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Spin-Orbit Coupling in the Proton-Proton Interaction
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The proton-proton interaction is examined at high energies. A phenomenological potential is derived
from the scattering data. In the triplet state, this potential has a strong short-range (~0.4&&10 " cm)
repulsive core region, outside of which a long-ranged tensor force and extremely short-range spin-orbit
(L S) force are eRective. Good 6ts can be obtained to all the p-p data below 510 Mev. More important,
at 310 Mev the calculated phase shifts are very close to the phase shifts which give the best fit found in
a phase-shift analysis of the 310-Mev data, and at all lower energies precision fits to the experimental
data can be obtained by very slight (if any) changes in the calculated phase shifts.

I. INTRODUCTION

A PREVIOUS attempt to fit the two-nucleon data
by means of central and tensor potentials, '

while successful in many respects, failed to reproduce
the proton-proton polarization data at 170 and 310
Mev. A phase-shift analysis' of the 310-Mev p-p scatter-
ing data shows that the reason for this failure is that
the triplet p-wave phase shifts are split in a manner
inconsistent with the tensor force. Some additional
force which splits the triplet P phase shifts differently
than the tensor force is necessary. The spin-orbit
(L.S) force is such a force.

For this reason the potentials discussed in this work.
are assumed to be of the form:

V(r) = Vc(r)+Vr(r)&12+ VLs(r) L S, (1)

where the subscripts C, T, and LS stand for central,
tensor, and spin-orbit, respectively, and where S~2
is the tensor operator, ' L S is the spin-orbit operator
with eigenvalues

Mev immediately discloses the possibility of under-
standing the singlet even-parity part of the nucleon-
nucleon interaction in terms of a simple potential (a
repulsive core with a monotonic attractive potential
outside). Three solutions (1, 3, and 6) of the 6ve
best solutions (1, 4, and 6) found by Stapp et al.
have singlet even-parity phase shifts which are close
to singlet even-parity phase shifts calculated from
potentials which 6t the singlet scattering length and
eGective range. ' These potentials were taken to be
of the form

+oo, r('re+
V+(r) = (3)—'Vo+ exp( —'pc+ r)/'pe+ r, r)'rs+.

The singlet even-parity potential which fits the low-

energy data and which also yields phase shifts at
310 Mev which are close to those of solutions 1 and 3
of Stapp et al. is described by Eq. (3) with

're+= 0.4 'lac+= 1.45, 'Vo+= 425.5 Mev (4)
L S=-,'(J(J+1)—1.(A+1)—S(S+1)). (2) where here and throughout the paper we specify r

in units of 10 "cm and p, in units of 10"cm '
The potential of reference 1 with 'r0=0.3, 'p, g+= 1.26,

and 'Vg+=227. 4 Mev yields phase shifts at 310 Mev
which are close to the singlet even-parity phase shifts
of Stapp's solution 6. However, it is possible to
eliminate solution 6 on other grounds. 4 The remaining
two solutions (2 and 4) have singlet phase shifts which
cannot be understood in terms of a simple potential
which fits the low-energy data. Solutions 2 and 4 are

It is also assumed that Vc(r), Vr(r), and Vrs(r) have
a general spin and parity dependence, but are energy-
independent.

It will be shown below that a potential of the form
of Eq. (1) can reproduce all the proton-proton data
below 310 Mev to good accuracy. More important, the
phase shifts calculated from this potential are very
close to the phase shifts of solution 1 of Stapp et al.
at 310 Mev, and at all lower energies precision fits to
the experimental data can be obtained by very slight
(if any) changes in the calculated phase shifts.

II. 310-MEV PROTON-PROTON SINGLET
PHASE SHIFTS

Examination of the phase shifts resulting from the
phase shift analysis' of the Berkeley p-p data at 310

~ Work performed under the auspices of the U. S. Atomic
Energy Commission.

' Gammel, Christian, and Thaler, Phys. Rev. 175, 311 (1957).
Stapp, Ypsilantis, and Metropolis, Phys. Rev. 105, 302

(1957).
I J. Ashirin and T.-Y. Wu, Phys. Rev. 73, 986 (1948).

