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Circular Polarization of Internal Bremsstrahlung

A. PYTTE
1ymarl, Iaboratory of Physics, Harvard Urliversity, Cambridge, Massachlsetts

(Received June 4, 1957)

A calculation is made of the circular polarization of the internal bramsstrahlung in allowed P-decay with
the most general P-interaction. The polarization is found to rise from zero at the low-energy end of the
spectrum to a maximum value at the high-energy end. This maximum value depends critically on the relative
magnitudes of the coupling constants in the P-interaction. Kith the two-component neutrino theory and only
the scalar and tensor interactions present, the polarization is complete at the high-energy end of the spec-
trum. Plots have been made, with this P-coupling, of the Born approximation result for the circular polariza-
tion as a function of photon energy for S" and P". The effects of the nuclear Coulomb field on the p-ray
spectrum and polarization are discussed.

1. INTRODUCTION

HE bremsstrahlung accompanying P decay will be
circularly polarized only if parity is not con-

served in the p interaction. Assuming nonconservation
of parity, we shall calculate the degree of this circular
polarization for the internal bremsstrahlung in allowed
decay. The calculation will be carried out in the Born
approximation, but we shall also discuss the corrections
to the Born approximation .due to the eGect of the
nuclear Coulomb field. The correction to the first order
in Zn is easily found and gives a simple result when all
the coupling constants in the P interaction are real (or
in phase). In our calculations we employ the Green's
function of the second order Dirac equation. This
technique, which was developed by Glauber and
Martin for radiative X-capture, is particularly suitable
in finding the Coulomb field corrections.

In calculating the degree of polarization we have used
the most general p interaction. With certain interaction
combinations the result is independent of the coupling
constants and the nuclear matrix elements. This is the
case, for example, if we take the two-component neu-
trino theory to be correct and the vector and axial
vector interactions to be absent. In this special case we
have plotted the Born-approximation result for the
degree of polarization as a function of energy for S"
and P".

An experimental confirmation that the internal
bremsstrahlung is circularly polarized would present
further evidence that parity is not conserved in the

P interaction. Such experiments might also supply us

with a check on the two-component neutrino theory.
Furthermore, since the vector and axial vector inter-
actions in the two-component theory polarize in the
direction opposite to that of the scalar and tensor
interactions, we might obtain an indication of the
amount of a possible vector-axial vector admixture to
the p interaction, which at the present is assumed to be
predominantly tensor and scalar.
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Here Z is the energy and p the momentum of the
electron in the final state f; Ei is the energy of the
electron in the intermediate state l, and Eo is the total
energy available in the decay. The summations are
over the final spin states of the electron, s„and the
antineutrino, s„, as well as the magnetic quantum num-
bers of the final nuclear states, labeled e. The expression
is also to be considered as averaged over the initial
nuclear states. The integrations are over the momentum
directions of the electron, 0„ the neutrino, 0„, and the
photon, QJ, . The electromagnetic interaction term is
given by2
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2. CALCULATIONS IN THE BORN APPROXIMATION

The over-all process of internal bremsstrahlung may
be pictured as taking place in two stages. In the first
stage we have the nuclear transformation from an
initial state i, whereby a neutron goes into a proton
with the creation of an antineutrino and an electron in
an intermediate state l. In the second stage we have a
transition of the electron from the state l to the final
state f with the emission of a photon.

The standard second-order perturbation theory gives
the following expression for the probability, S(k,e)dk,
that a photon will be emitted with energy between k
and k+dk and with polarization e:

~ We use units in which 5= 1 and c= 1, and the Dirac matrices,' R. J. Glauber and P. C. Martin, Phys. Rev; 104;.158 (1956); a=pie', P=p3, y&= —pi. Hermitian conjugate is designated by a
and P. C. Martin and R. J. Glauber, Phys'. Rev. (ta be published). superscript dagger.
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The general p interaction term in allowed decay is Eq. (8) can be written

(il Hp Ii)=Q;(0;)petit (0)Oi[C;+C,'pz]y(0). (3) 3E= (2ze /k) &(I p+k I'—p,') 'Nt[2y+k(pi&1)n]

Here (0;)y; is the matrix element of the P-coupling
operator, 0;, taken between the final and initial nuclear
states. $(0) and x(0) are the electron and neutrino
wave functions evaluated at the origin. The expression
(3) must be modified (by taking into account the 6nite
size of the nucleus) for relativistic Coulomb wave
functions, which are singular at the origin.

