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A calculation is made of the forces between hyperons and nucleons under the assumption that the forces are
due to the exchange of pions. The A and Z are assumed to have spin  and the same parity. The Hamiltonian
is taken to be the same as the static-model pion-nucleon Hamiltonian except for differences in isotopic spin
and possibly in the strength of the coupling. The same approximations are made as those ordinarily made in
evaluating the nucleon-nucleon potential, although it is noted that in case all the pion-baryon coupling
constants are equal, the hyperon-nucleon potentials are just linear combinations of the observed nucleon-
nucleon potentials. The pion-hyperon coupling constant is determined by comparison with potentials
obtained from analysis of hyperfragment data. The resulting value is about the same as the pion-nucleon
constant. The elastic hyperon-nucleon and A4 N«Z+ N scattering cross sections are evaluated. Results are

consistent with experiment.

I INTRODUCTION

HE fact that the A hyperon can be bound in
nuclear matter is evidence that there are strong
forces between the A and the nucleon. It is plausible
that these forces may be due in large part to the ex-
change of pions. In this paper we adopt the hypothesis
that A and 2 hyperons interact strongly with nucleons
via the pion field. With certain simplifying assumptions,
we are able to evaluate A-nucleon and Z-nucleon poten-
tials and to calculate the resulting A-nucleon and 2-
nucleon elastic and inelastic scattering cross sections.
We briefly consider the experimental data on the
hyperon-nucleon interaction such as hyperfragment
binding energies, the scattering of charged hyperons in
bubble chambers and emulsions, and the scattering of
hyperons in the nuclear matter in which they are
produced.

We need to make certain assumptions about spins,
parities, and couplings, in order to perform the calcu-
lation. In a previous work! (to be denoted by I) we
assumed a simple model to describe the interaction be-
tween pions and hyperons.? In constructing this model
we assumed that hyperons react with pions essentially
as nucleons do except for the necessary differences in
isotopic spin. We assumed that the elementary pion-
hyperon interactions are

Aoz, 1)
and

ZeoA+, (2)
the process

AA+7

being forbidden because it does not conserve isotopic
spin. Subsequently® we postulated the existence of the
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interaction

S>3, 3)

assuming it to be governed by the same coupling con-
stant as processes (1) and (2). Since we wish the theory
to be charge-independent, we require that the Hamil-
tonian be invariant under rotations in isotopic spin
space. The form of the Hamiltonian in isotopic spin
space is then unique. Since the pion field @, and the =
field W's are vectors in isotopic spin space, while the A
field ¥4 is a scalar, the interactions (1) and (2) must
have the following form in isotopic spin space:

NI 3 4)

Similarly, for interaction (3), the Hamiltonian must be
of the form

WX W D, (5)

We also assumed in I that the spins of the A and =
hyperons are 3. The experimental results seem con-
sistent with spin } but are by no means conclusive
especially for the =.* We prefer to retain the assumption
of spin } as being the simplest. We assume that the
hyperons remain fixed during their interaction with
pions (static baryon model), and that the interaction
proceeds via gradient coupling. We do not require
knowledge of the parity of hyperons relative to nucleons
but do require the assumption that the parity of the A
and 2 be the same.

We can find a reasonablerelation between the coupling
constants of the Hamiltonians for processes (1), (2), and
(3), thereby reducing the ambiguity in the interaction
to a single parameter. In I, we did this by resolving the
hyperon fields in the Hamiltonian into a spin %, isotopic
spin 3 “nucleon” field with which the pion interacts, and
another field carrying spin zero and isotopic spin % (and
strangeness — 1) with which the pion does not interact.
The field with which the pion does not interact does not
need to be thought of as the field of a K meson. The

*D. Glaser, L. Alvarez et al., Proceedings of The Seventh Annual
Rochester Conference on High-Energy Nuclear Physics (Interscience
Publishers, Inc., New York, 1957), Sessions V and VI.
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PION CONTRIBUTION TO HYPERON-NUCLEON FORCES

procedure is quite general and may be considered as a
formal device for writing down the interactions (4) and
(5) and for fixing relative coupling constants by as-
suming that the pion interacts with the “nucleon” part
of the hyperon field with a single coupling strength 4.5
It is by using this formal device, considering the A as a
singlet state of two fields of isotopic spin § and the = as
a triplet state, that the calculations are carried out most
readily.® The sign of % relative to the sign of the pion-
nucleon coupling constant f has physical consequences.
Since it is our philosophy that the hyperon-pion inter-
action is essentially the same as the nucleon-pion
interaction, we choose the plus sign. The Hamiltonian
then has the same form as the fixed-source pion-nucleon
Hamiltonian, except possibly for the magnitude of 4. If
we regard / as a parameter to be determined by experi-
ment (for example, by the data on the binding energies
in hyperfragments), we find that % is of the same order
of magnitude as f. This result lends support to the
proposal of Wigner” that all baryons may have the
same strength of interaction with the pion field.

