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Dispersion Relation for Nonrelativistic Particles*
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It is shown that if the wave function of a nonrelativistic particje
satis6es the Schrodinger equation with a velocity-independent
potential, then its scattering amplitudes (and the S matrix in
general) satisfy the same dispersion formulas as those derived for
the scattering of light. In the present derivation, the validity of a
perturbation expansion and certain integrabi]ity of the potential
are assumed, and the requirement of the outgoing wave Green's
function replaces the condition of strict causality for the scattering
of light. The scattering amplitude for 6xed momentum transfer is
also shown to satisfy the dispersion relations. Together with the

unitarity of the S matrix, the complete S matrix is determined
by the Fourier transform of the potential through an iterative
procedure using the dispersion relations. If the potential possesses
bound states, then all the dispersion formulas are modified to
include residue terms corresponding to singularities on the positive
imaginary axis of the momentum plane. The necessity of these
modifications is related to the divergence of the perturbation
series for small wave numbers. Essential singularities of the S
matrix due to exponentially damped potentials give no additional
contribution to the dispersion formulas.

I. INTRODUCTION

~k ECENTLY, many authors have derived dispersion
~ ~ ~ relations for the S-matrix of light' and of nonzero-
mass relativistic particles, ' based on the causality
principle that "no signal can travel faster than the
velocity of light As eacuo. " When one considers the
scattering of nonrelativistic particles, such a principle
must be modified for two reasons': (1) Maximum
velocity does not exist. (2) There are no ingoing or
outgoing wave packets that are rigorously zero up to a
certain time. In spite of this diGerence between relativ-
istic and nonrelativistic particles, the corresponding
scattering matrices may be shown to satisfy essentially
the same dispersion relations. In fact, Uan Kampen'
has modi6ed the causality principle for nonrelativistic
particles to the following: "If the ingoing wave packet
is so normalized as to represent at t= —~ one incident
particle, the total probability of t=t& of 6nding a
particle outside of any sphere of radius r&& u cannot be
greater than 1." Under this condition, he has shown
that S&(k) exp(2ika) satisfies the ordinary dispersion
relation except for the addition of residue terms corre-
sponding to simple poles on the positive imaginary axis
of k, due to the presence of bound states. Here, Si(k)
is the S-matrix corresponding to angular momentum
quantum number l and magnitude of momentum

P= hk. It is the purpose of this note' to show that all

other dispersion formulas for the scattering of light for
various combinations of the S-matrix elements' are
satisfied by nonrelativistic particles, except again, for
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residue terms due to bound states. In the present
derivation, the causality principle is simply the require-
ment of the out-going wave Green's function. In
addition, we assume the existence of a velocity-inde-
pendent real potential with certain integrability and
the validity of a perturbation expansion. The essential
part of the results given in this note has also been
obtained recently by Klein and Zemach~ without
recourse to a perturbation expansion. In Sec. II, forward
scattering amplitudes for incident plane waves and
o6'-center spherical waves are shown to satisfy the usual
dispersion relations. In addition, the integrability of the
potential implies that a somewhat stronger dispersion
relation is also satisfied. An inversion of the relation
between the S matrix and the scattering amplitudes
gives the dispersion formula for the 5 matrix. In Sec.
III, the scattering amplitude corresponding to a fixed
momentum transfer is also shown to satisfy the disper-
sion relation. Both Secs. II and III assume uniform
convergence of the perturbation series for all real k.
Section IU considers the unitarity condition of the 5
matrix and an extension of the cross-section theorem is
given. It is then shown that the complete S matrix is
determined by the Fourier transform of the potential
through the dispersion relation. An illustrative example
is given using the dispersion relations to determine the
finite-angle scattering amplitude for the Yukawa well

up through the second Born approximation. In Sec. V,
bound-state contributions are examined and shown to
be related to the divergence of the perturbation series
for small k. Essential singularities, for each Si(k), due
to potentials of exponential type, are shown to give no
contribution in the scattering amplitudes.

