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where the prime indicates that the sum over n is re-
stricted to the chosen configuration. This is the self-
consistent potential used in the W,B.B. treatment.

In the r matrix expansion shown in Eq. (17) the
comparison potential U no longer appears explicitly,
so that the usual self-consistent de6nition of U will be
of no use. But there is a weaker kind of self-consistency
condition which can be invoked for the v matrix ex-
pansion. This consists in de6ning U to be any convenient
sum of one-body potentials which have one parameter
free. This parameter could be the depth or the range
of these potentials. This parameter is then adjusted so
that the 6rst-order term of the level shift-expansion,
(Qr ), vanishes. While this type of self-consistent

potential cannot be expected to be as effective as the
Hartree-Fock or W.B.B. types in increasing the initial
rate of convergence of the perturbation expansion, it
certainly is much easier to implement.
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Appreciation of a Velocity-Dependent Potential to the Nuclear Photoeffect*
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Calculations of the total photonuclear absorption cross sections have been carried out for a number of
nuclei throughout the periodic table. The shell model, with a velocity-dependent potential, has been used.
This potential is proportional to the kinetic energy of the nucleons, and gives rise to a changed effective
nucleon mass. One of the eQ'ects of such an effective mass is to change the frequencies of the giant gamma-ray
absorption resonances. Previous independent-particle model calculations had resulted in frequencies con-
sistently lower than the observed values.

With an effective nucleon mass inside the nucleus of about 55% of the normal mass, very good agreement
with the experimental values is obtained for medium and heavy nuclei. Within the limits of the assumptions
made in the calculations, the forms of the observed excitation curves are closely reproduced, and are peaked
at roughly the correct energies. Furthermore, the cross sections integrated over excitation energies, which
are nearly model-independent quantities in the changed-mass case, are, except for the very light nuclei,
consistent with the experimental values.

L INTRODUCTION

A NUMBER of models have been proposed' in
order to explain the giant resonance phenomena

of the photonuclear effect.'' It has been pointed out.

by Levinger' that there is little difference between the
predictions of all reasonable sub-unit models. Recently
however, some magic-number phenomena relating to
the photoeGect have been observed. In particular, the
resonance widths for closed-shell nuclei are smaller
than the widths for neighboring nuclei. Since the shell
model has been fairly successful in predicting the
properties of the ground states, 4 and the low-lying

*Supported in part by the Once of Ordnance Research, U. S.
Army.

t Now at the Institute of Mathematical Sciences, New York
University, New York City.' J. S. Levinger, Annual Reviews of Nuclear Science (Annual
Reviews, Inc. , Stanford, 1955), Vol. 4.

~Montalbetti, Kata, and Goldemberg, Phys. Rev. 91, 659
(1953).

3 R. Nathans and J. Halpern, Phys. Rev. 93, 437 (1954).
z M. G. Mayer and J. H. D Jensen, Ete. nzentary Theory of

Nuclear Shell Structure (John Wiley and Sons, Inc. , New York,
1955).

excited states, ' it is reasonable to attempt an extension
of the model to higher levels. Such proposals have been
made by Wilkinson, ' Courant, Burkhardt, and
others. ' "

If we assume only ordinary (space-dependent) forces
to exist between nucleons, photoabsorption is not
satisfactorily explained by the independent-particle
model. The principal discrepancies are:

1. The calculated transition energies are smaller by
about 50% than the observed resonance energies. '

2. Photon scattering provides major competition to
neutron emission. This is not observed. '

3. The resonance frequencies depend too strongly on
mass number. '

5 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).' D. H. Wilkinson, Proceedzngs of the 1954 Glasgow Conference
on Nuclear and Meson Physics (Pergamon Press, London and
New York, 1955), pg. 161.

