions, it will be seen that if parity
in this sense is preserved then there are no left-right
asymmetries.

Having obtained the transformation properties of ¢,
we can now see what covariants can be formed from
bilinear expressions in ¢ and ¢*. Under proper Lorentz
transformations there are two scalars S; and S; where

S1=(¢*,4¢%), S:=(¢,44), (31)
a vector S* where
Sr=(¢*,04), (32)
and a six-vector with components
(¢,Aap) and (p*0do™). (33)

Under the reflections the two scalars become inter-
changed as do the two quantities in Eq. (33).

The question of the electromagnetic properties of the
particles described by Eq. (16) is at this point somewhat
obscure. Suppose we regard the ¢ as ¢ numbers. At
first glance Eq. (16a) looks nongauge invariant because
of the occurrence of the ¢*. However, Jehle? has shown
that it is possible to construct suitable gauge transfor-
mations. Alternatively one can ask whether there is a
four-vector which can serve as a charge-current vector.
From the above this can only be S*. Using the equation
of motion, we readily find that

105%/9x=k{S1— Sa}. (34)

Now, if ¢ is a ¢ number, both S; and .S; vanish identi-
cally since 4 is antisymmetric. Hence we have a vector
which is conserved. However, since we know that we
must quantize, a decision as to electromagnetic proper-
ties must wait till after the next section.

IV. QUANTIZATION

The difficulty just alluded to prevents us from
applying the canonical formalism. Specifically, suppose
we try to construct a Lagrangian. The terms involving
k must come from some bilinear scalar. There are only
S1 and Sy—and these vanish identically.

An invariant quantization procedure is fortunately
straightforward. Since our ¢ transforms as a two-valued
representation of the proper Lorentz group, we know?'®
that anticommutators must be employed. Further,
since we shall demand causality to hold, the anti-
commutators can involve only Pauli’s® invariant D
function. We shall express the relations in terms of ¢
and A¢* since then the transformation properties are
slightly more perspicuous. The quantization is

[¢a (X1t) ) (A¢*)13 (X’,t,):h. = (01) aﬂD (X_ X,, = t/) ) (353')
[pa(x,0),08(X',1") 11 = (02) asD, (35b)
[(4¢%a(x,0),(4¢")s (X #) J+= (8s)asD.  (35¢)

16 See W. Pauli, Phys. Rev. 58, 716 (1940).
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The matrix operators 61, 8, 05 are still to be determined.
Clearly, the relations for ¢* (35¢c) can be found from
those for ¢ (35b) by taking the Hermitian conjugate.
This gives the relation

3= —A02*A“. (36)

Further, the equations of motion imply a relation
between 6, and ;. This is

a 1
k8 D= —0:4 (i——~o- v )A—‘D. (37)
at i
A set of operators which satisfy Eqgs. (36) and (37)
(and hence are compatible with the equations of the
field) is found on remembering that D satisfies the

wave equation for mass k. The final result for the.

anticommutation relations is

[9a(x,0),(46%)s(x'1") ]+

d
={(‘—+a.v)A} D(x—x',1—1), (38)
at af
and

[¢a (X,t) b8 (x,’tl)]—!- = [:(A¢*) a (X)t)’ (A ¢*)ﬂ (X,:tl)]+
= —ixA osD. (38b)

1t is readily verified that these relations are compatible
with the transformation properties previously found.
An interesting feature is that, as a consequence of the
peculiar form of the Egs. (16), the ¢’s at two different
times do not anticommute precisely.
Specializing to equal times and using the results

aD
D(X70)=07 -—-<Xat) =6(X)7 (39)
ot =0
we obtain the more familiar relations
[a(x,0),06* (X' ,1) 1} =860 (x—X"), (40a)
[pa(x,0),88(xX' 1) 1o =[oo*(x,0) 6™ (x',1) ]y=0.  (40b)

V. INTERPRETATION

For interpretation purposes we clearly need quantities
which can be considered as energy and momentum.
These can be constructed in the canonical manner from
a Lagrangian. A purely quantum-mechanical La-
grangian is indeed now possible. The point is that
because of the anticommutivity of the ¢’s and ¢*’s the
scalars Sy and \S2 no longer vanish. For example, using

the representation
0 —:
A=( )
i 0

S1=¢*A¢* =1(d2*p1* — $1%¢2*) 0.

