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Temperature Dependence of Distribution Functions in Quantum Statistical Mechanics*
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The Bloch equation is utilized to derive an integro-diGerentia1 equation for the temperature dependence
of the Wigner distribution function of a canonical ensemble. This equation is solved by two methods; one
yields a power series in Planck's constant and the other a power series in the potential energy of the system.
Transforxnation functions for the density matrix and the Wigner function are discussed and their possible
application in the treatment of systems obeying I'ermi-Dirac or Bose-Einstein statistics is investigated.

HE thermodynamic properties of a system at
equilibrium can be derived from the partition

function or the related distribution function. The
evaluation of these quantities for quantum-statistical
systems has been approached by various methods, all
with the common purpose of avoiding ' the direct
computation of the energy levels of the system obtained
as solutions of the appropriate Schrodinger equation.
These methods can be grouped generally into three
categories: (1) direct evaluation of the partition func-
tion by successive approximation' '; (2) series solution
of the Bloch equation for the density matrix' "; and
(3) series solution of the quantum-mechanical analog
of Liouville's equation (the Wigner equation) for the
Wigner function. "

The present article is a study of the Bloch equation
for the signer function, which is a quantum statistical
phase space distribution function. We first derive the
equation obeyed by the Wigner function for a canonical
ensemble at an arbitrary temperature and then solve
this equation for systems obeying Maxwell-Boltzmann
statistics. Two solutions are presented, one of which is
an expansion in a power series in Planck's constant, and
the other of which is a power series expansion in the
potential energy. Both series diverge at low tempera-
tures, and it has not been possible so far to obtain a
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useful low-temperature expansion. From these solutions
for the phase space distribution function, the configu-
ration space and momentum space distribution func-
tions are easily obtained and are compared with
previous results, wherever possible.

We next consider systems obeying quantum statistics
(Bose-Einstein or Fermi-Dirac) and approach this
problem with the aid of transformation functions for
the density matrix and the Wigner function. The
transformation functions are defined, some of their
properties are discussed, and it is shown that a formal
separation of the problem of statistics from the problem
of quantum dynamics can be eGected.

Consider a system of S-identical particles obeying
Boltzmann statistics and the laws of quantum me-
chanics. For a canonical ensemble the partition function

Q is given by the expression

p'"'(R, R'P) =2 e 'zV-'(R')4-(R), (3)

where p„* is the complex conjugate of lb„."Alternate
expressions for the density matrix are

p'"'=2- expL —W(R')lib-*(R')4-(R), (4)

p&~&=Q expr —pH(R)ff„(R)f„*(R'). (5)

The Wigner function is a Fourier transform of the

"J. von Neumann, 3Eathematische Grundlagen der Quanten-
egechattih (Dover Publications, New York, 1943).

where the sum is over all eigenstates of the system and
P= (kT) '. The energies E„are the eigenvalues of the
Schrodinger equation

HP„=E„P„, H = —(I't'/2trt) V tt'+ U(R); (2)

is the normalized wave function in coordinate
representation, U(R) is the potential energy, R is a 31V-

dimensional vector denoting the coordinates of the
entire system, and H is the Hamiltonian operator. The
unnormalized density matrix of a canonical ensemble
in coordinate representation is defined by the relation
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where y is a 3E-dimensional vector which denotes all
the momenta of the system and the 3Ã-dimensional
integration extends over all space. This function
possesses many pertinent features of the classical
distribution function; in particular, phase-space aver-
ages may be formed without recourse to operator
techniques as required with the density-matrix formal-
ism. The quantum mechanical operator corresponding
to the observable whose average is desired must be
related to its classical counterpart by means of the
%eyl correspondence. Thus the ensemble average of a
quantity, n(R, p), a function of the coordinates and
momenta of the particles of the system, is, simply,

a(R,y) f(~) (R,y; P)dRdy

I f(~)(R,p; p)dRdp

DiBerentiation of Eq. (4) yields the Bloch equation
for the density matrix,

()p(x)/()p Hp(x)

which has been studied by various authors. ' " The
equation determining the temperature dependence of
the Wigner function, Eq. (6), can be derived in the
following way. Differentiation of Eq. (4) and Eq. (5)
with respect to p leads to

Bp(N)/Bp= —-,'[H(R') p(N) (R,R' p)
+H(R)p("&(R,R', p)g, (8)

and the Fourier transform of this equation becomes

gf(N) 1 (1g'+
t & (2i

expl —p Y
l

2 I hn. i & & 4&ii i
O'

X
l

— (7R+v' — &a—x'
l

2m
'