Thus far, we have not considered the = hyperon since
it does not directly contribute to A and Z interactions
with single nucleons. Furthermore, there is little proba-
bility of much experimental information about the &
being obtained in the near future. However, since the &
is probably a particle of isotopic spin % just as the
nucleon is, its interaction with nucleons may be similar
to the nucleon-nucleon interaction.

It is also possible that K mesons may contribute
appreciably to the hyperon-nucleon interaction. In a
second paper we shall consider forces due to K-particle
exchange alone. A comparison with experiment will be
made to see to what extent we can distinguish between
K-particle and pion theories of hyperon-nucleon inter-
action. At the present state of theory and experiment it
does not seem fruitful to consider strong K and = effects
simultaneously.

In Sec. IT of this paper, we calculate, to fourth order
in the interaction Hamiltonian, the hyperon-nucleon
potentials arising from the exchange of pions. We obtain
not only A-nucleon and Z-nucleon potentials, but a non-
diagonal potential which leads to the conversion of a A
to a 2 (and vice versa) in a scattering process. We call
this hyperon-exchangescattering. In Sec. IIT we evaluate
the various hyperon-nucleon cross sections using the
nondiagonal as well as the diagonal potentials. In Sec.
IV, we discuss the validity of our results and briefly
compare with experiment.

5 M. Gell-Mann [Phys. Rev. 106, 1296 (1957)] uses a different
formal device to obtain essentially the same Hamiltonian.

6 The interaction Hamiltonian obtained in this way differs from
the Hamiltonian of Egs. (4) and (5) (and the Hamiltonian of Gell-
Mann, reference 5) in the relative signs of certain terms. These sign
differences have no physical consequences.

7 E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 38, 449 (1952). See
also J. Schwinger, Proceedings of The Seventh Annual Rochester
Conference on High-Energy Physics (Interscience Publishers, Inc.,
New York, 1957), Session IX.
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II. CALCULATION OF THE POTENTIALS

To obtain the pion contribution to the potentials
describing the interaction of hyperons and nucleons, we
use the fixed-source pion-nucleon Hamiltonian com-
bined with the hyperon-pion Hamiltonian as discussed
in I and in the previous section. The static-model
Hamiltonian for the interaction of a pion with a hyperon
has the form (A=c=1):

H=Zka(akaVka+aka*Vka*)y (6)
Via= (ih/u)7a0 k(20

where @r. annihilates a pion of momentum k and
isotopic spin component a, wy is the energy of the pion of
mass p, and ¢ and ¢ are the usual Pauli spin and isotopic
spin operators. The operator = operates only on the
“nucleon” part of the hyperon field. If the hyperon is
not at the origin, Vi, contains the additional factor
exp (ik-r) where r is the position of the hyperon.

In obtaining the potentials from this Hamiltonian we
follow the procedure used by Brueckner and Watson in
their calculation of the two-nucleon potential.® Thus, to
obtain the Z-nucleon potential we consider second-order
diagrams (exchange of one pion) and fourth-order
diagrams (exchange of two pions) in which at least one
pion appears in all intermediate states. We shall refer to
these diagrams as ‘“proper” graphs. Diagrams in which
there are intermediate states with no pions present, we
refer to as “improper” graphs. The reason improper
fourth-order graphs are not included in the calculation
of the Z-nucleon potential (or the nucleon-nucleon
potential) is that these graphs are included as iterations
of the second-order potential when the Schrédinger
equation is solved. This statement is not exact,? but is a
good approximation for the static model at low energies.
Thus, if we include the contribution from improper
graphs to the potential, we are in effect counting them
twice in their contribution to Z-nucleon scattering.

However, these arguments for the omission of im-
proper fourth-order diagrams do not apply directly to
the A-nucleon potential, since second-order diagrams are
absent. Therefore, in I, we included the contribution
from improper graphs in evaluating the A-nucleon
fourth-order potential. In doing so, we considerably
overestimated their importance because of an approxi-
mation in which we neglected baryon kinetic energies in
intermediate states. We can see this as follows. An
order-of-magnitude estimate of the contribution to the
potential from any diagram can be obtained by esti-
mating the average magnitude of the intermediate-state
energy denominators. If we neglect the mass difference
A between the 2 and A compared to the energy of a
pion, then the energy denominator of any proper
fourth-order diagram contains (in addition to other

8K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1953). ) :