4 H. A. Bethe (private communication). Professor Bethe
observes that "the phase shifts of solution 6 give a very small
result for the coeScient C in the notation of Wolfenstein as used
in the paper by Chamberlain, Segre, Tripp, Wigand, and Ypsilantis
/Phys. Rev. 105, 288 (1957)j. C determines the polarization
obtainable in scattering from a complex nucleus. This polarization
is known to be large. The phase shifts of Stapp et al. give only the
contribution of 7=1 states to C. Solutions 1—4 give about 60%
of the total value of C required. The remaining 40'P& has to come
from T=O scattering which seems reasonable. The phase shifts
of solution 6 give less than 20 j& of the required C from T=1
states, which seems unreasonable. "

The authors believe that the phase shifts of solution 6 would
be very difIIcult to fit with a potential. Moreover, such a potential
would have to be in qualitative disagreement with what we
would expect from meson theory.
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TABLE I. A comparison of the 310-Mev triplet even-parity
phase shifts as calculated from the potential of Eqs. (3) and (4)
and as obtained from the phase-shift analysis of Stapp et al. ,
solutions 1 and 3. The entries are twice the nuclear Blatt-Bieden-
harn shifts in radians.

The eGective range p is given by'

g('Sp)
S (1Ds)
g('G4)

Calculated
from potential

—0.3280
0.5328
0.0893

Solution
1

—0.3526
0.4485
0.0349

Solution
3

—0.3822
0.4643
0.038 goo

00

p=2 (1—I )dr=2rp+2 ~ (1—I')dr,
J, J„ (6)

where u is the singlet scattering length. Since the
singlet scattering length is large, this is approximately

therefore not considered in this paper. The singlet
phase shifts for solutions 1 and 3 of Stapp et al. are
compared with the singlet phase shifts calculated from
the potential of Kqs. (3) and (4) in Table I.

The fact that it is possible, then, to 6t the singlet
scattering length and eGective range and the 310-Mev
singlet even-parity phase shifts by the same potential
leads to a basic assumption of the present work,
viz. , that the singlet even-parity interaction is given by
Kqs. (3) and (4) for Z(310 Mev.

The 'D2 phase shift calculated from the potential
of Eqs. (3) and (4) is considerably larger than pos-
tulated by many other workers. 5 It will be shown
below (Sec. III) that such small or negative 'Dp phase
shifts are inconsistent with the description of the
singlet even parity interaction in terms of a potential,
and that this conclusion is not at all inQuenced by the
potential shape which has been chosen in the present
work.

III. 'D2 PHASE SHIFT

For all of the 6ve best solutions of Stapp et al. ,
the 'Sp phase shift is negative and the 'D2 phase shift
is positive at 310 Mev. Since the interaction in the
Sp state is attractive at low energies, it is diKcult to

avoid the picture of a potential which has a repulsive
core and is attractive outside. One way to produce a
small 'D2 phase shift Nt 310 Mev might be to use a
potential which is repulsive at short distances, at tractive
at intermediate distances, and repulsive again. at
large distances. At 310 Mev the impact parameter for
D waves is about 1.1. Thus, the outermost repulsive
part of the potential would have to extend beyond 1.1.
Otherwise, it is clearly possible to produce a larger
rather than a smaller 'D2 phase shift at 310 Mev
than that calculated from a simpler potential. This
follows from the fact that addition of a repulsive tail
requires compensation by an increase in the depth of
the attractive region in order to 6t the low-energy data
(the size of the innermost repulsive region must be
maintained to give negative 'Sp phase shiftsat 310Mev).
The increase in depth may increase rather than decrease
the 'D2 phase shift at 310 Mev, if the attractive region
extends beyond 1.1.

' See Proceedings of the Sixth Annssu/ Rochester Conference on
Pigh Energy Physics (Interscienc-e Publishers, Inc , ¹wYork.,
1956), Session II.

where rp is the radius of the hard core. Since tt(rp) =0
and N(co) =1, the contribution to the effective range
from the attractive region cannot exceed 3s, where s
is the size of the attractive region. Thus

ol
p(2rp+ ss,

s) -', Lp
—2rpj.