~ E. D. Courant, Phys. Rev. 82, 703 (1951).
8 J. I.. Burkhardt, Phys. Rev. 91, 420 (1953).
z A. Reifman, Z. Naturforsch. Sa, 505 (1953).
zz S. S. Wu, doctoral thesis, University of Illinois, 1951 (unpub-

lished).
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Fxo. 1. Single-particle energy levels for particles governed by
the Hamiltonian 8= (1/2m)[yR' y+ia yEXy]+V, where

V= —t/'o for r &R
=0 for r&R;

X=1.8 for r &R
=1 for r)R.

The axes are labeled by the dimensionless parameters 2mRsVs/lt'
and 2mR'(Vs —s)/A', where s is the binding energy.

4. The model-independent dipole sum predicts values
for the cross sections integrated over frequencies which
are too small. "

We have considered the problem using a velocity-
dependent potential of the types introduced by Johnson
and Teller" and by Duerr. " The nonrelativistic
expansion of Duerr's Hamiltonian is

B= (1/2m) pE p+(i/2m). e pE)& p+V, (1)

where E=srs/sm, rt=1/(1 —y—) and V= U —mc'y. Here
q is a (dimensionless) scalar potential, and U is the
fourth component of a vector potential. The effective
mass inside the nucleus is written as nz, ff.

II. METHOD

In our calculations, we have made the following
approximations:

"J.S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).
~~ M. Johnson and E. TeBer, Phys. Rev. 98, 783 (1955).
'3 H. P. Duerr, Phys. Rev. 103, 469 (1956).

Pro. 2. Electric dipole transition energies between levels fo&
which the particle wave functions have no radial nodes. Solid
curves represent transitions of the type 1/; &+y~1(l+1); &+&+y

that is, for spin and orbital angular momenta parallel. Dashed
curves are for 1l; ~ 1~1(l+1); ~+~ 1 The param. eter 2mR'W/it'
is used for the vertical axis, where W is the transition energy.

1. The potentials y and U are square-well potentials,
with q =0.45 inside the nucleus and 0 outside, so the
E=rri/mz, tr 1.8 inside. T—h—is gives Duerr's value for
ns, ff." The quantity t/'= U—mc'q is. taken to have a
value inside the nucleus such that the correct number
of particles are bound with the observed binding
energies.

2. The Coulomb eGect is taken into account only to
the extent that the velocity-independent potential well
is more shallow for protons than for neutrons.

3. All levels within a shell-model con6guration are
degenerate.

4. Only electric dipole transitions are considered.
5. The nonrelativistic Hamiltonian of Eq. (1) is used.

No further considerations will be given to the 6rst
two approximations. In Sec. IV, however, along with
a consideration of pairing energies, we shall improve on
the last three approximations.

In Fig. 1 we have plotted the single-particle energy
levels as a function of the velocity independent po-
tential well depth. In Fig. 2 are the transition energies
for single-particle dipole transitions in which the initial
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and 6nal wave functions have no radial nodes (other
than those at the origin and at infinity).

The dipole transition probabilities were calculated
with a well-known formula. The matrix elements of
the electric dipole moment were determined by an
extension of a method introduced by Courant. ~ The
result is

~ap +ap ~ap

1 dE
=——(cos8) e

—(EV) —f8+-,' (1—3)W)
m dr dr

IE dE 1
(3+2rs+2)E

2m dr r dr

d /1 dE't
+Prs (e —1) .]—i

E-
dr (r dr)

1 dE
frs3+—2l(l+1)j E—, (2)

r dr ~s

where E is the energy of state 0,, 5' is the transition
energy, 8=—(e 1)ss—(e I), and

= l for transitions j—+j+1, l~l+1
= —/ —1 for transitions j—+j—1, /—&l'—1.

As a second evaluation of the summed dipole
strengths we used the sum rule

2m'5

P ei P E..(P)',
/gal P a

where the e~ are the effective charges for dipole transi-
tions, "and as before, E~m/ris, ir, P refers to the two
types of nucleons.

III. RESULTS

In Table I are listed the values of the velocity-
independent potential well depths for both kinds of
nucleons using nuclear radii 8=1.2A&&10 "cm. The
values are chosen so that the correct number of particles
are bound by the observed binding energies. However
the results obtained are almost entirely independent of
the choice of these well depths. They have no eGect
on the integrated cross sections, and make very little
diGerence in the transition energies.

