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Nucleon Exchange in Deuteron Stripping Reactions
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In the normal theory of stripping reactions it is assumed that the outgoing nucleon comes from the
incident deuteron. It is well known that this is not strictly justified (although it may be a good approxi-
mation in many cases) because of the need in principle to antisymmetrize the total wave function. This
paper discusses the process of stripping with nucleon exchange that appears when the antisymmetry is
taken into account. With the help of simplifying assumptions, expressions are obtained for the exchange
amplitude in a direct transition between initial and Anal states of the system. The relation of this treatment
to a theory involving compound nucleus formation is discussed.

I. INTRODUCTION
' T is well known that the theory of stripping reactions

~ ~ developed by Butler, ' though remarkably successful
in describing the main features of many such reactions,
does not by itself account for all that happens. In some
cases the characteristic peaking of the angular dis-
tribution of outgoing particles in the region of small
angles, demanded by Butler's theory, does not occur at
all in practice. More usually, however, there is observed
an angular distribution which has a general similarity
to the Butler curve for the relevant energy and angular
momentum transfer, but with the property that an
appreciable intensity of outgoing particles takes place
at the more backward angles for which the theoretical
stripping intensity would be vanishingly small. The
natural inference is that the stripping mechanism is also
accompanied by a certain amount of compound nucleus
formation, which will lead in general to a more or less
isotropic angular distribution. A difhculty with this
explanation is that the compound nucleus process ought
to be incoherent with the stripping process if many
overlapping levels of the compound nucleus are in-

volved; and at the high excitations typical of stripping
reaction energies this would be a normal condition.
Experiments have, however, shown' ' the occurrence of
broad resonances in (d,p) excitation curves which are
very much more pronounced when measurements are
made at the forward peaks of the angular distributions
than at the minima. This suggests interference between
the stripping amplitude and a second amplitude which
exhibits resonances at various deuteron energies. The
theory of pure stripping of course gives a monotonic
variation of cross section with energy.

The purpose of the present paper is to discuss an
enlargement of stripping theory to include the exchange

of a nucleon in the deuteron with a nucleon inside the
target nucleus. This process can be considered as a result
of the complete antisymmetrization of the wave func-
tions involved in the collision process. Although in
principle this antisymmetrization and its consequences
must always be considered, its physical importance will
depend on the likelihood that the exchanging nucleons
shall interact with each other. Since this depends on the
possibility of an overlap of their wave functions, an
exchange contribution to the reaction process will be
important only if both nucleons in the incident deuteron
(and not mere1y the nucleon being captured) come
close to the target nucleus. Regarded in these terms,
therefore, an exchange contribution to the stripping
mechanism is a rather specific means of introducing
something equivalent to what is normally thought of
as compound nucleus formation. The Butler formulation
of stripping theory specifically discards this exchange
contribution, by taking it for granted that the outgoing
nucleon in the final stage of a stripping process was
originally contained in the incident deuteron.

One feature of the present treatment, which marks
it o6 from a compound nucleus picture, is that it
invokes no specific properties, such as angular momen-
tum, parity, and characteristic energy, of the inter-
mediate state. It speaks instead in terms of a direct
transition from an initial state of two colliding particles
to a final state of two separating particles. Under the
conditions that normally hold in the study of stripping
reactions, this approach seems to be rather reasonable,
since the lifetimes of any intermediate states are almost
certainly very short, the overlapping of levels is con-.
siderable, and an expression of complete ignorance con-
cerning the intermediate stage is not far from the truth
in most cases.

II. TOTAL SCATTERING AMPLITUDE IN A STRIPPING REACTION

Our presentation of the problem will have much in common with the formulation due to Gerjuoy, who analyzed
and related the various treatments of what we shall call normal or "direct" stripping. We first consider a plane
wave of deuterons incident upon a target nucleus consisting of a "core" together with a single nucleon which we

' S. T. Butler, Proc. Roy. Soc. (London) A208, 559 (1951).
',Stratton, Blair, Famularo, and Stuart, Phys. Rev. 98, 629 (1955).' J. B.Marion and G. Weber, Phys. Rev. 103, 167, 1408 (1956).