(6.1)

(6.2)

Since p=2.7 and 'rp+=0. 4, this gives s&1.4, so that
the attractive region must extend to at least r=1.8,
even if there is no repulsive tail. The inclusion of a
repulsive tail implied that the attractive region must
extend beyond r=1.8. However, for D-waves the
impact parameter is less than 1.8 for energies greater
than 130 Mev, so that it is clear that at high energies
the addition of a repulsive tail tends to increase rather
than decrease the 'D2 phase shift.

This conclusion is in agreement with the results of
reference 1. Table II, reference 1, shows that as the
core size increases the attractive potential is drawn in
towards the core edge ('ts,+ increases). The 'Ds phase
shifts at 310 Mev for various core sizes are shown in
Table II. The 'D2 phase shift increases rather than
decreases as the potential is drawn in.

An extreme model is an attractive potential drawn
right against the core edge (sticky hard core). For such a
model one may use an energy and angular momentum
boundary condition that the derivative of the wave

IrO+
(10 Ie cm)

0.1
0.2
0.3
0.4
0.5
0.6
0.8

IVc+
(Mev)

77.24
128.8
227.4
425.5
896.6

2078
23 207

Ip +
(10» cm I)

0.97
1.1
1.26
1.45
1.70
2.00
3.00

1$0

0.712
0.343
0.000—0.328—0.632—0.924—1.424

0.305
0.366
0.441
0.533
0.639
0.755
0.976

Solution 1 of Stapp et al.
Solution 3
Solution 2
Solution 4
Solution 6

—0.353—0.382—0.681—0.941
+0.009

0.449
0.464
0.152
0.169
0.483

'H. A. Bethe, Phys. Rev. 76, 38 (1949). Ea. (14) and ac-
companying discussion.

TABLE II. The 'S0 and 'D2 phase shifts calculated from various
potentials and compared with the S0 and 'D2 phase shifts of
Stapp et ul.
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function vanish at the edge of the core. This boundary
condition makes the singlet scattering length in6nite.
The singlet effective range and the 310-Mev 'So phase
shift for solution 1 of Stapp et a/. cannot be fitted
simultaneously with such a model. If we choose not to
6t the effective range, the core size determined by
fitting the 310-Mev 'Ss phase shift is about (x/4).
(For this core size the effective range is about 1.6
instead of 2.7.) It is now easy to calculate the 'Ds
phase shift as a function energy. At 310 Mev, 8('Ds)

14.5', which is close to the least 'D2 phase shift
shown in Table II.

As long as it is assumed that the interaction is the
same in the 'So and 'D2 states, it appears that the
310-Mev 'D2 phase shift is largely determined by the
singlet scattering length, eGective range, and 310™Mev
'$0 phase shift, and must be about 15' regardless of the
shape of the potential.

Only solutions 1, 3, and 6 of Stapp et u/. satisfy this
condition. As previously noted, solution 6 is ruled out
on other grounds. ' Moreover, there appears to be no
reason at present not to adopt the more detailed
potentia1 given in Eqs. (3) and (4).

The problem of determining a shape for the singlet
even-parity interaction which 6ts the singlet scattering
length, eGective range, and the singlet phase shifts for
Solution 1 of Stapp et a/. more precisely should be
investigated. It seems adequate at present, however,
simply to characterize the potential by a core size, and
a depth and range for some given shape of the attractive
part. In this work the Vukawa shape is chosen.

m 1
V=———dr V (r)j ts(kr),

A' 4r~
(7)

where V(r) represents the radial part of the central,
tensor, or spin-orbit potential. Then in Born approxi-
mation, ~" the phase shifts are

8(sPp) = Vo 4Vr 2Uz, s, — —(8.1)

5(sPr) = Vo+2V r Vzs, —(s.2)

o(s&s) = Vc sVr+ Vza, — (s.3)
~ See Sec. V of reference 2.
'Of course, the 3P2 state is coupled to the 3P2 state, and it

matters exactly what parametrization of the S matrix is meant,

IV. EVIDENCE ABOUT THE SPIN-ORBIT FORCE
FROM THE 310-MEV DATA

From the order of the triplet P phase shifts for
either solutions 1 or 3 of Stapp et a/. , it is evident that
both a spin-orbit and a tensor term must be present
in the triplet odd-parity interaction. ~

In order to 6t either solution 1 or 3, the spin orbit
term must be attractive in the 3P2 state and repulsive
in the 'Po and 'P~ states. As is shown now, this follows
from the order of the triplet P phase shifts, h('Ps):S(sp, ) &S('E,).

