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The usual perturbation treatment of the many-body problem is modified by eliminating the two-body
interaction and introducing in its place a ¢ matrix. The Watson, Brueckner, and Bethe (W.B.B.) treatment
of the many-body problem is shown to be a special case of the modified perturbation treatment. The modified
perturbation treatment involves no assumption except that of supposing the convergence of the perturbation
expansion. Thus to each order in the expansion the results must be meaningful and no unphysical “un-
linked cluster” terms can appear. Within the framework of the modified perturbation treatment it is easy to
interpret the concepts of the Pauli principle for intermediate states and the self-consistent choice of the
comparison potential which play such an important role in the W.B.B. treatment. This work is similar to
that of J. Goldstone in that we relate the W.B.B. treatment to a perturbation treatment of the many-body
problem. We differ from Goldstone in that we use the usual time-independent perturbation theory instead
of the time-dependent one. The time-independent approach permits a direct comparison with the W.B.B.
treatment and facilitates discussion of the Pauli principle for intermediate states and of the self-consistent

potential.

I. INTRODUCTION

N recent years an approximate method for dealing
with the many-body problem has been developed
by Watson, Brueckner, Bethe, and their collaborators.*~7
This method is expected to be valid when the inter-
actions between the particles of the many-body system
are strong and short-ranged. For such a system the
usual perturbation treatment cannot be applied. Never-
theless it can be shown that this new method for
treating the man-body system is a simple modification
of the well-known Rayleigh-Schrédinger perturbation
theory.

In this article the usual perturbation expansion for
the energy of a many-body system is modified by mak-
ing the expansion in powers of the ¢ matrix rather than
in powers of the potentials acting between the particles
making up the system. This treatment is then related
to the treatment of Watson, Brueckner, and Bethe
(W.B.B.). We find that the W.B.B. treatment is a
special case of the modified perturbation method.

Comparing the two methods, we find that the W.B.B.
treatment contains an unnecessary approximation
which causes the appearance of unphysical ‘“unlinked
cluster” terms in the expansion. Since the modified
perturbation method is based on an exact expression
for the level shift, such unphysical terms cannot appear
in the expansion.

The modification of the ¢ matrix suggested by
Brueckner® and by Bethe® to include some effects due
to the Pauli principle is discussed. We also describe
how self-consistent definitions of the comparison po-
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tential may be introduced and how they improve the
convergence of the perturbation expansion.

Our approach is similar to that of Goldstone® but our
derivation is based on the usual time-independent form
of perturbation theory instead of making use of a time-
dependent formulation. This approach permits a direct
comparison with W.B.B. theory and facilitates the
discussion of the Pauli principle for intermediate states
and of the self-consistent potential.

II. MANY-BODY PERTURBATION THEORY
Let the Hamiltonian for the N-body system be
V3

H=Y —— 4% o(|xi—x])
=1 2m  i<i

=% T va=T+7, )

where v is a general two-body potential which may in-
clude tensor and exchange terms, and let the eigenstates
and eigenvalues of H be represented by ¥, and E,,
respectively.

(Ea—H)¥,=0. 2
We also introduce a comparison Hamiltonian,
Hy=T+U, 3)
and define its eigenstates and eigenvalues:
(ea—Ho)Pa=0. 4

The choice of U should be such that e, can be deter-
mined and the evaluation of the level shift made

easier. The level shift is
(‘I)a|H_H0|\I’a>
Ag=Eq— tq=m——————= (B, | (V= UV) Q]| ®). (5)
(Ba| Vo)

The wave matrix Q, which appears in the above ex-
8 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
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pression is defined by
QaBa=To/(Ba| Vo). (6)

It follows that Q, is the solution of the following integral
equation.

Qo=1+ (fa_Ho)*l(l - l‘I:'axq)al ) (V“ U_Aa)Qa
=1+4+G.(V—U—A,)Q..

This equation for the wave matrix is simply the
integral form of the Schrodinger equation. The exact
solution in closed form of this equation is well beyond
our reach. What we wish to do here is to consider some
perturbation expansions for the wave matrix and the
level shift. The customary perturbation expansion is
the Rayleigh-Schrodinger expansion in powers of V—U.
This expansion, however, does not converge rapidly
when V is not small, and if V contains a singularity the
expansion may not even be defined.