Following Glauber and Martin, ' we introduce the
Green's function, g(r), for the second order Dirac
equation, describing propagation from the origin to the
point r. The matrix element 3II defined in (1) then
becomes
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For the scalar and tensor interactions,

o (1—»)=(1+»)0 =(1—pi)0

For the vector and axial vector interactions,

O, (1—»)=(1-»)O,=(1+&,)0;.
Hence
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I,et us for the moment neglect the nuclear Coulomb
Beld. The Green's function is then simply the unit
matrix times a scalar, which satisfies

X (1+pi) z. (14)

We see that the scalar and tensor interactions polarize
in the e+ direction, the vector and axial vector inter-
actions polarize in the e direction. Since the scalar and
tensor interactions are at the present assumed to domi-
nate, we expect the internal bremsstrahlung to be
polarized in the e+ direction. '

It is apparent already at this stage that the polariza-
tion is more pronounced the higher the photon energy
becomes. In the low-energy limit there is clearly no
circular polarization. To make the resulting expressions
more manageable, we shall now consider only the
tensor and scalar interactions. The result of an arbitrary
interaction mixture can be found from an obvious
extension of the following formulas, and will be given
later.

We sum over the spin states in the usual way. The
integrations over the neutrino and electron directions
are trivial. Kith the scalar and tensor interactions, we
obtain

[V'+ (E+k)' —m'] ge+r. (r) = H(r), —(5)

whose outgoing wave solution is
/

g@+g(r) =e'""/4rrr. (6)

The momentum, p, is defined by p = [(E+k)z—mz]&.

To simplify the following expressions we shall tem-
porarily restrict ourselves to the two component neu-
trino theory, O'= —C. M is then,
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Here v and I are the plane-wave spinors of the neu-
trino and the electron in the final state. The spatial
integration is easily carried out and yields
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Here H is the angle between k and y. The nuclear terms

I (p) I

' and I (pn) I

' are averaged over initial and summed
over final states. (15) shows clearly the dependence of
the circular polarization on 8. In particular the radiation

Ke introduce the circular polarization vectors, e+,
de6ned by

e+= zv2(et&ice), -
where eiX e&——k/k. Because of the identity,

irr (ernie~) Xk=~ko". (et&ice),
3 There are conHicting'definitions of "right" and "left" circular

(10) polarizations. We identify "right" polarization with the vector e+.
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in the + p-direction is completely polarized at all
energies. When we integrate over 0, the result can be
written as follows,
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Here we have set m= 1, and Eo—k=x. We define the
momentum s by s= (x'—1)'. The integrals rir and ri,

when carried out, yield
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Fio. 2. The internal bremsstrahlung spectra, kS(k, e+) and
kS(k, e ), and circular polarization, {P(k), as functions of photon
energy, k, for P" (k, = 1.70 Mev), with a=1 and b=0

(11 4) 19 23—s Epl —x'+—
I
——x'+—x

E 9 9) 36 72
(1&) and P" with k,„=1.70 Mev (Fig. 2). Note that (19)

and Figs. i and 2 are based on the two-component
neutrino theory and the scalar-tensor interaction
mixture. The total probability that a photon of energy
k will be emitted is

If we define the degree of polarization, {P(k), by

{P(k)= LS(k,e+) —S(k,e )]/['S(k, e+)+S(k,e )],
it follows that S(k) =S(k,e+)+S(k,e ) =(e'/2 4z)k

XLlc, lsI(()&l'+ IC, I'IQ~&l']I g+g ] (20)
A plot has been made of {P(k), kS(k, e+) and kS(k, e )

as functions of k for S ' with k, =167 irev (Fig. 1), This probability was first calculated by Knipp and
Uhlenbeck and by Bloch.' Our result agrees with theirs

I I I when we note that IC;I'I (0;)I' in the old theory be-
comes 2IC, I'I(0;&I' in the two-component theory.