we have
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An appropriate Lagrangian is
1
£=;{¢*a“3u¢—3u¢*0“¢}+%K{¢*A¢*+¢A¢}- (41)
7
Varying ¢*, we obtain
1
se= 54)*{—.0"3,@ l +1dg* A*+Leg* Aog*.  (42)
i

For consistency with our commutation relations, we
must require the variation d¢* to anticommute with ¢*.
Hence

¢*A0¢* = —6¢* (¢*4) = —0¢*Ag*=0¢*A¢*.
Thus Eq. (42) is

1
5£=6¢*{—_o‘“6,,¢+KA¢*}. (43)
i
For 6£ to vanish, we obtain
10+0 i p=rAd*, (44)

which is just the requisite equation. Similarly, varying
¢ yields the conjugate equation. We define a stress
tensor by

L 6¢i6¢* e

T 9(36/0x) x| duwk 3(36%/ 00

v
»

£5,7. (45)

Since £ vanishes in virtue of the equations of motion,
we obtain

1
,‘"=2—i{¢*0"“6,,¢+6“¢*cr"¢;} . (46)

In view of the considerable ambiguity of the ordering
of the factors in Eq. (45), it is important to note that
the use of 7',” given by Eq. (46) as a stress tensor can
be justified in its own right. Thus it obviously has the
transformation properties indicated by the tensor
indices. In virtue of the equations of motion, the
conservation laws hold, i.e.,

0T,?/9x*=0. 47
For the energy-momentum four-vector, we take
Pr= fT“"d3x,
or
-1 dp 0¢*
E=— {¢*———-—~¢ }de, (48)
2 a
and
1
P=—[ (e vom(von, p)im 9
i
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The displacement relations,

d¢/dt=i[Ep ],
and

do indeed follow from these definitions and the commu-
tation relations for the field operators.

The expression of Eq. (48) contains a certain amount
of zero-point energy. This can be eliminated by the
Heisenberg hole-theory symmetrization. However, we
shall for compactness keep the expressions of Eqs. (48)
and (49) in their simple form and merely drop the
zero-point terms when they are encountered.

Now we can consider the electromagnetic properties
of our field. From Eq. (34), we see that the divergence
of the only four-vector (S*) that can be formed is

10.5# /0 =k{S1— Sa}.

Since now the scalars S; and S do not vanish, this
four-vector is conserved only when «=0. Thus, only
when the mass is zero can this theory describe a charge-
bearing field. The existence of the six-vector previously
mentioned suggests that the particles of this field
might have a magnetic moment. However, the six-
vector now vanishes identically. Thus consider

(¢,400¢).

We note that A, Ace are four linearly independent
two-by-two matrices. 4 is antisymmetric. Since there
must be three symmetric and one antisymmetric
matrix in a complete set, we conclude that Ae are all
symmetric. (This may be verified by using a specific
representation.) But

Do (x7t)¢ﬂ (X;t) +¢ﬁ (X,t)(ﬁa (X;t) =0.

Hence, the expression of (50) vanishes. A similar
conclusion holds for (¢*,64¢*). Therefore, for finite «
there can be %o static electromagnetic interactions.

(50)

VI. NORMAL-MODE DECOMPOSITION

This is clearly necessary for an interpretation in
terms of particles. It can be obtained as follows: For
each vector k we consider the operator

o (x4 k) =0 (k) a(k)e - x—k0 g* (k)b (K)e— i3k (51)

Here (k) and its Hermitean conjugate v*(k) are oper-
ators; a(k) and 5(k) are spinor ¢ numbers. Since ¢ is to
satisfy the Klein-Gordon equation, we require %,
= (B2+«%)}. Inserting this in Eq. (16a), we see that
(51) describes a solution provided

—K

b(k) = (52a)

Ad* k),
A0

0—0

CASE

or alternatively

a(k)=

K

*(k).
-kAb (k) (52b)

00— 0

Two linearly independent solutions are necessary in
order to form a complete set. Let a(k), 8(k) be two
spin functions such that

o-ka(k)=[k|a(k), o-kg(k)=—k|g(k). (53b)

These can be chosen so that (a*a)=(8*B)=1. They
are orthogonal, so that (a*,8) = (8*a)=0. The relative
phases can be fixed so that

Ao*(k)=i8(k) and AB*(k)=—ia(k). (54)
‘Two independent solutions are obtained with
a® (k) =A(k)a(k), &2 k)=r(k)a(k). (55)
Equations (52) give
b0 (k) = —ixN (k)8 (k)’ Ok _in(k)B (k). (56)
kot+k kot+k

For convenience in the future development, we choose
the normalization constant A(k) so that

A(k)=1/[1+x/ (kotk)* ]2, (57
[Tt may be noted that in the limit «—0 we have
a® (i) =a(k), B (k)=0, )

a® (k)=0, b2 (k) =a(k).