? Fukuda, Sawada, and Taketani, Progr. Theoret. Phys. Japan
12, 156 (1954).
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quantities) the factor

wk+wk1+T (7)

where wy and wis are the energies of two intermediate
state pions and T is the intermediate-state kinetic
energy of the baryons (we neglect the total energy E).
The improper fourth-order graphs have the same energy
denominators as the proper ones, except that instead of
containing the factor shown in (7), they contain the
factor A+7. If we neglect T, the ratio of the contribu-
tion to the potential from improper graphs to the
contribution from proper graphs is (wx+ws-)/A. Since A
is small (A~%u), we found in I that improper graphs
gave a contribution to the potential about five times as
great as the contribution from proper graphs. The
baryon kinetic energy 7" depends on the distance be-
tween the hyperon and nucleon. To get an estimate of
the validity of the approximation of neglecting T', we
look at the magnitude of the potential as a function of
the distance between the two baryons. Since the total
energy of the system is near zero, 7" will be approxi-
mately equal to minus the potential. (We are neglecting
an extra contribution to T from the recoil of a baryon
when it emits a pion.) The triplet central A-nucleon
potential calculated in I is 80 Mev deep for ur=0.65, so
that for distances smaller than this, 7" is greater than A
(80 Mev), and the approximation breaks down. The
situation with respect to proper diagrams is a little
better. In this case the potential should be compared
with the energy of an intermediate-state pion. The
relevant momentum of a pion emitted between two
baryons when they are a distance 7 apart is k&~1/r. Then
the requirement that 7" be less than the energy of the
pion is equivalent to the requirement that the potential
V (r) satisfy the inequality

—V(r)<(w+1/r%)%

For the singlet even-state two-nucleon potential of
Brueckner and Watson,? this inequality breaks down for
wr<0.5. Therefore, even when only proper diagrams are
considered, at small distances the static two-baryon
potentials must be treated phenomenologically. We
shall replace the field-theoretical potentials at small dis-
tances by repulsive cores.

In this paper, rather than attempt to improve the
evaluation of the contribution from improper graphs to
the A-nucleon potential, we shall omit them entirely in
the potential. Instead, we shall consider a nondiagonal
potential which converts a A hyperon to a 2 hyperon and
arises from proper diagrams such as those shown in
Fig. 1. When the Schrédinger equation is solved with
this nondiagonal potential, iterations of the potential

V% > F1c. 1. Some proper
s 0 4z N 2  graphs contributing to
- v N a nondiagonal potential
’n / N which converts a A hy-
‘T oo, z peron into a = hyperon.
N A N A N A
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will lead to the inclusion in the A-nucleon scattering of
the effects of the improper graphs which we have
omitted. In addition, since we are considering the non-
diagonal potentials to fourth order, we are including the
effects of many graphs which we did not consider in I.
Using this approach, we are able to calculate the cross
sections for hyperon-exchange scattering as well as the
A-nucleon and Z-nucleon elastic scattering cross sections.
If we neglect A compared to the energy of a pion in

intermediate states, we can readily evaluate the po-
tentials. The sum over intermediate hyperon states
becomes equivalent to a sum over a complete set of
(equal energy) spin and isotopic-spin states, just as in
the two-nucleon problem. Then we need merely use the
two-nucleon potentials given by Brueckner and Watson
with one modification. The isotopic spin operator =;-<»
(where the subscripts 1 and 2 refer to the two baryons)
appearing in the potential does not have the same
expectation value in the hyperon-nucleon problem as it
does in the two-nucleon case. Since the isotopic spin of
the 2 is unity, the Z-nucleon system can be either in a
T=% or T=4% isotopic spin state. The A-nucleon system
can be only in a T'=7 state, since the A has isotopic spin
zero. If we denote the Z-nucleon 7'=% and T=%
isotopic-spin wave functions by 53 and 7, respectively,
and the A-nucleon isotopic-spin wave function by 5,, we
find that

T1TMI= N3,

Tt = — 2m—V3m, 8)

T TAMAT —\/3771-

We see that #; and 5, are not eigenfunctions of =;- s,
leading to hyperon exchange scattering in the 7'=3%
state. Making use of Eq. (8), we can easily evaluate the
potentials from the expressions of Brueckner and
Watson. The strength of the coupling constant and the
radii of the phenomenological repulsive cores remain as
variables. We can regard them as parameters to be
determined by experiment. However, at the present
time the experimental data are insufficient to enable us
to fix the coupling constant plus the core radii in the
various spin and isotopic spin states. If we assume that
the hyperon-nucleon coupling constant % is equal to the
nucleon-nucleon coupling constant f, we can use the
data on hyperfragment binding energies to fix the A-
nucleon repulsive cores. For mathematical convenience
we actually reversed this procedure, letting the repulsive
core radii be the same as the radii given by Brueckner
for the two-nucleon problem.!® The triplet-state core
radius is 7,=0.3u™'; the singlet radius is 7,=0.384u.
We then have the single parameter # with which to fit
the data on the binding energies of the A in hyperfrag-
ments. Our procedure for doing this is described in-
Sec. IV. We find a satisfactory fit with approximately
fh/4r=0.095, a value slightly higher than the f2/4sr
=0.085 used by Brueckner and Watson in fitting the

1 Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954).
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low-energy two-nucleon data. We can regard this result
as indicating that % equals f. Certainly, if 2= f one
notes that the associated A-nucleon core radii are
slightly smaller than the corresponding two-nucleon
radii.