II. DISPERSION RELATIONS FOR THE S-MATRIX

The Schrodinger equation in proper units reads:

V'Q+ &P XU(r) P=0—

sA. Klein and A. C. Zemach (private communication). The
author wishes to thank Professor Klein for a preprint of their
work.
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Solutions of (1) also satisfy the integral equation

&iklr—ral
c

y(r) =y;(r) — U(r,)P(r,)d V„
4

(2)

where P;(r) is the incident wave and (1/~r —r& ~)

)(exp(ik
~

r r—~
~ ) is the outgoing wave Green's function.

The scattering amplitude is obtained from the
asymptotic expression of (2):

A (8,k) = —— e '""&U(r&)P(r&)d Vg)
4n-~

with

A(8,k) = Q 7&"A&"&(8,k),
n=l

(—1)"
I ~&U(r„)U(r„)

A&"&(8,k) =
I I II 0'(r-)

& 4&r) & . ' Ir —r„+&I-

where k, is the momentum vector along the direction
of r making an angle 0 with respect to the polar axis.
The usual Born series gives

over k. Ke now assume that the potential diminishes
suKciently rapidly that interchange of the r and k
integrations is permitted. This then implies that the
forward-scattering amplitude satisies the dispersion
relation for each order in 7&. The existence of (5) and
the validity of interchange of integrations will be
loosely referred to as the integrability of the potential.
Upon using (7) again, the assumption of the uniform
convergence of (4) for real k also implies uniform
convergence on the whole upper half-plane. Hence
A (O,k) satisfies the dispersion relation

2k' t "ImA(O, v)
ReA (O,k) = P d v+ReA (0,0) (8)

~ p v(v' —k')

where I' means the principal part of the integral.
The boundedness of A&"'(O,k) implied by (7) can

be made more stringent for our present problem. In
fact, for n&1, the space integration will introduce a
factor (1/k) in the limit of large k, and hence
[A (O,k) —XA &" (O,k)] goes at least as (1/k) for large k.
The dispersion relation that [A (O,k) —A &'& (O,k)) satis-
fies is simply the Hilbert transform formula, ' which
can be rewritten as:

Xexp ik, —r&+ P ik~r —r +&~d dV~ dV„. (5)

We shall assume that (5) exists for every e and (4)
converges uniformly with respect to k. The possible
divergence of (4) will be related to the existence of
bound states which will be considered in Sec. V. We
shall now choose some particular incident waves and
investigate the analytic properties of A &"'(8,k).

First, let

P, (r)=exp(ik; r), (6)

where
~
k;

~

=
~
k,

~

=
~

k
~

and k; is taken along the polar
axis. The.k-dependent part in (5) becomes

exp ik, rg+ik;—r„+. Q ik
I
r„—r~, I

=exp i(k;—k,) r~—ik~r& —r„~ cos(k;, (r~—r„))

+yak(r —r~, (
. (7)

For forward scattering, (k,—k,)=0. From the tri-
angular inequality Q~ &" '~r —r~&~) ~r&

—r„(, the
exponential function (7) is clearly the boundary values
of an uniformly bounded function of f'=k+iE on the
upper half-plane of f'. It has been shown by Toll' that
such analytic behavior is sufficient for (7) to satisfy
the dispersion relation which involves an integration

' J. S. Toll, Phys. Rev. 104, 1760 (1956).

2 t." v ImA(O, v)
ReA (O,k) = I' — d v+XA &"(0,0), (9)

v' —k'

after we have used the symmetry property A*(k)
=A (—k) and the relation

A&'&(0 k) = —— U(r&)d V&

fp
~ik(r '—ro)

rp
&ik[r—ro(—ikrp

1'—I'p

where r' is the radial distance from the point source.
An argument similar to that for the plane wave case
shows that the forward-scattering amplitude for the
spherical wave (11)also satisfies the dispersion relations
(8) and (9). In what follows, we shall assume a spheri-

=A &'& (0,0) =ReA&" (0,0). (10)