In Table II we have presented a sample of the data
used for obtaining the excitation curves. The first two
columns of Table II give the initial levels that can
contribute, and the number of nucleons in these levels.
The data have been taken from the ground-state
configuration assignments given by Mayer and Jensen. "
The next two columns list the final levels that can be

All terms on the right hand side of (2) are matrix
elements of 8 functions and are easily evaluated with
the square-well wave functions.

In accordance with the cloudy crystal ball model, "
each of the spectral lines was broadened by roughly
3 Mev to account for particle interactions. Lines
resulting from transitions to virtual states were further
broadened to take account of the finite lifetime of the
excited states against direct particle emission. Transi-
tions to the continuum (energy of the excited states
exceeds its centripetal energy) contributes to a broad
high-energy background rather than to the giant reso-
nance, and were not included in plots of the excitation
curves. These latter contributions however, amounted
to about 15%%u~ of the total strength, and were included
in calculations of the integrated cross sections. Natural
line broadening is negligible in all cases.

Level a

1113/2

2fsi2

2 frn2

1hg/2

3$1/2
2d3/2

2d5/2

2d3/2

TABLE I. Uelocity-independent potential well depths for various
nuclei, with a nuclear radius of 1.2)&10 13A& cm.

2d5/2
Vo Vo

(neutrons) (protons)
Mev Mev gv/2

Vo Vo
(neutrons) (protons)

Mev Mev NucleusNucleus

76
78
73.5
70
68
70

1g9/2
2p1/2
1f5/2
2p3/2

Rh"'
Nb"
Asz5
Mn'5
P31
Mg'4

60
64
61
60
68
70

54
58
60
59
62
64

64
68
68
72.5
73
72

U238

Bj209

Au'gz
Ta181
La139
I12?

TABLE II. Au" . An example of the calculated data
for a particular nucleus.

+' FpJ'0 pdw
Fp Mev b 2mR2W/h2 FormN

Neutrons V0= 68 Mev
1J]5/2 1 0.465
2h11/2 1 0.075
2gz/2 1 0.21
3d3/2 1 0 06
2gg/2 1 0.255
3d5/2 1 0.11
1&11/2 0.405
2g7/2 1 0.05
3pz/2 1 0.05
3p1/2 1 0 05
1i13/2 2/14 0.06
2gg/2 1 0.075
3p1/2 1 0.08

SU01 = 1.945

12 26.0
78.0
36.6
51.0
31.5
54.0
32.3
63.6
35.8
44.0
24.8
66.6
46.5

C1
B
C1
B
C1
B
C1
C2
C1
C2
C1
C2
C2

10

2

12

Protons
2f5/2
3pI/2
1213/2

2gg/2
2fZ/2

3p3/2

2f5/2
2fz/2
2d3/2
2d3/2
3$1/2

V0=60 Mev
0.20

1 0.08
1 0.93
1 017
1 035
1 0.18
1 0.635
1 0.095
1 0.14
1/4 0.03
1/4 0.02

0.125
Sum =2.955

33.2
40.5
23.4
65.0
29.4
43.0
28.7
53.0
56.5
31.6
45.0
39.0

C1
B
C1
B
C1
B
C1
B
C2
C1
C2
C2

12

10
2
6
4

"Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954l.
'5 H. A. Bethe, Rev. Modern Phys. 9, 87-90, 71 (1937).
"Reference 4, Chap. 5.
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TABLE III. Summary of calculated and experimental data. Calculations were carried out using the approximations described in Sec. II.