In the T'=% state, the Z-nucleon potentials are the
same as the nucleon-nucleon potentials in the 7'=1
state, except for a possible difference in coupling con-
stants. If the coupling constants are unequal, the shape,
as well as the magnitude, of the potentials will be
different in the two cases because the ratio of the
contributions from second- and fourth-order diagrams is
changed. It should be noted that in the two-nucleon
case, certain states are forbidden by the Pauli principle,
a fact that does not occur here. For a given spin and
isotopic spin, the hyperon-nucleon potentials are the
same for even and odd states of angular momentum. For
h= f, the singlet T'=% Z-nucleon potential is the same as
the proton-proton singlet potential in even orbital
angular momentum states; the triplet 7'=3 potential is
the same as the proton-proton triplet potential for odd
orbital angular momentum.

In the T'=1% state, the hyperon-nucleon potentials are
different from the two-nucleon potentials. However, if
the coupling constants are equal, the hyperon-nucleon
potentials can be formed by taking appropriate linear
combinations of the two-nucleon potentials. Let us de-
note the two-nucleon potentials in the isotopic-spin
triplet and singlet states by V;and V. If the Z-nucleon

=3 potential is denoted by V3 and the hyperon-
nucleon 7'=% potentials by Vs (diagonal =-nucleon),
Vs (diagonal A-nucleon), and V,z (nondiagonal), then,
making use of Egs. (8) and the fact that the expectation
values of ;- =, in the two-nucleon case are 1 and —3 for

Fi16. 2. The A-nucleon triplet central potential (C), triplet tensor
potential (T), and singlet potential (S) with coupling constant
Sf?/4r=0.095. The distance between the baryons (abscissa) is in
units of 1.4X 10713 cm and the potentials in units of 140 Mev.
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Fic. 3. The Z-nucleon triplet central potential (C), triplet
tensor potential (7°), and singlet potential (S) in the isotopic-spin
% state. The units are the same as in Fig. 2.

isotopic spin one and zero, respectively, we have

V=T,
Ve=1(V1+3Vo),
Va=%3V1+Vo),

Vaz=33(Vo—TV1).

The T=3% potentials are plotted in Figs. 2, 3, and 4 for
the coupling constant f#/47=0.095. The T=$% poten-
tials are the same as the 7'=1 potentials plotted in
reference 10.

" The nondiagonal triplet central potential nearly
vanishes because of cancellation of the contributions
from second- and fourth-order diagrams. This result is
in qualitative disagreement with that found in I, where
we neglected diagrams corresponding to the fourth-
order nondiagonal potential. The A-nucleon potential
(including the effect of the nondiagonal potentials) is
now more attractive in the singlet state than in the
triplet, a result opposite to that found in I.

®

III. SOLUTION OF THE SCHRODINGER EQUATION

In the T'=3% state, the Schrodinger equation is diago-
nal in the potentials (except for tensor forces). It can be
solved, therefore, without any special difficulties.

In the T'=1 state, as we have seen, the terms in the
potentials containing =, 2 mix A-nucleon and Z-nucleon
wave functions. The Schrédinger equation can be
written

(T+V)¥g=FE¥pg, (10)
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Ei<
(3)
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Fic. 4. The hyperon-nucleon nondiagonal triplet central po-
tential (C), triplet tensor potential (7)), and singlet potential (.5).
This potential converts a A hyperon to a = and vice versa. The
units are the same as in Fig. 2.

where the eigenfunctions ¥z contain a mixture of the
wave functions of a A-nucleon system and a Z-nucleon
system. The kinetic energy operator 7' contains only
diagonal terms which operate on the A-nucleon and
Z-nucleon parts of the wave function separately, while
the potential V contains the term Vs which changesa A
into a 2 and vice versa in addition to the diagonal terms
Vs and Vs. Equation (10) can be separated into two
simultaneous equations which have the form

—[1/Quz) V¥ s+ (Vs— Es)¥z= — Vasga,
—[1/Qua) IV¥a+ (Va— Ex)¥a= — Vasys,

where us and uy are the reduced masses of the Z-nucleon
and A-nucleon systems, respectively. The energy of the
Z-nucleon system Es and of the A-nucleon system Ej are
related by

(11a)
(11b)

Es—Ex=Ms— M =A.