E. Gerjuoy, Phys. Rev. 91, 645 (1953).
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shall assume is the one involved in a possible exchange process. Let us for definiteness assume that we are concerned
with a (d,p) reaction, so that the single exchangeable nucleon in the target nucleus is a proton. We then admit
the possibility that the outgoing proton may have come either from the deuteron or from the target nucleus
itself. We shall label the protons in such a way that proton 1 is always the one which is unbound in the final state.
The wave function of the residual nucleus can thus be written as |p„(2,e,c), where 2 refers to the proton that is
bound in the final state, e refers to the captured neutron, and c refers to the core of the target nucleus. (We
assume that the core suffers no internal rearrangements as a result of the reaction. ) The scattering amplitude for
the (d,p) reaction is then given by

2 = lim rie '"' '"x *"'(si)~"P,*(2nc)+(12nc)d2dndc,
pl~GO

where 4 is the total wave function of the system, and x; " is a normalized proton spin function belonging to total
spin 2 and s-component O.i . (Where necessary, primes are used to distinguish symbols referring to the configuration
after the collision. ) The vectors 1, 2, n, and c represent the total space and spin coordinates of these particles.

The complete Hamiltonian of the system is

&= &i+ &~+&~+ V~.+Vi.+V2.+Vi~+ V2~+ V», (2)

where T refers to the various kinetic energy operators and V to the interactions. (We assume the core to be
infinitely heavy. ) The Hamiltonian, for the residual nucleus r is

H.=Ti+T~+V .+Vi.+Vi .

&=&r+Ti+Vi.+Vi +V2~
We also have the eigenvalue equations:

These, together with Eq. (4), give

H%=M,
H,p, =E„|p,.

(s)
(6)

[Ti—(E—E,)j |P„*(2nc)%'(12nc)d2dndc= —
~t |P„*(2nc)[Vi,+Vi„+Vii+(12nc)d2dndc.

By a procedure similar to that of Gerjuoy, it can be shown that this leads to the following asymptotic form
for 3:

1 (2Mq
A (ni) = ——

~ ~
te '"""x;"'(si)|P,*(2nc)[Vi.+Vi +Vi2]@(12nc)dld2dndc,

4n. EP)J (8)

where M is the mass of a nucleon, and n, denotes the direction of ki.
Now 4' can be written in the form:

+(12nc) =+q(ln)el'"& "+'"'|pi(2c)+C (12nc),

where C is everywhere outgoing. $~(ln) is the internal wave function of the deuteron and P, (2c) is the wave
function of the target nucleus. Now this form of 0' is not antisymmetrical with respect to interchange of protons
1 and 2. We therefore write

@(12nc) =
tpz (ln) e&'"' &"+'"'tp& (2c) pd (2n) e—&'"" ' &'i+'"'lp

& (lc)+4 (12nc).

This, together with (8), gives the required antisymmetrical form for A, since it can be shown that it is unnecessary
to antisymmetrize the final wave function f, (2n) exp(iki. ri) as well as 0'.

In the Born approximation, we neglect the contribution which C makes to A, so that we have for the total
scattering amplitude:

1 (2M'
a(n, ) = ——

i iP —Gj,
4 Eji]

where

t e '"' "x.*"'(si)|P,*(2nc)[Vi,+Vi„+V»)P~(ln) &'"e'&"+'~'f&( c)2l d2 ddn, dc

G= e '"' "x~*"'(si)|P„*(2nc)[Vi,+Vi„+V»j|P~(2n)e&'"'&'~'"ig, (lc)dld2dndc.
4
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The outgoing proton intensity is then simply
~
A

~

s. It is easy to show that we may write

Vi,=—Vs,+V „Vi„=—V,+Vs„,

without introducing any further approximations, although we shall not in fact make use of these relations in
the present treatment.

We shall ignore the contribution to Ii and G produced by the V» interaction, thus assuming that protons 1
and 2 interact with each other only indirectly. Ii and G can then each be split into two terms arising from V~, and
V~„separately. Thus:

(15)

We shall consider these four terms separately, assuming an infinitely heavy target nucleus in each case so that
center of mass corrections can be neglected.