To deal with those cases where V is large or singular,
we generalize an approach first suggested by Watson.!
This generalized approach consists in replacing each
two-body potential » by an infinite series in powers of a
quantity that we will call the ¢ matrix ¢. This ¢ matrix
will be well-behaved so that any singularity in v will
correspond to a lack of convergence of the series ex-
pansion of v. We then express the wave matrix and the
level shift as perturbation expansions in powers of f.
The hope then is that these expansions for Q4 and A,
which are formally exact, will be rapidly converging
even when the expansion of v in powers of ¢ converges
poorly or not at all.

We define the ¢ matrix by the following integral
equation.

Y]

taz7)a+'vagata—"6a7}agava_lta7 (8)
where the operator g, and the ¢ number 4, remain to
be defined.? Solving Eq. (8) for v, gives

va=ta(1+gata)_l(1+gaaa)
= (to:_ tagata-l'tagatagata—' . ')(1+ga6a)~ (9)
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By means of Eq. (9) we can eliminate v from the level
shift and wave matrix in favor of ¢. In this way we get
an expansion of the level shift in powers of ¢ and U
instead of one in powers of V—U.

An alternative method is to eliminate V— U instead
of just V. This is done by introducing what we shall
call the 7 matrix:

Ta= ('Ua—'ua)"f‘ ('Ua— Ma)ga("'a_‘aa[va_ua]—l"'a): (10)

where U=3_u,. The 7 matrix can thus only be defined
when the comparison potential U can be written as a
sum of two-body operators. The usual choice for U is
a sum of one-body operators which can easily be re-
written as a sum of two-body operators:

N
U= u;=3 hij=2 tha,

=1 i< ¢! 1)
5= (uit-u),
N—-1
where NV is the number of particles in the system.
Accordingly, Eq. (5) and (7) can be written

Qa= I—I_Ga(z Qn_Aa)Qa, (12)

n=1
Ag=(Pa ‘ 210 l @)= (2 nQnfa), (13)

where

2 On=V-U=2Lva—U
n=1
=Z (ta—tagata_l' . ')(1+ga6a)— U

=Z(Ttx— TagTa+ . ')(1+ga6a)~

Now in the usual way'® we expand Q, and A, in powers
Q.. assuming that Q, is of order (Q1) in smallness. The
result for the level shift is

Aa={0) OGO HQ1GD1GD) H QGGG Q)+ -

+(Q2
+H(01Go02)
+<Q2G0Q1>
+(Q
If we choose Q1= (V—U), Q:=Qs3="---=0, we get the

usual Rayleigh-Schrédinger perturbation expansion.

A= {<Z Va— U)‘I‘((Z Vo™ U)Ga(z Vo U)>+ o }
- {(Z Vo™ U><(Z Va™ U)GaGa(Z Va— U)>+ ttt }
=Agrs—Bkrs. 15)

9 The operator g, will in general be chosen to be some sort of
propagator. Its definition, of course, will not be complete without

a prescription describing how g, is to be evaluated near its -

singularities.

— {0016 Go01) — (O{Q1GGa:1GaQ1) + - - -

—{(ONQG GG L)+ -
—{0GONQGC L)+
H{OVHQ1G GG QY+ -+

+- (14)

By choosing
Q=2 ta—"U,
Q2= —2_ tafa(ta—0a),
Qs=2 tafatafa(ta—"0a),
etc., we get the / matrix expansion for the level shift:

10 P A. M. Dirac, The Principles of Quantum Mechanics (Oxford
University Press, New York, 1949), Chap. 7.
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Aa= {(Z ta_ U)+<(Z ta—" U)Ga(z ta_ U)>+ o }
- {<Z ta— U)((Z ta— U)GaGa(Z ba— U)>+ tee }
_{<Z tagata>+ o }

=Ag—Bt—C¢; (16)

or finally, by choosing
Ql‘:zaﬂ'ay
Q2= -ZaTaga(Ta—aa);
Q3=Zu7'aga7'aga(7a_aa),
etc., we get the 7 matrix expansion for the level shift:
Ag= {(Z Ta>+<z 7aGa 2 Ta)+ e}
—{(X XX 7GaGa 2 Ta) o)

—{(X TaaTa) "}
=A4,—B,—C,.