2m i
Xp(")(R+Y, R—Y P)dY

(1 q'"
t & (2i

+l —
l

~~ expl —y Y l[U(R+Y)
&A~i & J & i' i
+U(R —Y))p( )(R+Y, R—Y; P)dY, (9)

where R has been replaced by (R—Y) and R' by
(R+Y). The Laplacian operators can be rewritten in

density matrix and can be written as

(1 q'~ ~ ~ (2i
f("&(R,p;p)=l —

l expl —y Y
l

(.~~i ~ ~ ) a i
p(")(R+Y, R—Y p)dY, (6)

X[U(R+x)+U(R—x)$

Xf(")(R,p'; P)dxdp' (12)

1(1 q I' '2x
exp —(R—x) .p'

2 &~~i

X[f'"'(R, y+y', P)

+f(")(R, y —y'; P)]U(x)dxdp' (13)

=c»(2&'7P ~R) U(R)f'"'(R, p; p). (14)

In Eq. (14), Va operates on U(R) only. The 0' operator
has been written in a variety of ways for later reference. "
Equation (10) may be considered a fundamental
equation for equilibrium ensembles. Its classical
counterpart is

gf (X)

Bp

2'

+U(R) f,i&"&,

.25$
(15)

which is obtained at once from Eq. (10) in the limit as
l&;+0 or directly by differentiation with respect to p of
the classical unnormalized canonical distribution func-
tion,

p
SN

f i'"'=
l I exp( —P& i) & i= +U(R) (16)

) 2i(hi 2m

Comparison of Eqs. (10) and (15) shows the influence of
quantum mechanics on the equation for the distribution
function: 6rst, in the appearance of the terms—(5'/8m)&R'f(~& and secondly, in the more complex
eGect of the potential energy.

The solution of Eq. (10) for the quantum mechanical
distribution function in a power series in Planck's

'4 Compare with H. S. Green, reference 7.
~~ J. H. Irving and R. W. Zwankg, J. Chem. Phys. 19, 1173

(1951).

terms of the variables R and Y; this permits integration
of the first two terms on the right-hand side of Eq. (9)
and we obtain the desired equation, "
Bf(~) (A~ p' )v '- lf'"&(Ry p)

()P (8m 2m i
O-' f(N) (R,p; P), (10)

where
1(]9 fear) .

l l

i
~ exp I y

2 &A~i

X[U(R+Y)+U(R —Y))

Xp(~)(R+Y, R—Y p)dY (11)

(1 q8&&

exp —(p —p'). x
2 L, a~i
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constant, appropriate for almost classical systems, can
be derived most easily with the representation of the
O' operator given by Eq. (14). We postulate the
solution for f'~& to be

f'"'(R y. p) =f.&'"'(R y p) 2 &"x-(R y p) (»)

Higher approximations to f&N& can be easily determined
by similarly straightforward evaluations of po, po, etc.

The distribution function in configuration space
p&N& (R,R; p) =—p&~& (R; p) is obtained from f by
integration over the momenta,

»'~&(R; p) = . f'"'(R y p)&y 23

m q-'*" p' qf& (R,y; P) =f,&& &(R,y; P) Q A'"P„(R,y; P). (18) (x&(R. p) ('
~

I+go
~

~V oU
nM &2~pa'] 12~)

( )
It can be readily established that the coefFicients of odd
powers of 0 in (17) must be zero if f&~& is to reduce to
f,&~~& at infinite temperature, and we may thus rewrite If w pp x'ma f y ~o& (1+"&i)

(17) as becomes

Substitution of Eq. (18) into Eqs. (10) and (14), and
equating of the coefficients of like powers of fs, yields
the desired equation for g„:

Bp„ 1
f.&'"' — va'(4 if.&'N')

BP 8m

(jv .v )2(n—k&

+ Q (—1)" ~ U(R)f,&&~&P&,——0, (19)
k=0 [2(e—k)j!

of which the solution is, for e)0,

Va'9-i(e ")j I

(p po) ~i (&vR. v )2(m—k&

+exp'
I & (—1)" ~'U(R)

( zns ) s=o [2(l—k)j!