We now expand ¢z and ¢, in partial waves, noting
that in the triplet state tensor forces are present. Re-
stricting ourselves to states of lowest angular mo-
mentum, we obtain from Eq. (11a)

1 d2M2
———+ (Es—V3)us
Z,U.z d7’2
= Viscata+2V2Vsws+2V2V yz.0a, 12)
1 sd%us 6wy
——‘“(——_ + (Ex+2Vzi—Vzws
Qus\ dr* 7

= (Vaze— Vaz)wa+2V2Vsus+2V2V ys 4,

where us/r and ws/r are the radial S- and D-state wave
functions of the £ and nucleon. The subscripts ¢ and ¢

LICHTENBERG AND M. H. ROSS

refer to central and tensor, respectively. There are two
more equations which can be obtained from Eq. (11b),
or, more simply, by permuting the subscripts A and = in
Egs. (12). Of course Vaz="V3s. These four equations
must be solved simultaneously for #s, #a, ws, and w; in
order to obtain the phase shifts which yield the hyperon-
nucleon scattering cross sections.

A considerable simplification results if we neglect
tensor forces. Then we have only two simultaneous
equations to solve in the triplet 7'=1% state and only one
equation in the triplet 7=% state. It can be seen from
Figs. 2 and 3 that the A-nucleon and Z-nucleon tensor
potentials are much smaller than the triplet central
potentials. This is also true of the T'=% potentials
(proton-proton odd-state potentials). The tensor po-
tential shown in Fig. 4 is small compared to the diagonal
central potentials, but it is not small compared to the
nondiagonal triplet central potential. By neglecting
tensor forces in this case, we underestimate the triplet
state hyperon-exchange cross section.

In the singlet spin state we need make no further
approximations. Then in both singlet and triplet states,
Egs. (12) (and the equations formed by permuting A
and 2) reduce to the following form:

1 dzuz
—_— -+ (Ez— V}:o)%z= VAszA,
2}12 d1’2
(13)
1 dPuy ) '
— ——F (Ea—Va)ua=Vsctts,
2[1,1; dr?

where Vs, Ve, and Vas. are of course different in the
triplet and singlet states.!! '

We have solved Egs. (13) numerically on an electronic
computor at Indiana University by integrating out from
the repulsive core, point by point. In discussing the
solutions of the equations, it is convenient to regard the
incident particle as a A and to distinguish between
energy regions below and above threshold for hyperon-
exchange scattering.

In the first region, the A-nucleon kinetic energy is
insufficient to produce a real . Then Egs. (13) have, at
any given energy, only one solution that does not blow
up at infinity. From this solution we obtain a phase shift
which describes A-nucleon elastic scattering. In the
second energy region, we obtain two independent solu-
tions, each one of which corresponds to a mixture of A
and 2 hyperons approaching the scatterer and a differ-
ent mixture leaving the scatterer. From these solutions
we construct two linear combinations, one of which
corresponds to a pure incoming A and an outgoing mix-
ture of A and Z, and the other to a pure incoming = and
outgoing mixture. The phase shifts in this case are
complex, and from them we obtain the elastic scattering
and hyperon-exchange scattering cross sections.

1 R. G. Newton has discussed some of the general properties of
equations of this form (to be published).
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IV. RESULTS AND DISCUSSION
A. Applications to Hyperfragments

An analysis of the binding energies of the A in
hyperfragments can be carried out to yield some in-
formation about the A-nucleon potential. Dalitz!* has
shown, under the assumption that the A-nucleon po-
tential is short range and is weaker than the nucleon-
nucleon potential, that the hyperfragment binding gives
an estimate for the volume integral U=— fd%V (r) of
the A-nucleon potential. We can use this information to
estimate the magnitude of the coupling constant 4.
However, this estimate cannot be readily carried out
directly. For example, our potentials have repulsive
cores and therefore their volume integrals are infinite. It
would be a difficult task to calculate hyperfragment
binding energies with these singular and nondiagonal
potentials.