This is the same result as occurs when |k|=%>>«.]
Now expand the field operator ¢ in terms of these
solutions; i.e.,

1
o(x,0) =\71; %;{.Df(k)ar (k) gitk-x—kot
+o* (k)b (k)e—itk-x—k)} . (50)

(A box for quantization purposes has been assumed.)
To obtain the commutation relations, we must solve
for the v’s in terms of ¢ and ¢*. For this purpose it is
useful to relate a(k), 8(k) to 8(—k), a(—k). Obviously

B(—k)=n(k)a(k),
a(=k)=7' (k)8 (k),

where 5, n’ are certain phase factors. For consistency
with Eq. (54), we must have

and

7' (k)= —7*(k). (60)
The requirements
a(—(—k)=a(k), B(—(-k)=p(k),
yield the condition
1(k) = —1(—k). (61)



REFORMULATION OF MAJORANA THEORY OF NEUTRINO

By using the properties outlined above, it is possible
to solve for the v7, v™* in terms of ¢ and ¢*. The result is

1
Wi [ e-ik-x[ @ (K),6(x,))

ixn(k

) t 3 1 3‘
F k»}dx, (62)

'kot_.__l__ —1k.X 3k 2.
W= [ [(4» (5,5 (k)

(k) .
e | (69

0

Using Egs. (62), (63), their Hermitean conjugates,
and the commutation relations of Eqs. (40) gives

(o (k)0 *(K) 1 = 6,8 (k K), (64)

and

Lo (k)0 (&) 1 =[o*(k),o* (k) ]+ =0.  (65)

We are therefore justified in regarding v7(k), v"*(k) as
absorption and emission operators for particles of type
“r.”” Inserting the expansion of Eq. (59) into the
expressions of Eqs. (48) and (49) gives (on omitting
the zero-point energy)

E=2k ko{v®*(k)o® (k) +0v®*(k)v> (k)},  (66)
and

P=Y, k{z®*(K)o® (k) +o®* (k)o@ (K)}.  (67)

VII. INTERACTIONS
(1) 8 Decay

These interactions can be described in exactly the
same manner as has been done by Lee and Yang.!
Thus, using the representation of the appendix:

o 0 0 —
“=( )y B=( ))
0 —o 1 0
we can write
¢
Ipy:( )'
0

A possible interaction describing 8 decays is

H= Zz 2C; (‘/‘p*,oﬂl’n) (‘l/e*aoi‘h) .

Corresponding to this term, we can also consider the
parity conjugate. This is obtained by replacing all
operators by those into which they transform under
the parity operation. For ¥, ¥, Y. we must, of course,
take the conventional association

‘/’,p, n o(x) =%p, 1, Y0, 1, o(%).

(68)

(69)
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In agreement with what has been found in Sec. III,
we take
¢'=edo*,
and therefore
o (eA¢* )
vy = O .
With these rules, we obtain
H=3%; zci(‘l’p*aoz"l’n) (‘#e*,Oi.B'pv’)np*ﬂn’?e*- (70)
We note that
0
By, = ( . ) (71)
1eAp*

Now what relative amounts of H and H’ should we use?
A priori there is absolutely no method of deciding. We
can, of course, try to require that parity (with the

present meaning) be conserved. This means we must

use H and H' with equal weights. Consider the combi-
nation H+-H’. Under reflection, H—H’ while

H'=E 2C.(4,04-) (we*,o,'(_od’))@p*nnm*)z. (72)

(Here we have used result e*=1.) Thus if the phases
n are chosen so that 7,*7.9.*=1, we have a reflection-
invariant interaction. With this choice and choosing
e=—1, our invariant interaction becomes the same as
in Eq. (68) with the replacement

¢
()
1A¢*

In this case there are no asymmetries in 8 decay. This
can readily be seen from the normal-mode decomposi-
tion given above. The point is that, for each process in
which an electron and a neutrino are emitted in given
directions with given spin components, there is a
process with exactly the same probability in which an
electron and a neutrino are emitted in just the opposite
directions.

