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Spin Reversal in Scattering Processes
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The effect on the scattering matrix element of reversing the spins of all particles is discussed. An exact
relation is shown to be the consequence of invariance under combined space and time inversion and the
unitarity of the S matrix. In lowest order perturbation theory this gives a symmetry property of the matrix
element. The implication for particles in arbitrary states of polarization is pointed out.

ECENTI Y, with the availability of polarized
particles from parity-nonconserving weak-decay

sources, there has been a growth of interest in the spin
dependence of scattering processes. The purpose of this
article is to call attention to an approximate symmetry
property to which the spin dependence of the matrix
elements is subject.

Let states be specified by the momenta y of particles
in plane-wave states (we take h=c=1 throughout),
and by m= —j, —(j—1), (j—1), j, where m, the
"helicity quantum number, " is the eigenvalue of
s p/p, s being the spin operator for the particle in

question. We wish to discuss the effect on the matrix
element of the transformation

~p) 1@~ tPS)

referred to in the following as spin reversal.
As an illustration, let us take the matrix element for

bremsstrahlung in first Born approximation in the
external Coulomb field. ' The matrix element is'

M= (2w'g'i) —'num(ee'~) ~+, (p')Q, ~,(p) (2)

Here r and r' are the helicities of the electron in the
initial and 6nal states, respectively. The matrix Q, is

given b
~(p'+k) -m i(p k) m—-

Q, (p,p',k) =e, n+ n
2p' k —2p k

e,. (3)

The photon helicity s enters into the definition of the
complex unit polarization vector e, appropriate to left
(s=+1) and right (s= —1) circularly polarized pho-
tons. ' I.et the vectors y and y' lie in the I—2-plane, the
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'The circular polarization in bremsstrahlung from polarized
electrons has been detected recently by Goldhaber, Grodzins, and
Sunyar, Phys. Rev. 106, 826 (1957). The theory has been given
by K. W. McVoy, Phys. Rev. 106, 828 (1957). The author is
indebted to Dr. Goldhaber and Dr. McVoy for letting him see
these papers before publication.

~ J. M. Jauch and F. Rohrlich, The Theory of Electrons and
I"hotons (Addison-Wesley Publishing Company, Cambridge,
1955), Sec. 15-6. We follow the notation of this work.

'This seemingly illogical convention originates in optics where
a right circularly polarized wave has clockwise-rotating electro-
magnetic vectors when viewed facing the light source. Positive
I,'negative} helicity, on the other hand, means clockwise (counter-
clockwise) rotation when looking along the propagation vector.
The latter convention has the advantage that a photon with
positive (negative) helicity has its spin parallel (antiparallel) to
its direction of propagation.

vector k lie in the 1—3-plane making an angle x with
the 1 axis, and let the real part of e, be parallel to the
2 axis. Furthermore, choose p&, p2, po as pure imaginary,
and p3 as real (this is only for convenience; any repre-
sentation of the Dirac matrices gives the same result).
With these conventions one sees easily that all factors
are purely imaginary or real, except

(p', r', k,slMI p,r)= —(p', r', k, —sl~l p —r)* (5)

Under spin reversal the real part of the matrix element
changes sign.

To investigate the validity of this result for general
scattering processes it is important to note that spin
reversal is closely related to combined space-time
inversion but is not identical with it. Space-time
inversion reverses spins and leaves momenta unchanged,
but it also interchanges the role of the initial and final
states. Thus, in a theory invariant under this symmetry
operation, the S matrix (with a proper choice of
arbitrary phases for the states under consideration)
satisfies

(flsl~) =("lslf'), (6)

where the prime refers to the operation (1).In order to
obtain the generalization of (5) it must, be shown that
the relevant part of the S matrix is anti-Hermitian.
This, in turn, is known to be true in lowest order
perturbation theory in which the effect occurs, and it
is a simple consequence of the unitarity of the 5 matrix.
To formulate this precisely, let 8=—5—j., so that the
unitarity condition becomes

Rt= —R(1+R) '.
Combining this with (6), one obtains the exact relation

—(f'IR I
«')*= (fIR(1+R) 'I ~).