17

Consider first the usual perturbation expansion shown
in Eq. (15). We see that it is the difference of two sums
which we have denoted by Agrg and Bgg. If, at each
point in a matrix element where the propagator G
appears, we introduce a complete set of intermediate
states, and if for this purpose we use the eigenstates of
H,, then we get for the level shift a sum of terms, each
one of which corresponds to a distinct Feynman diagram
with no external lines. One can then show that Bgs
cancels from Agg all those terms corresponding to
Feynman diagrams with two or more disconnected
parts. This can be verified to any given order in the way
Brueckner? has done or one can prove it in general in
the way Goldstone® has done. These eliminated terms
are the so-called unlinked clusters.

The ¢ matrix expansion shown in Eq. (16) and the
7-matrix expansion shown in Eq. (17) are similar in
form to the usual perturbation expansion of Eq. (15)
except that > v,— U is replaced by > t.—U or 2,7,
and there appears a third sum denoted by C. By choos-
ing g, and 4, in an appropriate manner, we can cause C
to cancel terms which appear in 4 and B.

If we choose go=G, and 8,=(l,) for Eq. (16)
[6a=(ra) for Eq. (17)], then the terms which are
cancelled from 4 and B are those which correspond to
diagrams in which two particles interact with each
other twice in succession or more. Thus we can say
that with this choice of g, and 8., eliminating v, in
favor of ¢, or 7, causes the first term of the expansion
for the level shift to contain the entire effect arising
from pure two-body interactions. This last statement
requires some qualification which will be provided in
Sec. IV.

In most of the literature on this topic the ¢ matrix is
defined by Eq. (8) with 8,=0. But one can verify that
having 8,=(f,) will cause additional cancellations
among the terms of 4, B, and C in Eq. (16). To be
explicit, this choice for §, is necessary in order for C
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to cancel terms in B corresponding to terms cancelled
by C in 4. This is necessary to prevent cancellations
between C and 4 from undoing cancellations between
B and 4. In addition, this choice for 8, causes {{.) to
be the level shift due to the interaction of the ath pair
of particles so that the first-order term of the ¢ matrix
expansion of the level shift is just the sum of the exact
two-body level shifts.

The advantage of the 7 matrix expansion is that it is
an expansion in powers of quantities of one sort, the
To. The ¢ matrix expansion, on the other hand, is an
expansion in powers of U as well as powers of i,.

III. RELATIONSHIP TO THE WATSON, BRUECKNER,
AND BETHE TREATMENT

In the W.B.B. treatment of the many-body problem,
one breaks the ¢ matrix into two parts:

to=totTa.

The precise definitions of #, and I, will not concern us
at this point. Then the comparison potential is taken
to be

(18)

U=Xula, (19)
and the operators F and F, are defined.
F= 1+Ga ZaIaFa
’ (20)

Fa=1+G. Y IsFs.
a#B

It then follows from simple algebraic manipulation that

(eq—T—V)F®,= —WF&,, (21)
where
WF=% ofIa— (1— | @a}{@a| )
— Gl a—v,Gl}Fo.  (22)
If W=0, then Eq. (21) would imply that F=Q, and
€a=E,. The claim is made that W is in fact small, and
this is made plausible by showing that (®,|WF|®a)
=(WF) is small. (WF) is evaluated by expanding in

powers of i, and I,.
From Egs. (21) and (4) it can be shown easily that

WEF)=((V=U)F). (23)

Thus (WF) is an approximation to the level shift, the
approximation arising from the substitution of F for
the wave matrix Q,. Expanding (WF) gives

<WF> = Z <Ia>+zﬁ<IaGaIB> - Z(taGata>
+§ (TG ol 6G ol y)— zﬁ(zaG.,IﬂG.J 8)

—-z;(taGataGaIg>+Z(taGat.,Gat,,)-i— -een (24)

Comparing this to Eq. (16) with U set equal to Y, i,,
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8.=0, and g, set equal to G,, we find to third order:
(WF )—Aa=Xﬁl T a){I6GaGol 4)
apy

+Zﬁ:(IaG,, (t6Gats—IGalg))+---. (25)

This difference is such as to cause the appearance of
“unlinked cluster” terms in (WF).