Alternatively, we can note that it follows from Eq.
(A10) of the appendix that ¥ of Eq. (73) is a completely
normal Dirac wave function. The interaction is then
of the usual B-decay form and hence conserves parity.

It is clear then that the maximum degree of parity
nonconservation (i.e. maximum asymmetries) occurs
when we use only H or H'.

How are the interactions related to double 8 decay?
Suppose we use only the interaction term H and for
simplicity consider the case x=0. The normal-mode
decomposition becomes

(73)

1
=7 S0 (et =0

+v(2)*(k)a(k)e—i(k«x-—kot)}_ (74)
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This, and therefore H, contains only the emission
operators for neutrinos of type “2” and the absorption
operators for neutrinos of type “1.” Hence, a neutrino
of type “2,” if emitted in one 3 process, cannot be
absorbed in a subsequent decay. The “double 8 decay”
does not occur.’® Conversely, it is readily seen that the
maximum probability of double 8 decay results when
we use the parity-conserving interaction term.

With a finite mass the situation is similar. The
maximum double 3 decay occurs when there is reflection
symmetry, the minimum when there is not. The only
difference is that in the case of maximum degree of
parity nonconservation the double B-decay probability
does not vanish. It is, however, reduced from the
maximum probability by a factor (xk/{k¢+%)av)? where
(k)w 1s an average momentum of the intermediate-state
neutrino. Clearly this can be made arbitrarily small by
taking « sufficiently close to zero.

In summary, we can say that the assumption of a
two-component neutrino with or without mass has no
implications as to whether parity is or is not conserved
in B decay. The only experimental conclusion that
follows from the theory is that a maximum degree of
nonconservation of parity implies a minimum proba-
bility of double B decay while conservation of parity
implies a maximum probability of double 8 decay.
Loosely speaking, this says that ‘“parity nonconserva-
tion” and “double B decay” are conjugate observables.

(2) u Decay

Again we follow Lee and Yang! and consider only
interactions with the vector S®. With our law of
association and the commutation rules given previously,
S* is actually a pseudovector; i.e., under the transfor-
mations ¥ = —x%, ¥ =2 we have §¥ =4S¢ S9=— S,
The only parity-conserving interaction is

- 7’f A‘//e*'YO'Y V’Ys‘an ve

This gives rise to no decay asymmetries. However,
there is nothing to stop one from writing the non-
reflection-invariant interaction

Frb Yy S+ fay e (— iy v S,

This certainly does exhibit asymmetries, as has been
shown by Lee and Yang. It is important to note,!”
however, that these arise only from cross terms of the
form fyfa*. The two-component theory has no pre-
diction as to whether one of the f’s is zero or not.

VIII. DIFFERENCE BETWEEN k=0 AND =0

As shown above, these differences are quite small.
The most significant point is that for k20 the charge
must be zero. Since the neutrino has zero charge
anyway, this distinction is rather trivial. It does,

18 This has also been noted by McLennan (reference 11).
17T, D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

CASE

though, give a point of view from which it seems
reasonable to expect the charge to be zero even if the
mass is zero. .

The other differences all seem to depend continuously
on the mass in the sense that all observable effects can
be made as small as desired by choosing the mass
sufficiently small. Thus while the maximum nonconser-
vation of parity in 8 decay is indeed obtained by using
H or H' and x=0, we can obtain nonconservation of
parity arbitrarily close to this by using a sufficiently
small but nonzero mass. Similarly, while “double
B decay” does not occur if we use H or H' and k=0,
it has only an infinitesimal probability if « is infini-
tesimal.

IX. THE ~—6 PROBLEM

The view presented here is that there is absolutely
no ‘“explanation” of the observed B- and u-decay
asymmetries. (By an ‘“explanation” we mean some
compelling theoretical reason which would require us
to expect the asymmetries.) These asymmetries have
nothing to do with the fact that there are neutrinos
present—either two- or four-component ones, massless
or massive. The situation may well be compared to that
in the conventional 8-decay theory. There the “theory”
admits five arbitrary coupling constants. Experiments
tell us which ones really are present and what their
magnitude are. 4 priori we have no idea as to whether
the couplings are parity-conserving or not. Experiment
tell us how much parity nonconservation is present.