Equation (9) is stronger than (8) in the sense that
there is only one constant in (9) as compared with the
infinite number of constants in (8); one for each order
in ) . In what follows, we shall use the dispersion formula
(9) with the understanding that (8) is also satisfied.
Incidentally, if the extent of the scatterer is finite

(~r~ &a), then it is clear from (7) that

exp[2ika sin (8/2) jA (8,k)

also satisfies the dispersion relations (8) and (9).
Next we consider the incident wave to be a spherical

wave originated at a distance rp from the center of the
scatterer, along the negative polar-axis:



304 DA VI D Y. WON 6

cally symmetric potential. In terms of the S matrix, (7) becomes
this forward-scattering amplitude is given by'

where

00

A'(o, k) = P (2l+1)[Si(k)—1]qt(kr ), (12)
2ik i=0

Si(k) = exp[2irt t(k)] (13)

exp —scL ri+ —4 R —ikR„(1—LV/4k')l
2

&(sin(cL, R„) cosio+ P skI r —r +1I (18)
m=1

is the S-matrix element with g~ being the /th partial
wave phase shift. qt(kro) is an lth degree polynomial in
(1/kro), given by

i"(l+ts)! 1
qt(kro) = Q

~=o I!(l ts)!—(2kro)"
(14)

As in WT, an in6nite set of functions of k can be
constructed from (12), each satisfying the dispersion
relation. These functions are

1 ~ (l+n)!
A „(k)= g (2l+1) [Si(k)—1]. (15)

2sks "+' t= (l—n)!

Upon inverting the relation between A„(k) and
St(k), the dispersion formula for the S matrix is
obtained:

Imsi(k) = P bt„k'"+'
n=l

P a „v—'" Re[1—S„(v)]
P~ m=n

x -I' dp

where
(no+a)!

a„„=-', (2nt+1)
(nt —ts)!

2( 1)n—i

bin=
(ts—l)!(to+ i+1)!

+)~A „"&(0), (16)

(17)

A &'& (0) =-', (2ts+1)![ImS„&'&(k)/k'"+']s=o

and we have used (9) for each A (k). If (8) had been
used instead, we would have obtained dispersion
formulas identical with those for the scattering of
light. ' The implication of (16) is essentially the same
as Eq. (30) of WT except that the low-energy limit
here is only a singly infinite set of parameters instead
of the doubly infinite set in WT.

Here, A (h, k) is defined, for all k, through the expression
(18). For k& 6/2, A (A,k) has the physical meaning of
the scattering amplitude for fixed momentum transfer
A. In the unphysical region k(A/2, A (A,k) is just an
analytic continuation through (18).$

IV. UNITARITY CONDITION

For real potentials, ' the phase shifts are real and we
have the simple relation

Im[Si(k) —1]= sin2r) (k).

Re[St(k)—1]=—2 sin'rtt(k) = s I
St(k) —1I'. (21)

Since [St(k)—1] to any order in X can determine
Re[St(k)—1] to the next higher order by (21), one can
combine (16) and (21) to form an iterative procedure
with A„&"(0) as the first approximation. Hence this
singly infinite parameter A „&'& (0) may take the role of
the potential when all the assumptions leading to (16)
holds. The example of a square-well potential has been
given in WT where it is referred to as a dielectric
sphere of refractive index ts= [1+(U/k')]'. Similarly,
we shall show that an iterative procedure can also be
set up for A(h, k) by using an extension of the well-
known cross-section theorem:

ImA (O,k) = (k/4tr) o.„g,i (22)

where R„—= (r„—ri), (A, R„) is the angle between the
vectors A and R„, oo is the angle between the plane
containing cL and R„and the plane containing 4 and
k;, and

k; R„=M„[cos(cL,R„) cos(k, ,ck)

+sin(A, R„) sin(k;, cL) cosio]

;~ R„+km (1—~s/4ks)-:

)&sin(cL, R„) cosio.