We see that the W.B.B. treatment is the special
case of modified perturbation theory where the com-
parison potential U is chosen to be >, and the wave
matrix Q, is approximated by F. The W.B.B. choice of
U is a source of great complication in the theory. Since
the definition of #, involves the eigenfunctions of H,
and since these eigenfunctions in turn depend on
U= 1., there is a self-consistency condition to be
fulfilled. The self-consistent definition of U is used
because among other things it causes the first-order
terms in the expansion of the level shift to vanish. This
may be desirable if we are trying to prove that the level
shift is negligible, but if we are only trying to make the
first few terms of the expansion a good approximation
to the sum, then the self-consistent definition of U may
not have any great advantage. If our purpose is to
evaluate the level shift, any convenient choice for the
comparison potential can be used subject to the re-
quirement that the choice leads to a sufficiently rapid
convergence of the series expansion of the level shift.*
In the calculation of the level shift, the exact expression
((V—=U)Q,) should be used in place of (WF), since the
exact expression when expanded will not contain any
“unlinked cluster” terms which in (WF) have to be
eliminated by special devices.

IV. PAULI PRINCIPLE FOR INTERMEDIATE STATES

We have pointed out that when g,=G, and 8,= (¢,)
or (74) in the integral equation for f, or 7., there is
a cancellation of the two-body terms in the expansion
of the level shift. The terms which then remain in the
level shift expansion are those which only involve inter-
mediate states in which a given pair of particles never
undergo two successive collisions.’? However, in sub-
tracting the contributions arising from terms in which
a given two particles do undergo successive collisions,
we also subtract contributions due to scatterings to
states already occupied by other particles. If our system
is made up of identical fermions, which for the moment
we assume it to be, then these contributions were
already missing so that we have in this way subtracted
too much.

Brueckner*® and Bethe® have suggested an alternate
definition of g, which has the effect of reducing this
oversubtraction in the lower order terms. This enhances

1t The question of the self-consistent potential is discussed more
fully in part V.

12 The particles are of course indistinguishable. When we speak

of two particular particles we mean the occupants of two par-
ticular states.
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the cancellations in the terms of low order at the expense
of reducing the cancellations in terms of high order. Such
a change is certainly desirable since the two-body can-
cellations are in any case not very important for the
terms of high order and since the terms of high order
must be negligible anyway if the perturbation method
is to be of any use. Thus, by enhancing the cancella-
tions in the terms of low-order, we make the first term
in the expansion a better representation of the sum.

The alternate definition of g, is to set g,=GoPa,
where P, is a projection operator which is zero when
operating on a wave function in which a particle of the
ath pair is in a state which is an occupied one in the
initial wave function ®,. Thus P, acts to eliminate
intermediate states where particles are scattered into
states which are occupied ones in the starting wave
function ®,. In the lower order terms this tends to
eliminate those intermediate states which “violate the
Pauli principle.” This does not mean that the presence
of P, is a necessary consequence of the exclusion prin-
ciple. We are free to choose g, in any way we like. P,
is introduced to make the cancellations between 4 and
C in Egs. (16) and (17) more complete for the terms of
low order and thus to improve the initial convergence
of the expansion.

In any perturbation calculation of the energy of a
system of fermions, the choice g,=G.P. is to be pre-
ferred to go=G.. However, if the density of the par-
ticles is not too great, or if v, is short-ranged and very
strong, the perturbation expansion might very well
converge in a satisfactory manner with g,=G,. This
fact is of interest since it is often possible to calculate
the ¢ matrix or 7 matrix when g,=G, but not when
8a=GoP.

V. SELF-CONSISTENT POTENTIAL

The question we consider here is that of making the
most advantageous choice of the comparison potential
U. We would like to choose U in such a way as to re-
duce the level shift A, and at the same time increase
the rate of convergence of the perturbation expansion
for the level shift. As a practical matter, it is also de-
sirable that it be possible to write U as a sum of one-
body operators.

N
U=§ u(X;). (26)

When U has this form, our starting wave function ®,
can be written as a product of one-particle wave func-
tions ¢g(x). U can be generalized slightly by allowing
the addition of terms which are diagonal with respect
to the ¢p(x).