Let us now consider the 7—6@ problem from this
viewpoint. For some time the experiments have pointed
quite strongly to the fact that there is only one K-
particle which has several different decay modes. These
decays markedly suggest that parity is not conserved
by the weak interactions responsible for them. Naturally
physicists were reluctant to give up a law as useful as
parity conservation on the basis of one phenomenon.
Then Lee and Yang!” suggested that there were other
weak interactions which could be investigated and
which might not conserve parity. The 8- and u-decay
experiments* do indeed show quite conclusively that
parity is not conserved in some weak interactions. The
general law would seem to be that weak interactions do
not conserve parity. As has been seen, the nonconser-
vation of parity is not an intrinsic kinematical property
of the neutrino but a dynamical property of the
coupling. The zero mass seems to have no fundamental
relevance. A simple description of the 7—@ situation is
then the following: There is one K-particle which
interacts with the = field by means of a term

Pu(ap-2+bg.).

The question as to “why”” parity is not conserved by
this pion interaction would seem neither more nor less
deep than the corresponding question for neutrino
interactions.

Indeed, a possible problem of interest might be the
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inverse one. Why do we have the “accidental degener-
acy” of parity conservation in strong interactions?

In the present context, if there is a problem!® of
weak interactions that requires a dynamical explana-
tion, it is the question as to why the degree of parity
nonconservation is apparently maximal. The two-
component neutrino, while not implying this, is a
peculiarly convenient tool for describing the observed
facts. In this connection, Salam’s? condition that the
neutrino mass and self-mass be zero should be men-
tioned. It is readily seen that this is equivalent to the
condition that the double S-decay process should not
occur—and hence that the g-decay interaction should
be of the maximal nonconservation of parity violation
type, and k=0. If x were not zero, there is a finite
double B-decay probability and a mass renormalization
is necessary. However, this renormalization is “‘small”
in the following sense: If 6k were finite it would tend to
zero with . Salam’s condition has the appeal of sim-
plicity. There does not, however, seem to be a com-
pelling reason to adopt it. From the point of view of
two-component theories, we can only say that there are
various relations implied between different conditions
that can be imposed.

X. CONCLUSION

It should be emphasized that the claim is not being
made that the mass of the neutrino is different from
zero. The statement is only that there is no necessity
at present, either theoretical or experimental, for
requiring the mass to be exacily zero. (This would,
though, certainly be the most appealing possibility.)

Of course, the use of a two-component neutrino
theory may be a particularly elegant means of describing
the parity-nonconserving weak B-decay interactions.
The point is only that there is no logical connection
between the two: the left-right asymmetries neither
imply nor are necessarily implied by the use of a two-
component theory. The theory does imply certain
relations between the neutrino mass, double 8 decay,
and parity nonconservation. Thus, for example, if the
maximum degree of nonconservation of parity for k=0
be taken as 1, the maximum degree of nonconservation
for finite « is 1 —«?/{(ko+ k)24 Similarly if the maximum
double B-decay probability (which occurs when parity
is conserved) be 1, the decay probability with maximum
degree of nonconservation of parity is «%/{(ko-+%)?a.

It is a pleasure to thank the various members of the
Institute for Advanced Study with whom I have had
stimulating discussions on many of the points described

above.
APPENDIX A

Since the derivation of the abbreviated Eqs. (16a)
and (16b) in the text does not lead directly to the repre-
sentation used, we give here an alternative derivation
which does.

18T am indebted to Dr. A. Pais for pointing this out to me.
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Write the Dirac equation in the form

W 1

—=a '—_V‘P‘*‘Kﬁ\l* (A1)
ot 7

Using the charge conjugation matrix C, we can write
the complex conjugate equation as

W v
1C ' —= - —CW*kBCY* (A2)
a1 )
Specifically, we use the representation
a=p0, B—_‘PS, (A3)
where
1 0 01 0 —i
Pl=( ), P2=( ), pa=( )
0 —1 10 i 0
Then
C=psA. (A4)

Now decompose into the subspaces py==1. That is

128
Y= )
v
where ¢, Y are each two-component functions on

which the matrices 4, ¢ act. The two equations (A1)
and (A2) become the four equations