4 6.1. 2. 3. S.
J~(res) J'o»~(~, n)

J'odW'(calc) )&dW(calc) )&dW'(exp) 8 (calc) Wmax (calc) Wmax (exp)
Mev b Mev b Mev b Mev Mev Mev

7.

r,
Mev

8.

r (calc)
Mev

9. 10.

r (exp) amsx (calc) ~'max(exp)
Mev barns barns

U'238

P, j209

Au197
Ta181
La139
I127

Rhl'
Nb93
As7'
Mn55
P31 o

Mg'4

5.74
5.12
4.90
4.45
3.48
3.22
2.65
2.43
1.90
1.39
0.816
0.816

0.580

4.21
3.79
3.59
3.27
2.65
2.39
1.91
1.72
1 43b
0.99
0.456
0.545~
0.410e
0.406'

4.55
4.08
3.19
3.43

2.04
1.94
1.46
0.80
0.88
0.161
0.161

0.055g

0.16g

14.15
14.9
14.95
15.25
16.7
17.2
18.4
18.9
19.95
19.85
24.2
24.2

26.2

12.2
12.0
11.75
12.05
13.9
13.8
14.2
15.6
16.45b
16.7
17.9
19.0

21.1

13.8
13.2
13.9
15.1
15.5
16.5
17.0
17.3
18.4
21.5
21.5

19.5

3.40
3.31
3.43
3.18
3.26
3.45
3.31
3.19
4.08
4.01
3.58
8.6

8.73

5.7
5.6
5.7
5.6
6.9
6.8
6.55
6.9
9.8
7.7
3.7

10.0

11.0

6.6
4.1
6.9
7.9
5.7
8.3
8.9
6.8
9.0
8.8

10.2
10.2

0.49
0.44
0.41
0.37
0.267
0.23
0.187
0.169
0.105
0.101
0.0705
0.035

0.025

0.98
0.63
0.456
0.397

?
0.243
0.205
0.195
0.0903
0.0969
0.0167
0.0167

0.0084

& Includes (y,2e) and (y,f) weighted according to the number of neutrons emitted.
b Includes two peaks, believed to be unresolved experimentally.
c The first set of values were determined by using a collision width I'c =3.58 Mev. For the second set, a collision width rc =8.6 Mev was used.
d Value given for J'o»crdW.
e Value given for J'o22 50dW;
& J'o»rrdW =0.271 Mev-b.
I The two values given are for fo24r(y, m)dW(exp) and fo"o (y,P)dW(exp), respectively.

reached by means of dipole transitions, and the fraction
of these levels that are initially empty. Possible transi-
tions to levels other than those specifically listed have
been found to give rise to negligible contributions. In
the 6fth column are the integrated cross sections for the
single particle transitions, multiplied by the number of
particles in the initial level and by the fraction of holes
in the final level. (We have treated levels within a
configuration as degenerate. ) In the next column, we
have listed the values of the parameters 2'' W/h'

corresponding to the transition energies, some of which
have been taken from Fig. 2.

Listed in column 7 are the categories chosen for the
excited level widths. The symbols C1 or C2, are used
depending on whether the transition will contribute to
the giant resonance or to a subsidiary resonance. For
those cases where the width for particle escape (I'i ) is
much greater than the collision width (I',) the symbol
8 is written to designate that the transition is one
contributing to a background. In the few cases that
I'„=I'„ the total width for the transition, I'„+I', is
listed. In the seventh column of Table III we have
given the collision width F, assumed for each nucleus.

Figure 3 shows the cross sections as functions of the
transition energy for three sample nuclei. Similar curves
for a number of other nuclei have not been included.
The solid curves labeled (a) represent the cross sections
calculated using the methods of this section. A discus-
sion of the methods used to arrive at the curves (b)
will be given in Sec. IV. The dashed curves are experi-
mental, and include (y-n) processes only. The bottom
and left hand scales correspond to nuclear radii 1.2
)&10 13A& cm, taken to be the same for both neutron
and proton cores. The top and right hand scales result
from radii of 1.3)&10 "A& cm.

The interesting data taken from these and other
graphs are given in Table III, and the corresponding

experimental results are also shown for comparison.
All of the experimental data are taken from the work
of Nathans and Halpern, ' except where indicated
otherwise.

We use the following notation:

Total integrated electric dipole cross section=—J'odW.

Cross section integrated over the giant resonance
—=J'0.(res) dW.