Following Knipp and Uhlenbeck, we can rewrite the
expressions for S(k) in terms of the P-decay probability,
P(E+k), that an electron of energy E+k will be
emitted, and the conditional probability, C (E,k), that
the electron will radiate a photon of energy k:

.6
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The differential radiative probability can be inferred

FIG. 1. The internal bremsstrahlung spectra, kS(k, e+) and
kS(k, e ), and circular polarization, {P(k), as 'functions of photon
energy, k, for S+ (k,„=167hev), with a= 1 and b=0.

4 J. K. Knipp and G. E. Uhlenbeck, Physica 3, 425 (1936);
F. Bloch, Phys. Rev. 50, 272 (1936).
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from (14):
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The Fierz interference term b is known to be quite
small. If we set b=p, (26) still differs from (19), but
only by the constant multiplicative factor u. From ex-
periments measuring the circular polarization at any
one energy, we should therefore be able to determine
the constant a.

3. EFFECT OF THE NUCLEAR COULOMB FIELD

When we use the correct Coulomb field Green's func-
tion, ps+i(r) and wave function, Ps(r), in (4) and take
all the coupling constants in the P interaction to be
real, we find a very simple correction to the first order
in Zrr. I

Z is the nuclear charge and tr(=e') is the fine
structure constant. ) One part of this Coulomb correc-

One advantage of writing S(k) as in (21) lies in the
fact that the experimentally observed p spectrum can
be inserted directly and unambiguously. When we go
through the above steps with the most general P
interaction, the formulas (7) through (24) will change
in an obvious manner. Thus (16) and (19) become'

S(k,")= (+/8 'k)&L~.+(1~ )a.+&a.], (25)

tion may be recognized. and evaluated immediately. The
absolute value of the final state electron wave function
at the nucleus differs from unity when the Coulomb
field is taken into account. This absolute value is found
to occur as a factor in the wave function and conse-
quently as a factor in the expression for the matrix
element M. The value for IMI' obtained with the
Born approximation should therefore be multiplied by
the square of the absolute value of the final state
electron wave function at the nucleus. This is simply
the well-known Sommerfeld factor,

Ep—k

S(k) = ' dEF(Z, E)P(E+k)C (E,k). (29)

If we use the observed P-decay spectrum, which should
take the form,

P(Z, E+k) =F(Z, E+k)P(E+k),
and define C (Z,E,k) by

S(k) =, dEP(Z, E+k)C (Z,E,k),

2irZnE/p
l~.(o) I'=

1—exp (—2irZnE/p)

or its relativistic analog, the Fermi function. Let us
denote this factor by F(Z,E). It should be noted that
it is the energy and the momentum of the electron in
its final state that occurs in this Sommerfeld factor,
rather than the energy and momentum with which the
electron is "born" at the nucleus. The remaining first-
order Coulomb corrections in M are also found without
difFiculty. However, these remaining corrections both
from the Green's function and the wave function are all
found to be imaginary (or out of phase) with respect
to the zero-order terms. They will therefore contribute
to

I
M I' only as second and higher order corrections in

Za. Our result agrees with the first order Coulomb cor-
rection to the total spectrum, S(k), recently calculated
by Lewis and Ford' with a rather elaborate third order
perturbation procedure.

It should be stressed again that this result is only
correct if the P-coupling constants are all in phase. If
the theory is not invariant under time inversion (weak),
we should expect any imaginary first order terms in M
to contribute to the first order in Zn in IM I' and S(k)
as well. Assuming the p-coupling constants to be in
phase, the formulas for the degree of polarization, (19)
and (26), take the same form to the first order in Zn,
but with the factor F(Z,E)=1+( Zsn E/p)+ . , in-
serted in the integrals alt, mls and its. Similarly we insert
the factor F(Z,E) in the integrand of (21),

5 After completing the work reported here, we were informed
about a letter by G. W. Ford /Phys. Rev. 107, 320 (195/)7,
wherein he obtains the same result for the degree of polarization
as in our formula (26).

6 G. W. Ford and R. R, Lewis, Bull. Am. Phys. Soc. Ser. II, 1,
195 (1956), and Atomic Energy Commission Repor't AEC-AT
(11-1)-427 (unpublished). (See also S. B. ¹ilsson, Arkiv for
Fysik, 10, 467 (1956).
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we see that to first order in Zo ..