We determine % in the following manner. Consider the
triplet and singlet S-wave scattering of a A by a nucleon
below threshold for production of a =. The calculated
scattering phase shifts, as a function of energy for
various values of /, determine “‘equivalent’” potentials,
such as Gaussian or square-well potentials, which are
the same as the actual potentials as far as their low-
eriergy scattering properties are concerned. These
“equivalent” potentials are well behaved ; their volume
integrals exist and they are relatively easy to calculate
with. We obtain the “equivalent’ potential by making
an effective-range approximation from the computed
phase shifts and then determining, for example, the
square well which has the same scattering length ¢ and
effective range 7o. The scattering length and effective
range obtained from the phase shifts in triplet and
singlet states are shown in Table I for fi/4w=0.095.
The effective-range approximation yields cross sections
which are at most 109, higher than the computed cross
sections at an energy of 15 Mev in the center of mass.
Square wells with the same scattering length and

effective range as the actual potentials give the cross’

sections with an error of about 5%, at 15 Mev. The
volume integrals U and ranges b of the triplet and
singlet equivalent square wells are given in Table II. As
has been pointed out by various authors,** the range
of the A-nucleon potential, as well as its volume integral,

- TaBLE I. The scattering-length and effective-range parameters
describing the low-energy A-nucleon scattering in triplet and
singlet states. The units are 1.4X107% cm.

Scattering length ¢ Effective range 7o

—0.55 2.7
—-1.7 1.7

Triplet
Singlet

2R, H. Dalitz, Proceedings of the Sixth Annual Rochester
Conference on High-Energy Physics (Interscience Publishers, Inc.,
New York, 1956).
18 Marc Ross and D. B. Lichtenberg, Midwest Conference of
Theoretical Physics, Towa City, March-14, 1957 (unpublished).
14D, W. Downs, Bull. Am. Phys. Soc. Ser. II, 2, 175 (1957).
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TasLE IL. Volume integrals and ranges of square-well potentials
with the same low-energy scattering properties as the calculated
A-nucleon triplet and singlet potentials.

Volume integral U Range b in

in Mev cm3 X10-% 1.4 X10-18 cm
Triplet 240 1.36
Singlet 440 1.32

is important for predicting hyperfragment binding
energies. As a result of the range determined by our
theory, we obtain volume integrals somewhat higher
than those deduced assuming A-NV force of very short
range.}

An empirical analysis of observed hyperfragment
binding does not reveal whether the A-nucleon potential
is more attractive in the triplet or singlet state. If singlet
forces are favored, we find empirically that U,=380
Mev cm®X 1073 and U,=220 for potentials of range
about a pion Compton wavelength. If triplet forces are
favored, we find U,=300 while U,=0. (U, is not very
well determined by experiment in this case.) These
numbers are based on H and He hyperfragments. The
analysis of heavier fragments seems less conclusive, at
present. It is seen that the chosen coupling constant
together with repulsive cores from the two-nucleon case
puts our theoretical results of Table II in rough agree-
ment with the observed volume integrals which favor
singlet forces. For a coupling strength f4/47r=0.09
(nearly thelS constant used by Brueckner and Watson?),
the volume integrals of the equivalent square wells are a
little over half those shown in Table II.

With these forces the hyperdeuteron (A+4p) is not
bound. (Note, however, that if the measured Q value for
A decay should increase, all hyperfragment binding
energies would increase and this result might be
changed.)

B. Hyperon-Nucleon Scattering

At low energies, only S-wave A-nucleon scattering is
important. At higher energies, such that a £ can be
produced, it is still sufficient to consider only S-wave
scattering provided the kinetic energy of the Z-nucleon
system is small. Using the coupling constant fi/4r
=0.095, we have calculated the S-wave hyperon-
nucleon scattering amplitudes in definite isotopic spin
states. It remains to relate these amplitudes to cross
sections which can be observed. Fourteen different
processes of the form

V+N—YV+N (14)

may occur, not counting the inverse reactions. Here ¥
means either a A or = hyperon. Making use of charge
symmetry, which states that the cross section for a
particular reaction is unaltered if we replace =+ by 2~
and proton by neutron, the number of distinct cross

1 Note added in proof—See, for example, L. Brown and M.
Peshkin, Phys. Rev. 107, 272 (1957). :
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TasLE III. Calculated total S-wave hyperon-nucleon scattering
cross sections in millibarns as a function of energy in the center-of-
mass system. The cross sections are averaged over triplet and
singlet spin states. They are not corrected for Coulomb effects or
the mass differences of the 2=, =+, and =°.

Energy Ap —Ap Zrp—Ztp Z=p—An Z0p—Ap Z-p—Z~p T0p—Z0p Zp—Z0n
(Mev) An—An Z-n—Z"n Ztn—Ap Zn—An Ttn—oZtn Ton—Z0n Ttn—20p

1.4 170 750 17 8.7 210 420 120

7 83 200 6.6 3.3 87 130 29
14 46 98 4.6 23 50 67 15
28 19 39 2.8 1.4 24 27 7.1

sections reduces to seven. With our charge-independent
model, where the Hamiltonian (and therefore the cross
sections) depends only upon the isotopic spin configura-
tion of the hyperon-nucleon system and not on its
orientation in isotopic spin space, the seven cross
sections ¢ can be written in terms of four isotopic-spin
scattering amplitudes with one relative phase between
them. We have

o (Ztp—o2hp)= |as|?,

o (Ttn—Ztn)=%|as+ 2012
o (Zp—Z) =% 2as+tai|?,
o (Ztn—2%)=2/9as—ail?,
o (Ztn—Ap)=%|ewl?
7 (Zp—Ap)=3%|aw?
o (Ap—Ap)= |aol?,