We base our discussion on the usual perturbation
expansion given in Eq. (15). Afterwards we will apply
the results to the ¢ and = matrix expansions shown in
Egs. (16) and (17). The operator V—U which appears
in Eq. (15) can be rewritten in terms of an occupation
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number representation:

V-U=% o(|xi—x;|)— 2 u(x:)

<7 i
= BZ ) (aB|3v]vo)astataya,
o ~XGluloata, @)
where
(@B|v]v0)

- f dxadxsoa(x) 5t (30| xi— %) 0 (X 00 (%),
B8lulo)= f dxes* (X)u(x) 0o (%),

Lea— Ti—u(x)]ea(xs),

and et and ¢ are creation and annihilation operators.
Let us separate the first sum on the right of Eq. (27) so
that the terms that could conceivably be canceled by U
are separated from the rest.

V—U= X (aB|3v|vo)agtantaya,— 3 (8| u|0)agla,
o
(28)

+3" (B |v(1—385,) |ao)agtantaqa,.
Clearly, the most desirable choice for the comparison
potential U is

U= (aB|v|ac)agtasta.a,
A CT [ v [ aB)astasta.as.

Although this operator is diagonal in one pair of in-
dices, it still is a two-body operator. However, we
can define a one-body operator which is a good approxi-
mation to the U shown in Eq. (29) in the terms of low
order in the perturbation expansion. This operator is

U=%""(aB|v(1—33p,) |ao)astas, (30)

where the sum on « is over the chosen configuration,
that is to say, over the states occupied in the initial
wave function ®,.

If the second sum on the right is neglected, Eq. (28)
is just the definition of the Hartree potential. The
second sum on the right is simply a diagonal operator
which causes (®,| U |®q)=(®,| V| ®a). Its presence does
not alter the form of the Hartree wave functions or the
value of the energy predicted by the Hartree method,
but it does change the definition of the energy from the
usual {(&q| TH3U|®,) to (B,| T+ U|®,).

Stated somewhat differently: with the comparison
potential defined by Eq. (30), the level shift vanishes
to first order in V— U. With the usual Hartree definition
of U,

(29)

U=%"(eB|v|ac)asta., (31
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the level shift is A,=3{®,| U|®,) to first order in V—U.
The total energy e,+A,, to first order in V—U, will be
the same in the two cases as will the self-consistent
wave functions ¢g.

However, the distinction between the self-consistent
potentials defined in Egs. (30) and (31) is not altogether
trivial. If we use the U defined in Eq. (30), more of the
higher order terms in the level-shift expansion will be
canceled.

We can easily modify the definition of U to include
exchange. Separating out the exchange terms in .Eq.
(28) gives

V-U= X

y#a,p;0%a,f
—2 (8l u|o)agtas+2 (aB]v(1—3855) |ao) 4

Xaglaolaaa,—2 (af l 3v ] 8B) aagtadtagas,

(aB|3v|vo)astataqra,

(32)
where

(aB]v|ve) 4= (aB|v|y0) = (aB]v]| o),

the sign depending on whether the particles are bosons
or fermions. For a system of identical fermions, a most
desirable form for U is

U=Z(aBIv[l—%ﬁﬂ,]]azr)Aagfaa’faaa.,. (33)

This operator consists of the diagonal part of ¥ plus
the part of V' which is diagonal in only two of its in-
dices. But this U is not a one-body operator; we ap-
proximate it by

U=2"(aB|9[1—36,]|a0) aasta,,

where the prime indicates that the sum over « is re-
stricted to the chosen configuration. Again, if we drop
the 6 function in Eq. (34), we get the Hartree-Fock
self-consistent potential.

The self-consistent potentials defined in Egs. (30)
and (34) are not completely defined for those terms
where ¢ does not belong to the chosen configuration.
The sum over o must include all but one of the states
making up the chosen configuration. When ¢ does not
belong to the chosen configuration, there is no rule for
telling which member of the sum to exclude. For these
terms the matter must be settled by making an arbi-
trary convention.

We have seen how the Hartree and Hartree-Fock
self-consistent potentials can be justified for the usual
perturbation expansion. Turning now to the fmatrix
expansion for the level shift shown in Eq. (16), we see
that there also a self-consistent definition of the com-
parison potential U will speed the initial convergence
of the perturbation expansion. The definition of the
self-consistent potential is the same as that given above
except, of course, that we must replace » by ¢.