For any potential let

TABLE IIZ. Order of the P-wave phase shifts for various signs
of the tensor and spin-orbit forces.

Tensor

Attractive in 3P0
Repulsive in 'P0
Repulsive in 'P0
Attractive in 'P0

Spin-orbit

Attractive in 3PO

Repulsive in 'Po
Attractive in 'Po
Repulsive in 3PO

Comment

b(ep, ) &S(ep,)
S(ep,) &S(ep,)
h('Pg) )s('P2)
Allowed

where the subscripts C, T, and J.S stand for the central,
tensor, and spin-orbit potentials, respectively. The
various possibilities are shown in Table III. Thus
the signs of the tensor and spin-orbit forces are fixed
by qualitative arguments. This argument, however,
favors solution 1 of Stapp et a/. , since solution 3 has
the wrong sign for the J=2 coupling constant when
the tensor force has the sign determined above.

The order of the P-wave phase shifts of solution 1
is such that no spin-orbit force is short-ranged, of a
range such that it is important for P waves but not
for P waves.

V. EVIDENCE ABOUT THE SPIN-ORBIT FORCE
FROM LOW ENERGIES

8 ('Pg) is what Stapp calls the nuclear bar phase shift. It is perhaps
a little more accurate to think of s('P2) as the element xr of the
tangent matrix; see Eq. (A.10) of' Stapp et at. For small x&,
S('Ps) =xq according to Eq. (A.12) of Stapp et al.

9 Born's approximation su%ces for this discussion. Presumably
there are no bound triplet P states, and from the n-p total cross
section data it appears that none of the triplet P phase shifts
passes through 90' at any energy. Ke are only going to draw
qualitative conclusions from Born's approximation, which is
qualitatively valid under these conditions.

M The factors in front of Vr and Vre come from Eq. (2) and
the expressions for the diagonal elements of S12, the tensor
operator, given in reference 3.

u J. L. Gammel and R. M. Thaler (unpublished). For one
solution the tensor force would have to be attractive in the
3PO state, for the other the tensor force would have to be repulsive
in the 'Po state. We have already concluded that the tensor force
is attractive in the 'Po state and so could have ht the phase shifts.
However, we chose to 6t the angular distribution directly.

» H. Feshbach and F. Lomon, Phys. Rev. 102, 891 (1956).

A phase-shift analysis of the 18.3-Mev p-p data for
the triplet P phase shifts based on the assumption that
the singlet even-parity phase shifts are given by the
potential Eq. (4) results in two solutions; for both of
these solutions the order of the triplet P phase shifts is
that expected from a tensor force."

Since no spin-orbit force is required at low energies,
it may be concluded again that the spin-orbit force is
short-ranged.

There is evidence from the position of the minimum
for 90-Mev tt-p scattering that the order of the triplet
P phase shifts is more nearly that expected from a
tensor force rather than a spin-orbit force. However,
this conclusion is based on experience gained in making
detailed calculations, and it is difEcult to make even a
convincing qualitative argument for it.

Some evidence for both these points is found in the
results of Feshbach and Lomon. " The order of their
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FIG. 2. The polarization at 170 and 310 Mev. The lower set of
curves and data points are for 170 Mev, the upper set for 310Mev.
The curves are coded as in Fig. 1.

odd-parity potential is

oo, r&rp
= —)5 Ur(r)+L'SVrs(r)j, r)ro

F/G. 1. The proton-proton difFerential cross section for several
difFerent energies. The solid curves represent the fits to the data,
with the Yukawa-shaped tensor force. The dashed curves represent
the fit with the tensor force given by Eqs. (11)and (12).Where no
dashed curve appears, the dashed and solid curves are nearly
identical. The difFerential cross sections calculated from a given
potential are practically indistinguishable for 170, 240, and 310
Mev. The calculated curves shown are for 310 Mev. The data
points shown are for 170 Mev. The 310-Mev experimental
difFerential cross section is 3.7 mb independent of angle for
angles greater than 10'. The alternately long- and short-dashed
curve shows the result of using the singlet phase shifts of solution
1 of Stapp et al. together with the triplet phase shifts calculated
from the triplet potential of Eqs. (11) and (12).

triplet I' phase shifts cannot be explained by a tensor
force so weak as not to produce 'I' bound states or
resonances. They failed to get the correct sign for
the Coulomb interference in p-p scattering at low
energies, "and the position of the minimum for 90-Mev
e-p scattering is incorrect.