III. EVALUATION OF G1

In this section the following notation will be used: C&»s(jsnss, nsinss) is a Clebsch-Gordan coefIicient as defined
by Blatt and Weisskopfs; f(r) and g(r) are the normalized radial wave functions of bound proton and captured
neutron, respectively, in the nucleus; x,' represents a normalized spin wave function characterized by a total
spin s and its s component o. The total angular momentum j of any system or subsystem is composed of orbital
angular momentum / and spin s, the s components of these three quantities having quantum numbers m, 'A, and r,
respectively. Suffixes will be used to identify parts of the system as follows: 1—a proton initially bound in the
target nucleus and subsequently ejected from it; 2—the proton initially bound in the deuteron and subsequently
captured by the target nucleus; n—the neutron contained in the deuteron; d—the deuteron, t—the target nucleus,
r—the residual nucleus; c—the "core" of the target nucleus, depending for its description upon all the nucleon
coordinates apart from those of I, 2, and n.

G~„can be expressed as the sum of a number of terms depending upon the s-component angular momentum
quantum numbers defining the initial and final states of the whole system. Thus:

G — ~ G mfmsg; mr&1'
~ln — ~ 1n,

m]mgmrO 1'
(16)

We now expand the wave functions for the target and residual nuclei in terms of the complete set of simultaneous
eigenfunctions of the total angular mornenta and their z components, for the component parts of these two nuclei:

f&l"'(lc) = P Clif(jinn» Xio'i)Czip'c( j&rN, I nsiris, )yf" (si)P&, (c)f"(ri) Yli (Qi),
m 1mcX1fr 1

fr "(2nc) = P 2 C41(jnnsn j &so'n)Circ'(gncrrcn, c j ricssisc )Cis's(gsnss i &sos )G'nei (sJrrrir i rnncsns)
mncm2SEn1Sc Xn~2srn 0'2

(17)

Xz; "(ss)x "'(s„)f&',~''(c) f"(rs)g™(r„)Yis"s(Qs) Yi ""(Q„). (18)

We have here assumed jj coupling, and have supposed that n and c are first coupled to give the subsystem nc,
which then couples with 2 to give r.

Ke also have
+s" (2n)=p C;;(jsriss, ossa)x;"(ss)x "(s„)ys(r,„), (19)

where if'(rs„) is the spatial part of the internal wave function of the deuteron. Using (17), (18), and (19) in Eq.
(13), and the usual orthonormality relations between the various spin wave functions, we obtain

G mgmg pro y'
1n

~1t+2WnWcWnc X1X2XnO'2&n

C-;;(jsnis; ~2& )Ciif(jirni; &1&1)Cf19 (jisrci; nsisn. )Ci .*(j ns. ; X —~ )

XC3 n2 c(jncnsnc l'n'smnsc)C&sf (jsnss l iso's)Cincis(grfnrl rrcscrrcs)

r
)( e '"' 'if*'s(rs)g*' (r„)Yis*"s(Qs) Yi„*" (Q„)Vi„e&'"'&'s+'"&ps(r») f'i(ri) Y&iii(Qi)dridrsdr„(20).

In order to separate the integrations over dr~, dr2, and dr„, we make the assumption that V~„ is of the form

Vi„= Vpb(ri, r )
' J. M. Blatt and V. F. Weisskopf, Theoretccal XNcleur Physics (John Wiley and Sons, Inc. , New York, 1952), p. '/89.

(21)
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where

B(ri,r„)=0, (r&Nr„); 8(ri, r„)dr&„——1, (ri„——ri —r„).

We also introduce Hulthen's form' for

ted�(r2„),

vis. :

tttd(y ) —g . e ar2tt—(1 e er2rt)— (22)

where
1 n(ct+P)(2ct+P) &

8—
p 22r

This can be expanded in terms of spherical harmonics of the angles 02 and 0„,as follows:

pd(r2 ) Q 2 jIly, (& )rE2l +( t2r) ttIl+1t (t2+p)r2jEl+, L(&+p)r.])&l"(Q2) I l (Q ) ~

(r2r„)& l =O k = —l
r2 Crn

(23)

I(t2r) and E(nr) are Bessel functions of imaginary argument as defined by Watson. Using Eqs. (23) and (21) in

(20), and denoting the product of the seven Clebsch-Gordan coeScients in (20) by the symbol g C,'", we have

Q 2n tend' mr&'1 —6 2ntrnd' mr&1 ' 0'—6 rnt2nd; mr&1 ' 0'+p1n ' 1n ' ' 1n (24)

r2'

I,+;(nr2)
Gi mtmd;mrtrl', a —42rp p p p g C 1tt~ f.ttlt(r2) ektkd ~ r21rl2aX2(Q2) p'lX(Q2)dr2

1
minS2mnmc mncX1X2Xn 0'20'nl'h

where

El+, (t2r„)
X ~t gd'l„(„)p,(„) ,eKr. F l~"(Q„)Fili'(Q„)Fl*"(Q„)dr„, (25)

rn

K=-,'kd —k, .