3

(v U)' e-~~. (24)
24m

This expression has been derived by earlier investigators
by considerably more complicated methods. The distri-
bution function in momentum space o&~&(y; p) can
likewise be easily determined:

(25)

To terms of order k' 0&N) is

( 1 i'" ( pP'i— —pU)dR
(znk) E zest )

+O' I exp( —PU)gidR, (26)
P'f&"t

XexP~ —
~Po dP'. (20)

zm) where further evaluation depends upon the specific
form of the potential energy function. Thus, the present
formalism provides the advantage of yielding one
solution of the fundamental equation from which the
configuration space and momentum space distribution
functions, as well as phase-space averages, can be
obtained by relatively simple integrations. If, instead
of Eq. (17), we had postulated the form

For m=0, we have

8&o/BP =0, Po
——constant;

since f&~& approaches f.&&~& as p approaches zero, we
obtain Po

——1.The equation for Pi can be reduced to

Bgi 1
+ t 2P(Va'U)

BP 8m
yy }

f' '(»y p)=) ( exp p( &.i+Z&—'"e-
I—p (v U)'+v v U(R):—=0, (z1) (2 A)

where ab: cd—= (a d) (b.c). The integration of Eq. (21),
subject to the initial condition pi—+0 as p—+0, is trivial
and we obtain

(Va,'U)
8ns

(VaU)'+VaVaU(R): — . (22)
24m ns'

as a solution of the fundamental equation, we would
have arrived at the results of Mayer and Sand. For
the calculation of the first-order quantum corrections
to thermodynamic functions it is immaterial which
approach is used.

The series solution, Eq. (17), is applicable to quantal
systems obeying Boltzmann statistics. Consideration
of Fermi-Dirac or Bose-Einstein statistics is of impor-
tance in regard to the correct dependence of f'~& on E,
the number of particles, and leads in the limit as 5
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approaches zero to the proper entropy expression, i.e.,
a homogeneous function ef the mass. '4 However, for
practical purposes the neglect of Fermi-Dirac or Bose-
Einstein statistics is justi6ed as it appears that the
power series solution in h for f&~) is not useful for
regions of density and temperature where Boltzmann
statistics is inadequate.

which can be shown to agree with the results of Green, ~

Goldberger and Adams, ' and Chester. ' In the same
approximation the distribution function in momentum
space,

( 1 0'" (—pp'l
expl

) 2w))6) ( 2m )

The fundamental equation, Eq. (10), is also amenable
to solution by a perturbation procedure. Other
authors' ' ' have considered this method and our results
agree with the previous work. We outline the steps
brieQy for the sake of completeness. For Maxwell-
Boltzmann statistics, the unnormalized distribution
function reduces to

X V"—P U(R)dR, (31)

is identical to the classical distribution function, a
result which becomes invalid when higher order terms
are included or when Bose-Einstein or Fermi-Dirac
statistics are considered.

(1/2m &6)
6~ exp (—PP'/2m)

in the absence of all forces. We postulate therefore the
following solution,

f'"'(R,y; p)

expl I Z &"~-(R,y; p), (27)
E27r&&6) 0 2r)6 =6

f the integro-diGerential equation

So far we have confined the discussion to systems
obeying Boltzmann statistics. Ke propose to approach
the problem of quantal systems obeying Fermi-Dirac
or Bose-Einstein statistics with the aid of transfor-
mation functions and turn now to such considerations.

We define a transformation function" for the density
matrix, )&& &(R, R'; p+rI q, q'; p), by the integral
equation

p&» (R, R', p+r) = I . ~&"&(R, R', p+r I q, q', p)

&&f&N)
~

A' p' q
'lp 6

I
f&K) l&~~. f&N)

ap (8~ zm)
(2g)

Xp'»(q, q'; P)dqdq'. (32)

By use of the representation,

pP A2

o)„=— exp —(p—r)
0 Sns

-rp2-
XJ-p

'
e

1 2m

(—rp')
exp

I
Io) r dr.

( 2nz
(29)

where ) is the expansion parameter and where we shall
use the representation of the 8' operator given by Eq.
(13). Substitution of Eq. (27) into Eq. (28) and
equating the coeKcients of like powers of X yields a set
of equations with solutions:

p&» (R,R'; p) =expl —pH(R) $&&(R—R')
=exp L

—PH (R))p&» (R,R', 0), (33)

for the density matrix, one easily 6nds

«&» = l&(R—q)&) (R' —q') expL —rH(q)$,
)&&N) =exp) —rH(R) )&&(R—q) l) (R'—q') (34)

= p&N) (R,q; r)h(R' —q'),

as formal representations for the transformation func-
tion. In a similar manner, the transformation function
for the Wigner function, K &»(R, yp+7IR', y';p), is
deined by the integral equation

To terms of order X, the distribution function in f&»(R p+ )
configuration space can be reduced to )0)

nz(R —x)'
t 4') &" (4&rm) &"

X
I I I I

exp-
& p+~i L p r)-

~~ nz(R —x)'-
Xexp — U(x)dxdr,

&&'(p—r) .