VI. DETAILED CALCULATION

The arguments presented in the two preceding
sections suggest that a potential which 6ts the low-

energy scattering data and the phase shifts of solution 1
of Stapp et al. should have the following qualitative
features: (1) The tensor force is long-ranged and
attractive in the 'Ps state. (2) The spin-orbit force is
short-ranged and repulsive in the 'Po state.

We have assumed that the form of the triplet

' A. G. Saperstein and L. Durand, III, Phys. Rev. 104, 1102
(1956).

where Vr(r) and Vis(r) have the form

V(r) = V exp( —pr)/iver.

No long-range central force (the hard core is a
short-range central force, of course) is used in fitting
the data. Only slight improvement of the 6t can be
obtained with the addition of a long-range central
potential, and for these slightly improved Gts the central
force is very weak and repulsive. We have thought it
best to omit the triplet odd central potential entirely.

We first adjust the core size, and the ranges and
depths of the tensor and spin-orbit. potentials to fit
the triplet P and F phase shifts and the 'Ps+'Fs
coupling constant for solution 1 of Stapp et a/. As
expected, the spin-orbit force was found to have a
very small range ((0.3). Consequently, only the tensor
force plays a role at low energy.

Ke found, however, that the 90' diGerential cross
sections calculated at 18.3 and 70 Mev were too small;
it was necessary to increase the depth of the tensor
force to fit these low-energy data.

The core size and spin-orbit force were then held
fixed at the values determined from the fit to the 310-
Mev phase shifts, and the range and depth of the tensor
force were readjusted to reproduce the 90' diGerential
cross section at 18.3 and 70 Mev. The deeper and
shorter-ranged tensor force so determined was then
used at 310 Mev and the core size and spin-orbit range
and depth readjusted to fit the triplet phase shifts.
Although the Qt to the 310-Mev phase shifts was
necessarily worsened, the resulting potentials provide
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TABLE IV Singlet and triplet phase shifts eersls energy. The tabular entries are
twice the nuclear Blatt-Biedenharn phase shifts in radians.

Z (Mev)

10
20
30
40
60
80

100
120
140

'Sp

1.896
1.717
1.542
1.390
1.136
0.932
0.757
0.608
0.471

0.003
0.013
0.028
0.048
0.094
0.145
0.192
0.241
0.283

0.000
0.000
0.000
O'.001
0.003
0.006
0.011
0.017
0.022

160
180
200
220
240
260
280
300
320

0351
0.240
0.134
0.039—0.049—0.137—0.219—0.292—0365

(a) Singlet phase shifts calculated from the potential of Eqs. (3) and {4).
iG4 B (Mev) 1So

0.325
0.362
0.393
0.427
0.455
0.477
0.502
0.525
0.539

0.031
0.037
0.427
0.054
0.061
0.066
0.077
0.087
0.091

Z (Mev)

10
20
30
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

0.195
0.354
0.438
0.473
0,473
0.426
0.365
0.294
0.225
0.153
0.081
0.017—0.051—0.117—0.176—0.234—0.296—0.353

—0.088—0.1/4—0.242—0.298—0.388—0.462—0.525—0.584—0.637—0.684—0.734—0.776—0.818—0.862—0.900—0.934—0.974—1.020

—0.001—0.006—0.013—0.022—0.039—0.056—0.070—0.085—0.095—0.107—0.119—0.125—0.136—0.147—0.151—0.160—O.i71—0.177

0.000
0.000—0.001—0.002—0.005—0.009—0.014—0.019—0.022—0.029—0.031—0.034—0.042—0.044—0.045—0.052—0.057—0.056