N =co(iy~ cosx+i73 sing+go),
ie= 2 '*(——sy~ sing —iy2+sy3 cosy),

and for these factors complex conjugation has the same
effect as changing the sign of y. The latter operation
is a reQection of momenta in the 1—2-plane, and leaves
the helicities unaffected. A space inversion to which
the theory is invariant involves, however, also the
reversal of the helicities. Consequently, one concludes
that



SPI N REVERSAL I N SCATTE RI NG PROCESSES

In perturbation theory one retains only the lowest
order term of the geometrical series on the right side,
and then the analog of (5) results for an arbitrary
process.

A few remarks should be made about the case when

fi) and f f) cannot be taken as free-particle plane
wave states. This occurs, for instance, in the description
of radiation phenomena in the presence of a strong
external potential. It is convenient to discuss this in a
picture where the scattering operator S represents
only the eRects of the radiation interaction, and the
external field influences only the state vectors with
which matrix elements are formed. Scattering is
described by a matrix element of the form (f;„f

5
f
i,«)

Here fi,„t) represents a state which consists asymp-
totically of plane waves characterized by the label i,
and scattered waves due to the external potential
satisfying the "outgoing" boundary condition at
infinity; analogously for

f f;„) with the "ingoing"
boundary condition. 4 Space-time inversion invariance
implies in this case

because time inversion also converts the "ingoing" into
the "outgoing" boundary condition, and vice versa.
If now only the lowest order in the radiation interaction
S(~) is considered, we still have S(~)= —S(~) t, but now
this implies that

(fin f 5(i) f
~o«) (faut f 5(i) f

&in )

whereas the spin-reversed matrix element is
(f;n'

f S(i) f i,„t') It is n. ot difhcult to see, however, that
as long as the external potential is weak so that it can
be treated in first Born approximation, the matrix
element changes under spin reversal as shown by the
example (5).

There remains the question as to what the spin-
reversal symmetry just discussed implies with regard
to scattering from and into states of arbitrary polar-
ization. For the sake of simplicity, let us restrict the
discussion to systems of spin-~ particles and photons.

4 For a discussion that these are the correct boundary conditions
see H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954),
Sec. IV.

Also, consider only one particle in both the initial and
the final states. The relation

can be written in matrix form as'

3f= —O-gM*o. g. (12)

The transition probability is in general proportional
to the quantity

P—=Tr (eMpM 1) . (13)

Here p is a statistical density matrix with respect to
the helicity indices of the initial state, and e is an
"efFiciency matrix'" with respect to the indices of the
final state. The former characterizes the state of
polarization of the initial beam of particles, and the
latter the polarization sensitivity of the detector
response. A convenient parametrization of these 2)&2
matrices is given by

p=-', (1+); (r), e=-s, (1+)) (r), (14)

where the e are the Pauli matrices in the standard
representation. The real "polarization vectors" g, and

characterize the polarization properties of the
experimental arrangement, and F appears as a function
of them. ' The question to be decided is what symmetry
property of this function is implied by (12). Substituting
that relation into (13), one gets after some simple
algebra

(15)

'The asterisk denotes complex conjugation, as contrasted to
Hermitian conjugation which is denoted by a dagger.

6F. Coester and J. M. Jauch, Helv. Phys. Acta 26, 3 (1953).
'This formalism has been exploited recently by H. A. Tolhoek,

Revs. Modern Phys. 28, 277 (1956).

Here the prime denotes the reversal in sign of the
3 component. We conclude then that the transition
probability remains invariant with respect to "reQection
in the 1—2-plane" of all polarization vectors. Phrased
this way, the statement is true when an arbitrary
number of spin--,' particles and photons are involved.

The author is indebted to Professor F. J. Dyson for
bringing this problem to his attention and for profitable
discussions.