It is easily seen by the triangular inequality that
(18) is uniformly bounded on the upper half-plane of

l =k+iK. Again, if the perturbation series converges
uniformly, A (A,k) satisfies the dispersion relation

2 t." v ImA (h, v)
ReA (A,k) = I' — dv+XA &"(6 0). (20)

III. DISPERSION RELATION FOR SCATTERING
AMPLITUDES WITH FIXED MOMENTUM

TRANSFER

Returning now to (7) again, if we consider 4—=k, —k,
as a fixed vector, then as a function of 4, k, and fr },

f Note added te proof. It has been pointed ou—t by N. N. Khuri
(private communication) that, in the unphysical region, (Ig) is
applicable only for A&a/2 if the potential falls off like exp( —ar).

7 If the potential is taken to be complex, then both the syinmetry
property and the dispersion relations have to be modified. This
extension should be straight forward and may be of interest for
some problems.
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Consider the integral

k
A*(k;

~
k)A (k ( k,)dnk,

4n-&

where

fk;( = /k. f
= [k(, k,"k,=ks cos8,

(23)

Changing the variable back to (A,k) and substituting
(29) into (20), one obtains

2 t" vA&'l(A, v)
ReA&s& (A, k) = P- 8p

~0

and the notation for the argument of the scattering
amplitude A(8,k) is replaced by A(k;, ~k,), etc.

Upon expanding A*(k;~k) and A(k~k, ) in partial
waves and using the integral relation' for the Legendre
polynomials,

P((k;)k)P) (k~ k,)dn„= Pi(k, ik,)5ii, (24)
2l+1

it is easily verified that'

k
ImA(8, u) =—~A*(k, tk)A(I lk,)d0, .

4~~
(25)

)A ' (&,0)= exp( —iA r)U(rt)dVr. (26)
4~~

We shall consider the Yukawa well as an illustrative
example:

XU=)~e &"/(pr). (27)

The Fourier transform is

)tA &"(6,0) = —) /Lp(p'+As)].

By (25), we have

ImA&'&(8 k)

k 1
dQI,

4s.& p'(ps+ [ k;—k
~ ) (p'+

~

k—k,
~ )

(28)

4k sin8/2 p'{p +4k'Lp +k' sin'(8/2) ]}'*

We shall call (25) the extended cross-section theorem.
From (25), one can determine Im(8, k) in terms of

lower ordels of A (8,k). Changing the variable to (A, k)
and substituting ImA(h, k) into (20), we see that an
iterative procedure is closed. The starting term is
)A~" (6,0) which is nothing more than the Fourier
transform of the potential:

st+4+ 4/2 (ps+ t +2)]

Xtan-'~ (30)
4+4P2(ps+ les) j$

Equations (29) and (30) agree with the usual pertur-
bation calculation. " Furthermore, the present calcu-
lation appears to be simpler. Here the usual integration
over intermediate states is replaced by two separated
integrations, i.e., the angular integration in the ex-
tended cross-section theorem and the magnitude of
momentum integration in the dispersion relation. More
drastic simplifications are seen in examples of forward
scattering in quantum electrodynamics. "

V. SINGULARITIES OF THE S MATRIX

Thus far, we have derived the dispersion relations
under the following assumptions: (1) outgoing wave
Green's function; (2) velocity-independent potential;
(3) integrability of the potential (this depends on the
form but not the size of the potential); (4) uniform
convergence of the perturbation. series for real k. It is
known' that, when bound states are present, the 5
matrix, and hence also the scattering amplitude, has
simple poles on the positive imaginary axis. Conse-
quently, the dispersion relation cannot be satis6ed.
Since the 6rst three assumptions listed above are inde-
pendent of the strength of the potential, we conclude
that the perturbation series must fail to converge
uniformly for some k. In particular, this is expected to
occur in the limit of small k, since k=0 gives an upper
bound for each term in the perturbation series when
the potential is nonpositive for all r. We shall illustrate
the relation between bound states and divergence of
the perturbation series by the example of the square
well: XU(r) = —X for r(a and zero for r) a.