0.000
0.000—0.000
0.000
0.002
0.004
0.005
0.007
0.010
0.009
0.013
O.Q15
0.013
0.017
0.021
0.018
0.018
0.024

0.038
0.093
0.048
0.199
0.291
0.367
0.433
0.485
0.531
0.565
0.593
Q.618
0.631
0.642
0.653
0.653
0.649
0.649

—0.002—0.006—0.008—0.008—0.002—0.005
0.015
0.021
0.029
0.032
0.033
0.03/
0.032
0.029
O.G28
0.021
0.010
0.004

0.551 0.000
0.678 0.003
0.710 0,007
0.705 0.012
0.663 0.025
0.605 0.037
0.545 0.051
0.490 0.062
0.439 0.076
0.393 0.086
0.354 0.099
0.317 0.113
0.284 0.122
0.256 0.135
0.229 0.152
0.204 0.165
0.183 0.177
0.163 0.196

0.000
0.000—0.002—0.003—0.006—0.009—0.011—0.013—0.011

-0.013—0.011—0.008—0.009—0.005
0.000
0.000
0.000
0.006

0.625
1.026
1.030
1.141
1.165
1.226
1.196
1.210
1.178
1.141
1.125
1.064
1.014
0.980
0.916
0.850
0.804
0.752

(b) Triplet phase shifts calculated from the Yukawa-shaped triplet odd-parity potential given by Eqs. (9), (9.1), and {10).
SPp SP& SF8 SHS SHo 8Ps SF8 2.(2) SF4 sH4 2&(4)

P (Mev)

10
20
30
4G
60
80

100
120
140
160
180
200
220
240
260
280
300
320

0.199
0.353
0.426
0.452
0.435
0.376
0.306
0.229
0.154
0.078
0.003
0.064—0.134—0.203—0.263—0.323—0.386—0.445

—Q.091 .—0.1/6—0.242—0.295—0.378—0.446—0.502—0.555—0.603—0.646—0.691—0.730—0.768—0;809—0.844—0.876—0.913—0.950

—0.001—0.007—0.014—0.024—0.041—0.059—0.072—0.087—0.097—0.108—0.119—0.124—0.135—0.144—0.147—0.155
0.166—0.170

0.000
0.000—0.001—0.002—0.006—0.010—0.015—0.020—0.024—0.031—0.033—0.037—0.044—0.046—0.047—0.054—0.059—0.057

0.000 0.038
0.000 0.091
0.000 0.143
0.000 0.189
0.002 0.271
0.004 0.335
0.006 0.391
0.007 0.433
0.011 0.472
0.009 0.501
0.013 0.524
0.016 0.546
0.014 0.556
0.018 0.565
0.021 0.574
0.019 0.575
0.019 0.570
0.024 0.570

—0.002—0.007—0.009—0.010—0.003
0.005
0.017
0.024
0.033
0.036
0.038
0.042
0.037
0.033
0.033
0.025
0.014
0.008

0.593 0.000
0.730 0.003
0.766 0.008
0.762 0.013
0.716 0.027
0.651 0.040
0.581 0.053
0.515 0.064
0.454 0.078
0.398 0.087
0.349 0.099
0.304 0.112
0.264 0.121
0.229 0.132
0.196 0.148
0.167 0.159
0.141 0.169
0.117 0.187

(c) Triplet phase shifts calculated from the triplet odd-parity potential given by Eqs. {9), {11),and (12).
SPp SP1 SFS SHS SHo SPS SFS 2~(2) sF4

0.000
0.000—0.002—0.003—0.007—0.010—0.011—0.013—0.012—0.014—0.011—0.008—0.009—0.005
0.000
0.000
0.001
0.008

0.641
1.013
1.044
1.148
1.179
1.239
1.214
1.229
1.200
1,165
1.151
1.091
1,041
1.006
0.940
0.871
0,823
0.769

sH4 2o{4)

the best over-all 6t to the data in the energy range
E~,b(310 Mev within this framework (hard core, no
triplet odd-parity central force, and Yukawa-shaped
potentials. )

The potential so obtained is characterized as follows:

'rp =0.4125, 'Vp = —22 Mev, 'pz =0.8,'
(10)

3PL,s =7'317.5 Mev, apl.8 =3.7.

The fits to the data obtained from the potential of
Eqs. (3), (4), (9), (10) are shown in Figs. 1 and 2
(solid curves).