The products of spherical harmonics of the same argument may be expanded as sums of single spherical harmonics
as follows:

(2l„+1)(2li+1)-1
7/„*""(Q„)I'/ik'(Q )=(—)""P Cl li(L"0;00)Cl„li(L"Xi—X 'Xi —X )I'i, ~' ""(Q )

4n (2L"+1)
(26)

(2L"+1)(2l+1) &

Ir „Xt—X (Q )Ir,+X(Q ) ( )X P Ci, l(I.'0; 00)cz, i(L'Xl —X„—X; Xi—X, —X) I'i, "' " "(Q„),
42r (2L'+ 1)

(27)
-
(2l2+1) (2l+1) -*'

Vi,*& (Q,)I,k(Q,) = (—)~ P Cl2l(LO; 00)cl2i(LX2 X. ; X2, ——X) Fi,*"~"(Q2).
42r (2L+ 1)

Also we can expand the two plane waves along the direction of K:

e&' ""=+i„42ri gi (2kdr2) Fi "(Q2) 7'i*&(kdtK)t (29)

[where (kd, K) is the angle between kd and Kj,

e'K'"=g~ L42r(2I"+1)]li 'gi (Er„)I'i '(Q„). (30)

Using Eqs. (26) to (30) in (25) and making use of the orthonormality properties of the spherical harmonics, we

' L. Hulthhn, Arkiv. Mat. , Astron. Fysik 28A, No. 5 (1952).
G. N. Watson, A Treatise on the Theory of Bessel FgncHons |,'Cambridge University Press, New York, 1944), Chap. 3.
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g mf, mg mrrr1', a ~gP'1n 0

(2l+1)'(2lt+1) (2l2+1) (2l„+1) '*()~'
nSlte2mn222ctnnc X1X2XnX rrle2o n ILL'L" (2L+1)

C .ln

XCt„tt(L' 0& 00)Cziit(L 0; 00)Ct2t(Io', 00)Ct~tt(L 'Xt —X„;Xt, —X~)

I~;(ur,)
XCz-t(L'X, —),„—X; X,—X„, —X)Clot(L4 —X; 4, —&) f*' (rp) jz(-', h&p)rpl&p

Et+;(nr„)
g*'"(r„)f"(r„) jz (Er„)r„'dr„Yz*~' "(kd,K). (31)

rn

This equation, together with (16) and (24), gives the required expression. for Gt„.

IV EVALUATION OF &lc

We now consider the scattering of the emitted proton by the core of the nucleus. This implies that the state
of the core will be changed in the collision process. It will be assumed that this change of state is associated with
only one of the nucleons composing the core, and we label this nucleon by the sufFix v, the rest of the core being
denoted by $. We can write Pj, (c) in terms of the simultaneous eigenfunctions for $ and t, thus:

Pj," (c)= Q Ct„l(j,m, ; X,.o.„)x;"(s,,)h'(r„) Ytg (Q„)P P(P); (32)

we have here assumed that the nucleons included in $ are combined so as to give a state having a total j of
zero; this is therefore a special assumption (made in the interests of simplicity) which will not be generally ap-
plicable. For the residual nucleus we can in this case write:

tl j, "'(c)= P Ct„;(j,'m, 'X 'o ')h''(r )Yt" (Q)tttp'(&)
I tr I

The total wave functions for the target and residual nuclei can therefore be written:

ft &(lc) = p p Ct»( jtmt, &&o'&)Cj», (jtmt, m&m, )Ct„tt(j,m, ; &„o„)xi"(st)z& (s.)tl'o ($)
tgl222cX1Xy 0'10'gp

(33)

P ~ (2nc)=

Xf"(rt)ht" (r„)Ytt"'(Qt) Yt„" (Q„), (34)