Cross section integrated to energy b in Mev—= tgodW.
Mean energy= J'o"o.W—dW/ Jo"OdW =W

Energy at which cross section of the giant resonance is
a mnaiiuur—=8', .

Individual level collision width assumed—=F,.
Width of the giant resonance at half-maximum—=j.".
Maximum cross section of the giant resonance—=0-, .

The results that we have obtained in this section
indicate a general improvement over previous inde-
pendent-particle-model calculations. The integrated
cross sect ions have been increased over results obtained
by using purely space-dependent forces, and except for
the very light nuclei, are no longer inconsistent with
the experimental results. Furthermore, the transition
energies are also increased, and the agreement here is
again greatly improved.

We note that the introduction of an appropriately
chosen percentage of Majorana exchange force can also
result in good agreement with observed integrated cross
sections. "Unfortunately, further comparison with ex-
change force calculations is not possible since other
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VVith reference to the first three numbered columns
of Table III, it might appear that we have calculated
integrated cross sections that are in general too large.
Very close agreement can hardly be expected, however,
because neither the values given in column 1 nor those
in column 2 are precisely the quantities that were
measured. In particular, only emitted neutrons were
observed in the experiments and therefore column 3
gives (y, ts) cross sections. For heavy nuclei, the resulting
integrated cross sections are roughly R% less than the
corresponding value for total absorption, the difference
being due to low-energy (y,y) elastic and inelastic
scattering. ""For light nuclei, however, the difference
is much greater. The relatively small Coulomb potential
is no longer effective in preventing proton emission,
and the (y,p) process becomes prominent. Measure-
ments"" on Mg" indicate that the (y,p) effect is
almost three times as important as neutron emission,
although this is probably an extreme case.

Comparing columns 5 and 6, it is seen that the
calculated resonance energies are almost invariably too
small. The discrepancies average to almost 2 Mev (see
also Fig. 4). It will now be shown that the inclusion of
a number of small-order corrections makes the agree-
ment almost complete.

IV. SMALL-ORDER CORRECTIONS

Effects Due to Relativistic Corrections
lo

I

W {I'o 1.3) MEV

15 20
I I

25
I

30
I

O. IO

—0.10
dl

ct
—0.0$
OI

II

O

b

II

CI

—0.05 b

consistent calculations are 1acking. The mean energies,
8', have been determined by Levinger and Bethe,"but
their treatment neglected Pauli-principle correlations.
In a later paper by Levinger and Kent, '~ it is demon-
strated that this procedure may not be permissible.

II J. S. Levinger and D. C. Kent, Phys. Rev. 95, 418 (1954).

15 20 25 30
W (fo I 2 ) ANO W (EXP, ) MEV

(C)

FIG. 3. Total electric dipole cross sections as functions of
excitation energy for the absorption of y rays by various nuclei.
(A) Au"'. (3) I"'. (C) Mn". The solid curves are the calculated
cross sections. The dots are experimental points for the (y,n)
process, taken from Nathans and Halpern. ' The curves drawn
through the experimental points are not those of Nathans and
Halpern. The scales at the left and at the bottom correspond to
calculations made with nuclear radii, 8=1.2)(10 "A& cm. These
scales also refer to experimental curves. The scales at the right
and at the top correspond to calculations made with nuclear
radii, 2=1.3)&10 "A& cm.

Relativistic terms in the Hamiltonian cause a con-
siderable reduction in the transition energies and in the
integrated cross sections. All energy levels of Fig. 1 are
lowered because of the relativistic increase in mass.
However, more energetic ones have a greater decrease
in energy than less energetic ones, so that the energy
levels are closer together. YVith the velocity-dependent
potential, both the relativistic decreases in transition
energies and integrated cross sections turn out to be
about 10% for all nuclei.

The following approximations were used:

1. In all relativistic correction terms, we have neg-
lected surface terms, that is, terms involving the
commutators of P and III,II.