(15)

where a3 is the 7’=$% scattering amplitude and e, ajq,
and o are the three 7=% amplitudes. Here «; is the
amplitude for a Z-nucleon configuration in both initial
and final states, ajo comes from a Z-nucleon initial
configuration and a A-nucleon final configuration, and
ao is the A-nucleon amplitude in initial and final states.
The expressions for the Z-nucleon scattering cross
sections in terms of isotopic spin amplitudes are formally
the same as the corresponding expressions for pion-
nucleon scattering. If we combine the individual ampli-
tudes according to Egs. (15) and appropriately average
the triplet and singlet cross sections, we obtain the total
S-wave cross sections shown in Table ITI. These cross
sections are not corrected for Coulomb effects or for the
mass differences of the three = hyperons.

There are almost no direct data on hyperon-nucleon
scattering with which to compare the cross sections of
Table IIL.§ For example, Alvarez et al.!> have one ap-
parent =7p interaction in flight. The =~ track ends
suddenly, corresponding to a charge-exchange scat-
tering. There is more information on the Z=p interaction
at rest. Alvarez et al. have ten events at rest, three of

§ Note added in proof—One can, however, look at hyperon-
nucleon final state interactions. See E. Henley, Phys. Rev. 106,
1083 (1957).

16 Alvarez, Bradner, Falk-Vairant, Gow, Rosenfeld, Solmitz, and
Tripp, Nuovo cimento 5, 1026 (1957). See also P. Falk-Vairant
et al., Bull. Am. Phys. Soc. Ser. II, 2, 222 (1957), and Fry, Schneps,
Snow, and Swami, Phys. Rev. 100, 939 (1955).
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which correspond to the process

274 p—A+n, (16)
and four to the process
‘ S+ po20tn. (17)

The remaining three events cannot be identified, pre-
sumably because the A which is produced (either
directly or indirectly via the decay of the Z°) decays
neutrally. Events classified as occurring at rest are
either very low-energy events in flight (say, $1 Mev)
in which the =~ appears to have stopped, or events in
which the 2~ is captured from a Bohr orbit. Theo-
retically, the potentials leading to the processes (16)
and (17) are the same, provided we neglect the Z-A
mass difference A. This can be verified directly by
operating with ;-7 on the 2%, and An wave functions
and noting that diagonal and nondiagonal terms are
equal in the two cases. Then if we also neglected A in
solving the Schrodinger equation, we would find that
the matrix elements for processes (16) and (17) would
be equal. More simply,'¢ we note that the wave function
of the initial Z—p system can be written K—#np. Similarly
we write for the final 2% and An wave functions
274 K—p+K*n)n and 273(K—p— K%*n)n, respectively,
where K°* is used to represent the charge conjugate
wave function to K° (i.e., the wave function for a K°
particle). But since we are postulating that the potential
is due only to the exchange of pions, with the K playing
only a geometrical role, there is no mechanism for
converting a K~ into a K°. Then the wave functions of
the Az and Z# systems must have equal amplitudes so
that the K°* part of the final wave functions will cancel.

If we assume that, neglecting A and 2 mass differences,
the matrix elements for processes (16) and (17) are
equal, the ratio (A/Z) of the number of A’s to Z%s
produced is simply the ratio of the phase-space factors.
Since the energy release for processes (16) and (17) is
80 Mev and 7 Mev, respectively (assuming that M (2)
— M(Z") =8 Mev), with corresponding momenta ks = 300
Mev and k(2% =90 Mev, we have for scattering in an
S state (either in flight or from a Bohr orbit)

(A/Z) =M rks/ (M (Z)k(2)) ~3.

This value is about four times the experimental ratio
(A/Z)~%. If the Z-p interaction goes from a P-state
Bohr orbit, then (A/Z) is increased by the additional
centrifugal-barrier factor [ka/k(Z°) P=~11. A rough
estimate indicates that the nuclear interaction of 2~ in
the P state will completely predominate over the
radiative transition to the S state.

