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characterizes the beam resonance. The size of each
port is characterized by a Q which is the ratio of the
energy stored in the cavity to the energy per radian
dissipated (or generated, in the case of the beam) via
the mechanism being represented. For high gain the
eRective noise temperature, T~, is given approximately
by T& (T,/—Qo+ l T&l/Q )(1/Q& —1/Q, )

—'. The value
of Tg obtained from calculations involving the focuser
vo1.tages, geometry, and solid angles is —

~~ K. The
measured value of Qo/Qtt is of the order of 5-', . Thus

l Ttt l Qo/(T, Qtt)((1 and Ttr T /—[(Qp/Q )tt—1J. In this
case T,=300'K, Qo/Qtt =5.44, and the predicted
effective-noise temperature was 68&4'K, where the
uncertainty results from the errors in the measurements
leading to the value for Qp/Qtt.

A second measurement yielded 72&15'K for the
eRective noise temperature. The predicted value was
64m 5'K.

The agreements between the experimental and
theoretical values are good. The contribution to the
noise from the beam was too small to be measured,
but from these results an upper limit of about 20'K
can be placed on the absolute value of the eRective
beam temperature.
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HE angular correlations between beta rays and
circularly polarized gamma rays for triple

cascade transitions may furnish information concerning
the relative magnitudes and phases of the ten coupling
constants, C; and C, (t', =S,V, T,A,I'), of beta inter-
actions. Therefore, we have calculated these angular
correlations.

Since the various angular correlations using the old
theory of beta decay, where the C;"s are zero, have
already been given for triple cascade transitions, '
the formulas of I can be extended, by slight modifica-
tions, to include the parity-nonconserving beta interac-
tions and the circular polarization of the gamma rays.
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(2) Angular correlation between P and circularly
polarized y2 without observing y~.
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In Eqs. (1) and (2), we assumed that the strong
interactions are invariant under time reversal. ' If this
is not valid, the formulas should be modified as follows.
For example,

2 Re(Cr*Cs')Mgr Ms'( jtllLtll js) (jtllLr'll js)

should be replaced by

Cr*CB'~or*~~(jrllLtll js)*(jtllLr'll js)+c c

for electron decay, and by

Cr*Cs'tlat gr~o*(jrllLrll js)'(jtllLt'll js)+c c.

for positron decay, and so on. The bLL ("'s depend on

Since the parity condition' is now dropped, the even
integer 2e in the equations of I should be replaced by
the integer rt, and simultaneously, p'+'+ +~'+", which
gives the dependence on the circular polarization of
the gamma rays, should be inserted as a multiplicative
factor in some of the equations. Here, p is +1 (—1) for
left (right) circularly polarized gamma rays; 6 is equal
to 0 (+1) for the magnetic (electric) 2~-pole radiation.
The other symbols in this letter are the same as those
used in I. The decay scheme is assumed to be j—t'~ jl—»~j&—&~j3. We shall consider two cases.

(1) Angular correlation between P and circularly
polarized yl without observing y~.'
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the beta interact(oust and are defined by Eqs. M(3)
and M(4) in I. They are given explicitly in reference 2
for allowed transitions. Therefore we shall not rewrite
them herc. For forbidden transitions the bl, L,

("'s can
be derived by similar methods. "The value of n is at
most 2nt+1 for the rnth forbidden transition. Other
restrictions on n determined by the spin values of
the nuclear levels and the multipolarities of gamma rays
are explicitly shown in the Racah coefficients of Eqs.
(1) and (2).

In the case of special decay schemes such as j-2J=I;0
with pure electric and/or magnetic 2~-pole gamma
rays (for example, j-4-2-0 with pure quadrupole gamma
rays), the angular correlation between beta and
circularly polarized p& rays is equal to that between
beta and circularly polarized p2 rays. This equality
also holds in the case where the circular polarization
of the gamma rays is not observed, and in the case of
gamma-ray angular distributions from oriented nuclei
in similar decay schemes.

The angular correlation functions of P-yi-ys with
simultaneous observation of three particles can be
also derived from Eqs. (2)—(4) of I.
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'T has been shown by several authors that relativistic
~ ~ wave equations for higher spin particles can be
written as generalized Dirac equations,

(~'~s+X)4 =o

Such Geld equations have the advantage of making no
use of subsidiary conditions, the handling of which
is rather cumbersome, when interactions are introduced
(see Bhabha').

If (1) is required to represent a particle with unique
mass, all components of ter must satisfy second-order
wave equations,

(8"Bt, E')iver= 0—, (2)

with the same mass constant E. However, as shown by
Bhabha' and Harish-Chandra, it is impossible to
fulfill this condition with Hermitian matrices for any
spin higher than 1, if g is a constant times the unit
matrix. This form of x is, however, not the most general
one, and, for example, in the case of spin 1 it is too
simple for the representation of the Maxwell equations. '

The present authors have investigated the case that
is probably most interesting physically, namely, the
irreducible spin-2 case, where the components of lb

consist of the components of a symmetrical tensor A&&

and of a vector A ~. The 14-row o.'.s of this case have been
explicitly represented by means of the subspace method,
given by Klein. 4 ' The most general form of x is proved
to be an arbitrary linear combination of three com-
muting idempotents, thus containing three arbitrary
constants, ki, ks, and ks. The components of (1) are
found to be

itsAt+BtAs=ikiAst+ 'i(k k-)A —4t, (3)

itt, A "+i)„As" iksA——s. —

Upon solving (3) with respect to At, t, inserting in

(4), and putting ks ———Ski, it is seen that all components
of A& and thus of A&t satisfy (2) with E'=kiks. Conse-
quently it is rot generally impossible to satisfy the
requirement of unique mass for spin higher than 1.

If furthermore the equations are specialized to zero
mass by putting k3=0, we obtain

B B~vli=O,

cI y g=O,

where

vat=Ast+A "4t. (7)
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