2. In all correction terms, we treated the nucleons
as if they were entirely within the nucleus.

The resulting formulas are as follows.
A modified sum rule:

2Ir'A ( 2a'T )
I oadW= QeI'QE ) 1+

IIIc z a t. IIIcs )

' M. B. Stearns, Phys. Rev. 87, 706 (1952).
'9E. G. Fuller and E. Hayward, U. S. National Bureau of

Standards Report 3129, 1.954 (unpublished).
ss R. Nathans and P. F. Yergin, Phys. Rev. 98, 1926 (1955)."S. A. ¹ Johansson, Phys. Rev. 97, 1186 (1955).
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Transition energy between two single-particle levels: t.55

x

Integrated cross section for a transition between two
single-particle levels: 1.25—

(6)

TABLE IV. EGects of pairing energies among light nuclei.
(Energies in Mev. )

Nucleus

Non- Re1ativ-
relativistic istic
resonance resonance

energy energy
Principal level
and percentage

Exper.
res.

energy

T is the kinetic energy of a particle in state 0. when
it is entirely inside the nucleus, and a= (m/m, ff)'
= 1.8.

Effects Due to Pairing Energies

A consideration of pairing energies is fundamental
to our method of treating the problem, since almost all
transitions which we have considered involve the
breaking of a nucleon pair. In all cases, the pairing
energies tend to raise the energies of the giant reso-
nances.

In Table IV we have listed a few nuclei, along with the
results obtained in Sec. III for the resonance energies.
In the third column we have subtracted 10%to account
for the relativistic eGects discussed in the 6rst part of
this section. The next column contains the initial levels
that contribute most to the giant resonances, along
with the proposed pairing energies and percentage
contributions in parentheses. (Except for light nuclei,
it is not possible to obtain a consistent estimate of the
pairing energies. We have used Mayer and Jensen's
values for the magnitudes of the pairing energies for
the 1ds~s, 1ds~s, and 1f~/s neutron levels in nuclei with
neutron numbers 8 to 28.") We have not distinguished
between neutron and proton levels, and have assumed
their pairing energies to be the same. In the last column,
the experimental resonance energies are listed.

The nucleus P" represents an extreme example of the
importance of pairing energies. We note that a great
majority (87%) of the transitions originate from the
level 1d5~2 with a pairing energy of 3.7 Mev. If it were
assumed that all transitions originated from this level,
then the predicted resonance energy would be 17.1+3.7

I.20—
O
E

C)-I t. i5—

I. I 0—

I.05—

l.00--
LOG A

t

2,0

Fn. 4. A log-log plot of resonance energy es nuclear mass
number. The crosses represent calculated points using nuclear
radii of 1.2)(10 ' A& cm, and the circles are experimental points.
The best straight lines have been drawn through each set of points.

=20.8 Mev, in good agreement with the experimental
value of 21.5 Mev.

de m'e'
0 (E2) = p (Kr') =

3hmP protons

1.8x'e'ZE'
~ (7)

5hmc'

If the major contributions for the quadrupole transi-
tions occur at roughly the same energies as for dipole
transitions, then the resulting integrated cross sections
that we have determined are increased by only about
3s%. Since quadrupole energies are believed to be
somewhat smaller than the energies of the giant dipole
resonances, this estimate of the quadrupole contribution
may possibly be too large. In either case, we feel
justi6ed in neglecting quadrupole eGects, even as a
6rst-order correction.

Effects Due to Quadrupole Transitions

To determine the extent to which quadrupole transi-
tions contribute, we used the quadrupole sum rule,

16.45 14.8

"Reference 4, Chap. 2.

Mg24 21.1 19.0
19.0 17.1

Mn'~ 16.7 15.0

1dgs (3.7 Mev, 42.5%)
ldsls (3.7 Mev, 87%)
1f7IQ (3.2 Mev, 51 5%)
1dsgs (2.9 Mev, 31%)
les (32 Mev, 37.5%)

19.5
21.5
18.4

Ef'fects Due to Valence Transitions

Throughout the treatment of the problem we have
neglected pairwise forces; that is, we have assumed
that all energy levels within a shell model con6guration
are degenerate. It will now be assumed that identical
particles may interact, resulting in a removal of the
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TABLE V. Effects of interparticle forces on the calculated data.
Unprimed quantities are those given by the original calculations.
Primed quantities include the effects of the coupling, as described
in section on small order corrections, sub-section effects due to
valence transitions.