The fact that the best 6t to the 310-Mev phase
shifts required a somewhat weaker tensor force than

that required by the lower energy (18.3-70 Mev) data,
suggests that a change in the shape of the tensor
force may result in considerable improvement of the
over-all Gts. To obtain a smaller effective potential at
high energies than at low, a less singular potential is
indicated. To test this hypothesis„calculations were
performed with a tensor force having the shape:

Vr(r) = Ur(1 ro/r) exp( —Ijr)/p, r. —

This potential vanishes at the core edge. For such a
tensor potential with a Yukawa-shaped spin-orbit
potential, no triplet central force, and the singlet
interaction as given by Kqs. (3) and (4), the triplet
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interaction which best fits the data is described by
the following parameters:

'ro =0.4125, 'Vz = —26

'Vz, s =7122.5 Mev,

Mev, 'pz =0 8,
(12)

ls =3 ~.

VII. PHASE SHIFT ANALYSIS OF THE
1'70- AND 310-MEV DATA

An interaction of this form is negligibly di6erent from
the interaction given by Eqs. (9) and (10) at low
energies, while it improves the fit to the 310-Mev
phase shifts. This is illustrated in Figs. 1 and 2. The
dashed curves are drawn for the potential of Eqs.
(3), (4), (11), and (12) wherever this potential is
significantly different from the potential of Eqs. (3),
(4), (9), and (10).The polarization at 45' as a function
of energy calculated from the potential of Eqs. (3),
(4), (11), (12) is shown in Fig. 3, and the triplet phase
shifts as a function of energy calculated from this
potential are shown in Table IV and Fig. 4. The
singlet phase shifts calculated from the potential
Eq. (4) are shown in Fig. 5.
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The calculated 170-, 240-, and 310-Mev angular
distributions do not give a precise fit to the experimental
angular distributions. This is not a serious di5.culty.
At 310 Mev all of the calculated phase shifts are close
to the phase shifts of solution 1 of Stapp et al. (see
Table V) and these latter phase shifts provide a preci-
sion fit to all of the experimental data at 310 Mev.

In Figs. 1 and 2, the curves drawn with alternating
short and long dashes and the curves drawn with the
dashes are calculated with the triplet odd-parity phase
shifts calculated from the potential of Eqs. (3), (4),
(11),and (12).The long-short dash curves are calculated
with the singlet phase shifts of Stapp et al. and the
dash curves with the singlet phase shifts calculated
from the potential given by the singlet even-parity
potential of Eqs. (3) and (4). Even this slight change
in the singlet phase shifts results in a marked improve-
ment in the shape of the 310-Mev angular distribution,
and an improvement in the fit to the 310-Mev polariza-
tion data at low angles. Singlet even-parity potentials
of different sl'supe (different from hard core with Yukawa
attraction outside) would have to be considered in
order to get a better simlltmeogs fit to the singlet
zero-energy scattering length and effective range and
the singlet phase shifts of Stapp et al. at 310 Mev.

It has also been checked that at 170 Mev, small
changes in the calculated phase shifts (changes similar
to the difference between the calculated phase shifts at
310 Mev and the phase shifts of Stapp et al'. for solution
1 at 310 Mev; see Table V) provide a precision fit to
the experimental data, as shown in Fig. 6.

The most important differences between the phase
shifts calculated from the potentials of Eqs. (9), (11),
and (12) and the phase shifts of solution 1 of Stapp
et al. occur in the 'Po and 'F4 phase shifts and the

J=4 coupling constant. The origin of difhculties
encountered in trying to better fit the phase shifts of
solution 1 is that the L S potential is not entirely
negligible in the P states (see Table VI).

Investigation revea1s that no further significant

improvement in the fits can be obtained without

allowing modifications in the shapes of the potentials.
The authors plan to return to the problem of finding

TABLE V. Comparison of phase shifts calculated from potential
and phase shifts obtained from phase-shift analyses. '

170
Calculated

from
potential

Mev

Adjusted

310 Mev
Calculated Solution

from (1) of
potential Stapp et al.

s('sp)
s('Dp)
s('G )
s('&p)
~('2'i)
~('~)
s(pH p)
a(3B,)
S(3P,)
~('P2)

(2pp)
s(ep, )
5(3H4)

(2p4)

0.295
0.345
0.035
0.0399—0.669—0.114—0.033
0.011
0.512
0.036
0.373
0.092—0.013
1.162

0.260
0.290
0.017—0.050—0.670—0.100
0
0.022
0.472
0.04
0.373
0.08—0.013
1.40

—0.328
0.533
0.089—0.417—0.932—0.169—0.058
0.021
0.570
0.010
0.128
0.177
0.004
0.799

—0.353
0 499
0.0349—0.499—0.930—0.143

+0.003
0.045
0.575
0.015
0.125
0.130
0.030
0.934

A sign-convention opposite to that of Stapp et al. is used for the coupling
constants.