Yy 1
— =0 Vi, (A3)
a1
W 1
i—=——0- Vy_+inps, (A6)
at 7
i) 1
i-é;AyL* =-0- VAY *+ik A, *, (A7)
1
i) 1
i—AYF= -0 VAY, *—ikAY_*. (A8)

at 7

The Majorana abbreviation consists in the identifi-
cation

VRSYURS (A9)
Equation (AS) becomes
W, 1

’L—a——‘= o Vll/++KAl//+*, (A].O)
t 1

while Eq. (A6) becomes the complex conjugate of this.
Equations (A7) and (A8) then merely repeat these two
equations.
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APPENDIX B
Charge Conjugation

Let us ask whether this Majorana theory of the
neutrino is invariant under charge conjugation. By this
we mean the following : Can we find a law of association
giving operators ¢¢ in terms of ¢, ¢* so that as a
consequence of the original equations of motion we
have equations of the same form for the charge-
conjugate quantities except that e occurs with the
opposite sign?

First consider purely electromagnetic interactions.
In the case k=0 we have seen it is possible to have a
charge. The equations of motion are

io#(8,—1ed ,)p=0, (B1)
and

1o#*(8,F-1ed#)¢*=0. (B2)

The question here is then whether we can find a law of
association giving a ¢¢ in terms of ¢ and ¢* such that
as a consequence of (B1) and (B2) we have

i0#(d,4-ied )¢ =0,
i (9, —ied ,)$O*=0.

(B3)
(B4)

Now by trying laws of association of the form ¢¢=A¢
and ¢C=A¢* we can readily convince ourselves that
no law of association is possible. Hence, if the charge of
the neutrino were not zero and if it were to be described
by a two-component theory, we could conclude at this
point that the theory is not invariant under charge
conjugation. However, the charge is zero. In this case
a trivial law of association is indeed possible. This is

$C=0.9, (BS)

where 4, is an arbitrary phase factor.

The argument is similar for x320. Then the charge
must be zero. A law of association of the form (BS) is
indeed satisfactory. The only modification is that the
occurrence of the ¢* term then requires 4, to be real,
i.e., 8,===1. Since an appropriate law of association has
been found, we conclude that the free Majorana field
is indeed invariant under charge conjugation.

Are the weak interactions such that charge-conjuga-
tion invariance is maintained? Consider 8 decay. Sup-
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pose we have an interaction
H= Zz 2C; (¢P*50i¢’ﬂ) (\&e*;oi\bt')- (B6)

Corresponding to this term, we can consider a term He¢
obtained from H by replacing all operators by their
charge conjugates. We use the usual relations

¢p, n, ec= 6p, n, eC_L‘pp, n, e*- (B7)
Then
H.= Zz 2C; (‘ppc*;oi‘ﬁnc) (wec*yof‘pvc)
= 21 ZCi (¢p:0i*¢n*) (ille,oi*C¢p)5p*5n53*§,. (Bs)
Under charge conjugation, we have
H—H¢, Hc—H. (B9)

Hence, if the interaction is H+4H¢ we have charge-
conjugation invariance with the present definition. It
should be noted that this invariance corresponds to the
intuitive picture. H¢ just has the particle and anti-
particle operators of H for the charged particles inter-
changed. Hence, in the antiworld all processes would
look just like those in our world.
Now a priori, we can only suppose that the inter-
action term is
aH~+acH. (B10)

Experiment must tell us the relative weights of o and
ac. If they turn out to be equal, we have charge-
conjugation invariance. If they are not equal, this law
is violated.

APPENDIX C

The transformation properties discussed in Sec. III
pertain to the c-number theory. In the g-number theory
we must use exactly the same transformations for
operators for proper transformations and space reflec-
tions. For time reflection we must adjoin the operation
of taking the complex conjugate of all ¢ numbers
(Wigner time reversal). Thus, while space reflection is
related to an antiunitary transformation in the ¢-
number theory, it is related to a unitary transformation
in the g-number theory. Time reflection is, on the
contrary, antiunitary in both theories.1®

9 Note added in proof.—I am indebted to Professors M. Fierz
and W. Pauli for calling my attention to an article by J. Serpe,
Physica 18, 295 (1952). In this article the relation between the

Weyl equation and the Majorana equation for mass zero is clearly
and correctly shown.