F(Z,E)
C (Z,Z,k) = C (Z,k).

F(Z, 8+k)
(30)

The analogy with the Elwert correction in external
bremsstrahlung is obvious. The theory of internal
bremsstrahlung has been used primarily to predict
photon intensity relative to the electron intensity.

We see from (30) that the ratio of photon intensity
to electron intensity is less sensitive to the inQuence
of the Coulomb field than either intensity by itself.
There is a partial cancellation of the Coulomb eRects
on the two intensities in taking the ratio. Lewis and
Ford' express the hope that a similar cancellation will

take place in the higher order corrections. The second
order terms which have been neglected, however, are
not simply wave function normalization factors, and
there is therefore no reason to anticipate further
cancellations. The second order Coulomb terms are
somewhat more dificult to calculate. A discussion of
the (Zn)s corrections will be given in a subsequent
paper. It is our hope to investigate their bearing on the
disagreement with the present theory, which has re-
cently been reported by several experimenters. '

In closing we wish to express our gratitude to Pro-
fessor R. J. Glauber, who suggested the problem, for
many helpful discussions.

'K. Liden and N. Starfelt, Phys. Rev. 97, 419 (1955); N.
Starfelt and N. L. Svantesson, Phys. Rev. 9?, 708 (1955); H.
Langevin-Joliot, thesis, Paris, 1956 (unpublished).
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Elastic Scattering of a x+ Hyperon from a Free Proton*

FRANCIS C. GILBERT AND R. STEPHEN WHITE
University of California Radiation Laboratory, Lieermore, California

(Received June 3, 1957)

An event has been found in nuclear emulsion which is interpreted as an elastic scattering of a Z+ hyperon
from a free proton. The center-of-mass scattering angle was 125 degrees and the energy of the hyperon at
the point of scattering was 22.9 Mev.

~INURING
a systematic study of the interactions of

E mesons in nuclear emulsion, an event was
found which is interpreted as an elastic scattering of a
Z+ hyperon from a free proton. A photomicrograph of
this event is shown in Fig. 1. A E meson, which was
identified by ionization versus range, came to rest and
produced a star with only one prong, track A. After
traversing 4.79 mm of emulsion, prong A interacted
yielding prongs 8 and C. Prong 8 then decayed at rest
into a lightly ionizing track D which interacted in
Right after traversing 28.2 mm of emulsion. The decay
was characteristic of a Z+ hyperon which decayed at
rest into a x+ meson. Prong C originated at the point
of scattering and went 1.52 mm before stopping with a
p-ending.

An important feature of the event is the coplanarity
of the tracks A, 8 and C. Track A made an angle of
only 0.2+1.5 deg with the plane of tracks 8 and C.
The coplanarity suggests a two-body collision. From
the measured angles and ranges that appear in Table I
and energy and momentum conservation laws, the
mass of the scattered particle can be calculated in a
number of ways. ' The results of seven of these calcu-
lations are shown in Table II. In the second column

TABLE I. Range and angle measurements from event 659.

Prong Range (mm)

4.79'
0.161&0.003
1.52 +0.02

eb (deg)

75.6&1.5
152.4~1.5
131.8+1.5

appear the measured quantities that were used in each
method for calculating the mass, in the third column
the conservation laws that were used, and in the fourth
column the resulting mass values. In the third column
E, LM, and TM stand for the conservation laws of
energy, longitudinal momentum (the total momentum
parallel to the direction of the incident particle A), and
transverse momentum (the total momentum perpen-
dicular to the direction of A in the plane of ABC),
respectively. In method 5 the mass of the scattered
particle, 8, depends on the direction of the incident
particle, A, but not on its mass. In method 7 the
calculated mass is independent of the direction of the
incident particle but not of its mass. In all calculations
except for method 5 the mass of the incident particle
was assumed to be the same as that of the scattered
particle 8, and particle C was assumed to be a proton.

*Work performed under auspices of U. S. Atomic Energy
Commission.

' Gilbert, Violet, and White, Phys. Rev. 103, 1825 (1956).

a This range was measured from the & capture point to the scattering
point.

b Angle 8 is the angle opposite the prong listed in the first column (j.e.,
the angle between the two other prongs).