FIG. 6. The cross section and polarization at 170 Mev. The
dashed curves represent the differential cross section and polariza-
tion calculated with the potentials of Eqs. (9), (11), and (12).
The solid curves represent the differential cross section and
polarization calculated from the adjusted phase shifts shown
in Table V.
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TABLE VI. ERect of spin-orbit potential in F states.

State

8F3
SF4
264
3F2

Phase shifts calculated
from the potential of
Eqs. (9), (11), and (12)

—0.169
0.177
0.799
0.010

Phase shifts calculated
from the same potential
except that the spin-
orbit term is omitted.

—0.148
0.110
1.40
0.137

the best over-all fit to the data when the potentials are
allowed to have arbitrary shapes.

VIIL DISCUSSION

(A) For small distances, the nucleon-nucleon inter-
action must really be of the form of a (nonlocal)
potential matrix V(r, r'). For the energy range in
which we are interested, it does not matter what
the exact form of this matrix is; all that matters
is the logarithmic derivative which the wave function
has when it emerges from this region. Presumably this
logarithmic derivative is energy-independent in the
energy range (0—310 Mev) because the interaction is
strong.

The spin-orbit force we find sticks right against the
edge of the hard core. Its main function is to give a
boundary condition which is different for the 'Po,
'I'1, and 'P~ states for at a core radius which is some-
thing like the radius of the hard core plus the range of
the spin-orbit potential. For a core size ro ——0.7, bound-
ary conditions rsu'/I=+ ~ for the 'Ps and 'Pi states
and rsu'/I= 0.6 for the 'Ps state, together with a tensor
potential similar to the tensor potentials found in the
main work, give the same sort of 'I' phase shifts as
shown in Fig. 4.

Our results may be summarized as follows: the core
region (rs(0.7) is much less repulsive for the sPs state
than for the 'I'0 and 'I'1 states.

(3) If the lorIg range nucleon-nucleo-n interaction
is a consequence of the interaction of nucleons with a
pseudoscalar symmetric pion field, then the long-range
nucleon-nucleon potential should be of the form

central plus tensor potentials. There should be no
long-ranged spin-orbit potential. We make this judgment
on the basis of calculations of the nucleon-nucleon
potential by Brueckner and Watson, " Gartenhaus, "
Levy" Taketani '~ and others.

Thus it is very satisfying that we 6nd a spin-orbit
potential which has a short range. Possible origins of
short-range spin-orbit force (or explicitly J-dependent
force with an interval rule diferent from the tensor
force) are interaction of nucleons with mesons of mass
larger than the pi-meson mass, or perhaps nucleon
recoil or some other effect not included in usual calcula-
tions of the nucleon-nucleon interaction from pi-meson
theory.

(C) We have not discussed the problem of charge
independence in this paper. Presumably there may be
a short-range spin-orbit interaction in the triplet
even-parity states which might aGect the 'D phase
shifts at high energy (310-Mev). It is to be expected
that such a short-range spin-orbit interaction would not
be effective at low energies or in the bound state of
the deuteron, because, on the one hand, L S=O for
the 'S~ state and, on the other, the D states do not
penetrate the core region at low energy.

We have made a preliminary 6t of the 90-Mev
ts-p data using triplet even-parity potentials given in
reference 1, triplet odd-parity potentials and singlet
even-parity potentials given in this paper, and adjusted '

the singlet odd-parity interaction to 6t the data. The
fits have the same quality as those found in our earlier
work (reference 1).In particular, the difficulty of finding
calculated angular distributions which are too V-shaped
remains (as might be expected since the new feature
used in this work —the short-ranged triplet odd-parity
spin-orbit force is not effective at 90 Mev). Work is
in progress to determine the origin of this difhculty
and the possible role of a triplet even-parity short-
range spin-orbit interaction in ts-p scattering.
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