However, although it is a good approximation to
neglect A in calculating the potentials, it is a poor ap-
proximation to neglect it in solving the Schrédinger

16 We should like to thank M. Gell-Mann for pointing out to us
that simpler arguments exist for obtaining this and certain other
results.
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equation. We find that the 2—p system is just bound (by
~1 Mev) in the 1S, T'=3% state. This has the effect of
greatly enhancing the singlet cross section for process
(17), near zero energy, so that the singlet ratio becomes
(A/Z)s=0. In the triplet state, the ratio of the cross
sections is still given by approximately the ratio of the
phase-space factors as before: (A/Z),~3. Then, if a
significant fraction of the Z~p interactions are actually
low-energy events in flight, agreement could be obtained
with the result of Alvarez et al. If the resonance in the
T=3 state occurs very nearly at zero energy, a crude
calculation (including Coulomb distortion of the Z—p
wave function) indicates that the in-flight lifetime for
process (17) may be of the same order of magnitude as
the time required for a kilovolt-energy =~ to be slowed
down and captured into a Bohr orbit (=107 sec).”
Thus, while we have not made any detailed calculations,
we feel that it is possible that the explanation for the
low ratio of A to Z° production is the T'=% zero-energy
resonance in 2-N scattering.

Hyperon-nucleus interactions can also give informa-
tion on hyperon-nucleon scattering. In particular, one
can examine production of hyperons in nuclear matter
by K particles or pions. We are in the process of in-
vestigating these questions. At present we can just
remark that the spectrum of hyperons produced by K
particles unfortunately seems to lead to very weak con-
ditions on the hyperon-nucleus potential, particularly
since most of the production occurs at the nuclear
surface.

C. Further Discussion

An interesting experimental question is the possible
binding of Z-» and Z*p systems. If the pion-hyperon
coupling constant is equal to (or greater than) the pion-
nucleon constant, the £~% system is bound. This can be
seen as follows: the =~ singlet potential is the same as
the nucleon-nucleon singlet even-state potential. (The
neglect of the mass difference A does not affect the Z—=
potential, since there cannot be an intermediate A.) The
nucleon-nucleon potential just fails to bind the neutron-
proton system in the singlet state. But the same
potential will bind the =~ system because of its heavier
mass. Indeed, for the purpose of determining if a bound
state exists, we can just consider that the two-nucleon
singlet even potential is increased as the reduced mass,
i.e., by the factor 2M (M s+ M y)=1.12, which is suffi-
cient for binding.!® The question of whether the Z*p
system will be bound is very delicate because of the
additional Coulomb repulsion. If we use our derived
potential with a coupling constant fk/4wr=0.095, in-
stead of taking exactly the two nucleon potential, the
Z+p system is definitely bound.

17 A, S. Wightman, Phys. Rev. 77, 521 (1950).
18 J. Blatt and V. Weisskopf, Theoretical N uclear Physics (]ohn
Wiley and Sons, Inc., New York, 1952), p. 2
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The fact that the pion-hyperon coupling constant
comes out so close to the pion-nucleon coupling constant
makes it tempting to assume that the couplings are
equal. If this is the case, the hyperon-nucleon potentials
can be written in terms of linear combinations of the
observed nucleon-nucleon potentials according to Egs.
(9). That is, we do not have to rely on a field-theoretical
calculation but can relate the hyperon-nucleon poten-
tials to the experimentally determined nucleon-nucleon
potentials. In the two-nucleon case, the potentials are
well known only in even orbital angular momentum
states. But the hyperon-nucleon potentials, except the
T=4% singlet potential, involve the two-nucleon po-
tentials in odd as well as even states. Because of the lack
of experimental information about the two-nucleon odd-
state potentials, we have preferred to rely on a field-
theoretical calculation, even in the case that pions have
the same coupling with all baryons.?®

If the pion-hyperon and pion-nucleon coupling
strengths are in fact the same, we have to take the A-
nucleon cores a few percent smaller than the nucleon-
nucleon cores. Since the A-nucleon cores involve the
two-nucleon cores in odd as well as even states, there is
no inconsistency in this result.

We now consider what factors in the hyperon-nucleon
problem, other than the unknown two-nucleon odd-
state cores, might lead to our choice of smaller A-nucleon
cores (or a larger coupling constant). We made ap-
proximations which are different from those that have
been made in the case of the two-nucleon potential. The
neglect of tensor forces may partially explain the need
for a smaller core in the triplet state, but we also need a
smaller core in the singlet state. If we do not neglect the
mass difference between the £ and A, the A-nucleon
potential becomes smaller, so that this effect is in the
wrong direction. Finally, there is the effect of K-meson
exchange. If the results of second-order perturbation
theory are valid, a pseudoscalar K meson will cause an
additional attraction between the A and nucleon in both
triplet and singlet states.® Whether this attraction is
sufficient depends on the K-meson coupling strength.
However, before we conclude that some K-particle
forces are necessary to account for the A-nucleon force,
it is necessary to improve deductions from the binding
energies in hyperfragments.
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