The perturbation series for the scattering amplitude
at zero energy is

oo (—)t) + p (n 1U(r~)—
A(00)= & / I I II

-=r E4 & & E-=rIr- —r„+tI&
tt'{p4+4k'fp'+k' sin'(8/2) j}&+2ks sin(8/2) ~

X»l
I {p'+4k'$p'+k' sins(8/2) j}i—2ks sin(8/2) 3

(29)

X U(r„)dVt d V„

171 2
=a (a9,)+ -(a9,)'+—(as) )'+

3 15 315
(31)

' P. M. Morse and H. Feshbach, Methods of Theoretica/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 1327.' This result has been obtained by R. Glauber and V. Schomaker
)Phys. Rev. 89, 667 (1955)j.

"P. M. Morse and H. Feshbach, reference 8, p. 1084."For example, J. S.Toll, thesis, Princeton, 1952 (unpublished);
F. Rohrlich and R. L. Gluckstern, Phys. Rev. 86, 1 (1952).
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This series converges to (X) &Ltan(ah&)) for —oo &X
& (s/2a)'. The latter is exactly the condition for bound
states to occur. Incidentally, since A(0,0) converges
for all square wells possessing no bound state and each
term in A (0,0) is greater or equal to the corresponding
term in A(0,k), we conclude that PX"A&"&(O,k) con-
verges uniformly for X& (or/2u)'. This result may be of
greater generality; however, we shall not consider it
any further in the present investigation.

Next we come to the question of what modifications
are necessary in the dispersion relations for scatterers
that possess bound states. Since we can no longer use
perturbation series for all k, the existence and the form
of the dispersion relation must be derived from some
other arguments. It is reasonable to assume that, for
any potential satisfying the integrability previously
considered, there exists a positive number k, such
that the perturbation series converges for

l pl &k on
the upper half-plane, and hence A (O,l) is analytic and
properly bounded on the exterior of the half-circle.
Since the Born series is usually rapidly convergent for
extremely large k and (7) also gives a convergent factor
for the upper half-plane, the above assumption should
cover most physical cases. Now, excluding a neighbor-
hood containing the positive imaginary axis, Van
Kampen' has shown that S&O) is an analytic function
on the interior of the half-circle with finite radius k .
In summing S~(t') to form the scattering amplitude, we
see that the sum is uniformly convergent with respect
to l since l is bounded and St (f) becomes very small for
/ much greater than k times the mean width of the
potential. We thus conclude that A(O, k) is analytic
also in the interior of k except, perhaps, in a neighbor-
hood containing the positive imaginary axis. Hence
A(0,k), and similarly A„(k) and A(h, k), satisfies the
usual dispersion relations (8) and (9) except for contri-
butions from the positive imaginary axis. Van Kampen'
has also shown that for scatterer of finite extent, the
only singularity of S&(t') appears as simple poles located
at t =iK&„, where —(K~„)' is the energy of the eth
bound state for the /th partial wave. For infinite

potentials that are exponentially damped, it is well
known that essential singularities will also occur in
each S&Q) on the positive and negative imaginary axes.
This is, however, independent of the value of P; hence
it should give no contribution to the scattering ampli-
tudes. Otherwise, even for X small enough that the
perturbation series converges, the scattering amplitudes
would still have singularities on the upper half-plane,
and this would be a contradiction. We shall again
illustrate this point by the example of the Yukawa
well (27).

The S-matrix in the first order is

S&&'&(g) —1= 2i—f j t(l r) j t, (l r)r'dr

(32)

where Q~ is the Legendre function of the second kind
which has essential singularities at l =+i)i/2 How. -
ever )

has no singularity and is equal to the first-order
forward-scattering amplitude.

The final conclusion is: When bound states occur,
residue terms due to the corresponding poles on the
positive imaginary axis of l should be added to the
dispersion relations in Secs. II and III.
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00

Z (»+1)LS "'(l.)-13
2il t=o

(p'+2/') X

Q (21+1)Q(l
l

= —— (33)
2pl-2 L 0 2' ) +o