( ~ q
v i&~t) &I ( 1 q

6N

~'»(R p)= I( 2n-P&ss j &
&)

~ (2n-&)6)

(30)

Xf&"&(R',y' P)dR'dy' (35).
The transformation function ION) represents a descrip-
tion of the formal transition of the system at one

"The transformation functions defined here differ from the
Green's functions discussed by Husimi, ' Goldberger and Adams, s

and Siegert. ' The present functions are analogous to the time-
dependent transformation functions, developed by J. E. Moyal,
Proc. Cambridge Phil. Soc. 45, 99 (1949) and by J. Ross and
J. G. Kirkwood, J. Chem. Phys. 22, 1094 (1954).
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temperature and position in phase space to another
temperature and position in phase space.

It can be seen readily from the dehnitions of the
transformation functions that ~&~) obeys Bloch's
equation,

leads very simply to the completeness relation:

p, &~& (R,R', 0) = P (+1)~ ~~&&(PR—R'). (42)

or
&7K&"&/&7r = H(—R)K& "&

BK &~&/Br = —K&~&H (q),

(36) In Eq. (41) the operator P permutes the components
of R and the sum extends over all X! permutations.
Use of Eqs. (32), (34), and (42) leads now at once to
the proof of the result

with the initial condition

K& & (R R'; P l q q'; P) =B(R—q)l&(R' —q'). (37) K& & (R R'; P l q q'; 0)p & & (q q' 0)dqdq'

Similarly, the function E(~) obeys the fundamental
equation, Eq. (10), =

~
&&(R—q)b(R' —q') expl —PH(q))

Sf
XP(+1)~ ~!&(PR—R')dqdq'

= expl —PH(R) j P(&1)~&'~&&(PR—R')
gf

=p, &"&(R,R', P), (43)
with initial condition

(Rpp l
RpP)p(RR)p(pp)(39)or, symbolically,

Thus, the transformation functions can be determined
by solving the appropriate equation, Eq. (36) or Eq.
(38). For example, power series solutions of Eq. (38)
can be eGected in a manner analogous to that presented
above for the determination of the distribution function
f&~&; the details are omitted.

The formal separation of the problem of statistics
(proper symmetrization) from the quantal problem of
solving the Bloch equation or the corresponding equa-
tion for the Wigner function can now be accomplished.
Suppose that in Eq. (32) for the density matrix or Eq.
(35) for the Wigner function we choose an initial state
and construct a properly symmetrized function for
that state. The transition to any other state with the
preservation of the proper symmetry is eGected by the
appropriate transformation function which, in this
scheme, is independent of statistics as it is determined
uniquely by Eq. (36) or Eq. (38) and the corresponding
initial conditions. Let us follow this procedure for the
density. matrix and select the initial state at P=0. The
density matrix with a subscript s to indicate a sym-
metrized function,

p.&"& (P) =K'"'(P
l
o) .p*'"'(o). (44)

where
.p &N& (P) =K &N& (P l 0) ~ p&+& (0) (45)

1
K &"& (0l 0)= p (a 1)~ ~B(PR—q)8(R' —q'), (46)

and
1

K &~& (Pl 0) =expL —PH(R) j p(& 1)~~~!&(PR—q)gI p

X&&(R'—q') =p.'"&(R,q; P)&&(R'—q'),

A similar equation can be written for the Wigner
function.

An alternative approach consists of considering an
initial state described by Soltzmann statistics and
constructing a transformation function which e6ects
the transition from this initial state to a final state of
the proper symmetry and at a different temperature.
Equation (36) or (38) still suffice for the determination
of the transformation functions, but must now be
supplemented by the appropriate initial conditions.
Thus, symbolically, we write

p,&~&(R,R', P) =P„expl —PH(R)giP„*(R')iP„(R) and we observe that the permutation of one variable,

(40)
R or R' is sufficient. It is interesting to note that the=exp-
relation

can be evaluated by means of any complete set of
symmetrized wave functions. The use of plane wave
functions,

1 (1 qI~ piZ(~1)' expl -p PR I, («)E!(2~k) z L.&&t )

p '(P) ="'"'(PI0)p.'"'(o) (47)

also holds. Equations similar to Eqs. (46) and (47) can
again be written for the Wigner function.

Application of this formalism to problems in sta-
tistical mechanics and quantum mechanics of molecules
is under consideration.