Nu-
cleus

~max ~max ~max &max &max &max
(calc) {calc) (exp) (calc) (calc) (exp) (calc) (calc) (exp)
Mev Mev Mev Mev Mev Mev barns barns barns

Au»7
Ta181

Rh1o&
As»
Mn85

57 62 69 1175 122 139
56 645 79 1205 1355 151
6.8 7.75 8.3 13.8 14.65 15.5
6.55 6.0 8.9 14.2 14.8 16.5
9.8 9.5a 9.0 16.45 16.3 17.3
7.7 7.8 8.8 16.7 18.0 18.4

0.41
0.37
0.23
0.187
0.105
0.101

0.37
0.26
0.20
0.180
0.114
0.077

0.456
0,397
0.243
0.205
0.0903
0.0969

a For As'8 the collision width I'~ has been reduced from 4.08 Mev to
3.27 Mev in making the revised calculation.

degeneracy. The assumption that only identical parti-
cles interact is very good for heavy nuclei. For light
nuclei, however, when neutron and proton shells are
filling simultaneously, this assumption is not entirely
justified.

This inclusion of particle interactions has the ex-
pected eGect of widening the giant resonances. It is
found that it also raises the resonance energies.

To determine the eGects of these valence transitions
on the excitation curve, a number of approximations
are necessary. We have assumed that the energy levels
of the final con6guration are separated by one Mev,
and that they are centered about the single particle
configuration energy. Furthermore, the transition prob-
abilities from the ground state to each of these levels
are taken to be equal, so that the transition probability
to each level is equal to the single-particle transition
probability divided by the number of levels. We have
further assumed normal coupling for all ground states.

The resulting excitation curves have been determined
for a number of nuclei in which valence transitions
appear to play a prominent role. Three of these are the
solid curves labeled (b) in Fig. 3.

In Table V we have listed the results. The unprimed
quantities are those that were previously calculated,
and which are given in Table IV. The primed quantities
are those obtained by the inclusion of j.—j coupling.

Perhaps a surprising result is the systematic effect
of the pairwise coupling on the resonance energies. The
effect is almost invariably an increase in the resonance
energies, resulting in better agreement with the experi-
mental values.

V. CONCLUSIONS

The inclusion of small-order corrections has improved
nearly all of our results obtained in the previous section.
Considering the approximate nature of our treatment,
it is apparent that the shell model with the velocity-
dependent potential is able to account for the photo-
nuclear effect in heavy nuclei quite satisfactorally.

The integrated cross sections of Table III can be
altered only by changing the momentum dependence
of the Hamiltonian. Thus, the only small-order correc-
tion that can change those results is due to the inclusion
of relativity. It is shown that there is a resulting
reduction ot 10%. This reduction allows for the possi-
bility of complete agreement between calculated and
observed integrated cross sections, except possibly for
light nuclei.

The resonance energies of Table III are affected by
a number of small-order corrections. Our first set of
calculations yielded results too small by slightly less
than 2 Mev. The relativistic treatment resulted in
further disagreement, the average discrepancy being
increased to about 3 to 3.5 Mev. However, it was then
demonstrated that both the effect of pairing energies,
and a more accurate treatment of valence transitions
increase the resonance energies, and can remove this
discrepancy entirely. An average pairing energy of
about 2 to 2.5 Mev was shown to be plausible from
experimental data. The balance of 1 Mev is explained
by the eGect of valence transitions.

It should be remarked that agreement to within 1
Mev would be fortuitous, since the use of more realistic
nuclear potentials, and a more accurate treatment of
the Coulomb effect can easily account for 1 Mev. These
last two eGects have not been included in our work.
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