U= (aB|[1—%ds. ]| cc) sastas,

(34)

(35)
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where the prime indicates that the sum over « is re-
stricted to the chosen configuration. This is the self-
consistent potential used in the W.B.B. treatment.

In the 7 matrix expansion shown in Eq. (17) the
comparison potential U no longer appears explicitly,
so that the usual self-consistent definition of U will be
of no use. But there is a weaker kind of self-consistency
condition which can be invoked for the = matrix ex-
pansion. This consists in defining U to be any convenient
sum of one-body potentials which have one parameter
free. This parameter could be the depth or the range
of these potentials. This parameter is then adjusted so
that the first-order term of the level shift-expansion,
{(3_7a), vanishes. While this type of self-consistent
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potential cannot be expected to be as effective as the
Hartree-Fock or W.B.B. types in increasing the initial
rate of convergence of the perturbation expansion, it
certainly is much easier to implement.
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Calculations of the total photonuclear absorption cross sections have been carried out for a number of
nuclei throughout the periodic table. The shell model, with a velocity-dependent potential, has been used.
This potential is proportional to the kinetic energy of the nucleons, and gives rise to a changed effective
nucleon mass. One of the effects of such an effective mass is to change the frequencies of the giant gamma-ray
absorption resonances. Previous independent-particle model calculations had resulted in frequencies con-

sistently lower than the observed values.

With an effective nucleon mass inside the nucleus of about 559 of the normal mass, very good agreement
with the experimental values is obtained for medium and heavy nuclei. Within the limits of the assumptions
made in the calculations, the forms of the observed excitation curves are closely reproduced, and are peaked
at roughly the correct energies. Furthermore, the cross sections integrated over excitation energies, which
are nearly model-independent quantities in the changed-mass case, are, except for the very light nuclei,

consistent with the experimental values.

I. INTRODUCTION

NUMBER of models have been proposed! in
order to explain the giant resonance phenomena
of the photonuclear effect.?® It has been pointed out
by Levinger! that there is little difference between the
predictions of all reasonable sub-unit models. Recently
however, some magic-number phenomena relating to
the photoeffect have been observed. In particular, the
resonance widths for closed-shell nuclei are smaller
than the widths for neighboring nuclei. Since the shell
model has been fairly successful in predicting the
properties of the ground states,® and the low-lying
* Supported in part by the Office of Ordnance Research, U. S.
]{n l%ow at the Institute of Mathematical Sciences, New York
University, New York City.
17, S. Levinger, Annual Reviews of Nuclear Science (Annual
Reviews, Inc., Stanford, 1955), Vol. 4.
lgé\g;)ntalbetti, Katz, and Goldemberg, Phys. Rev. 91, 659
( 3 R. Nathans and J. Halpern, Phys. Rev. 93, 437 (1954).

4M. G. Mayer and J. H. D. Jensen, Elementary Theory of
N%%I;mr Shell Structure (John Wiley and Sons, Inc., New York,

excited states,’ it is reasonable to attempt an extension
of the model to higher levels. Such proposals have been
made by Wilkinson,® Courant,” Burkhardt,® and
others.®:1

If we assume only ordinary (space-dependent) forces
to exist between nucleons, photoabsorption is not
satisfactorily explained by the independent-particle
model. The principal discrepancies are:

1. The calculated transition energies are smaller by
about 509, than the observed resonance energies.®

2. Photon scattering provides major competition to
neutron emission. This is not observed.?

3. The resonance frequencies depend too strongly on
mass number.®

5 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).

¢ D. H. Wilkinson, Proceedings of the 1954 Glasgow Conference
on Nuclear and Meson Physics (Pergamon Press, London and
New York, 1955), pg. 161.

7E. D. Courant, Phys. Rev. 82, 703 (1951).

8 J. L. Burkhardt, Phys. Rev. 91, 420 (1953).

9 A. Reifman, Z. Naturforsch. 8a, 505 (1953).

;;’ S.) S. Wu, doctoral thesis, University of Illinois, 1951 (unpub-
lished).