Ct~ ,*(j.m„; X„o„'-)Cj„j,'(j «m«; m„.m, ')Ctp&(j2m2' X2&2)Cjggj2(j

gamp)

m«m2)
fg2fgnfsnc1Ãc X2XnXp 0'2 Ern gp

XCt„'&(j.'m, '; X„'o„')x."(s2)x; "'(s„)x1'"'(s„)pp'(p)ft&(r&)g'"(r )h'"'(r„) Yt&"&(Q2)Yt„""(Q„)Yt„'""'(Q„). (35)

Using Eqs. (19), (34), and (35) in (13), together with the various orthonormality relations between the spin
wave functions, we obtain

/ m $m$~ mr0']~ lc P C;—*, (jdmd &2& )Ctt (jtmt; &tot)Cj». (jtmt; mtm. )«,'(j.m. ; m,~,)
M1W2mn Mcmc 'tPSnc ~1~2XnXltXp rr2&n&p

XCtnk(pnme j ~atm)Cjmjc (/acmic j mac )Ct21($2m2 j 4o2)Cj«j2(grmr j mnem2)

XCt„~*, (j,'m, ' m-„'r„) I e '"~'"f*"(rp)g*™(r„)h*'~'(r„)Yty.*"'(Q2)Yt„*""(Q„)Yt„'*""'(Q„)

X Vt,el' " ' t"+'"&pd(ro„)f"(rt)h'(r„) Ytp'(Qt) Yt„""(Q„)drtdrodr„dr„, (36)

We now write:

where

6 ~ Q fmg m„tr1
10 10

m gmrlmr o 1'

Vt, ——Ltpll(rt, r„),

(37)

(38)
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Again using the expansion for ge(r2„) given in Eq. (23), and denoting the product of the nine Clebsch-Gordan
coefficients in (36) by g C;", we have

Qy m ted mr&1 —61
m t~dl ~v&1 l +'—G1 ~ t~dh mr&'1 ' &+01c 1c lc (39)

Gi t' 4 ~"~1 '~=4gIllIO Q Q Q g C'&~jt e " & '~&k+'"'(r&)k'"(ri)f'i(r&) Yt„'*""'(Qi)
mlm2mnmcmc mnc ~lX2~n~y~y &20'nrrylX

Iwk(™2)
X Yi„""(Qi)Yiii'(Qi)dri e&' "-' f*"(r2)Yi2*"'(02)YP(02)dr2

J

Ei+;(nr„)
XJ~e&'""" g*™(r„)Yi„*""(0„)Y~*"(0„)dr„. (40)

We again express the products of spherical harmonics of the same argument as sums of single harmonics, and
expand the three plane waves, this time along the direction of kd.

(2l„+1)(2l„'+1) &

Yi„~*"'(Qi) Yi,""(Qi)=g(—)""' Ci, r, '(LO; 00)ci.i,'(LX,—li, '; li» —li„') Yr."" ""'(Qi), (41)
4 (2L+1)

(2L+1)(2l +1) '*

Yr, v
—v'(Qi) Y(i (Qi) =Q Cz, ti(L'0; 00)cz,~i(L'X.—li„'+alii, X„—li„', lj.i) Yr, "" '"'+"'(0,), (42)

4'�(2L'+ 1)

(2l+1) (2l2+1) l
Yi2*"'(0~)Y("(02)=Q(—)" C)2i(L"0; 00)c&2i(L"li2—X; Xg, —li) Yr, "*"2 "(02),

4r (2L"+1)
(43)

(2l„+1)(2l+1) '*

Yi„*""(0„)Y)*"(0 ) = Q Ci„i(L"'0;00)ci„i(L'"li„+li;li X) Yr,- *""+"(0„),
4r (2L"'+1)

e '"' '"=Q p, kr( —i) jp(kiri) Yp*"(Qi)Yp~(k&,kp),

e""""=Pp'L4~(2P'+1)3&i '
jp (-', kd«2) Yp'(02),

el'"&' =Pp"[4I«(2P"+1)]'i "jp" (-'kw. ) Yp '(0 ).

(44)

(45)

(46)

(47)

&sing Fqs. (41) to (47) in (40), together with the orthonormality relations for the spherical harmonics, we obtain

6 mtmd;m, a1', a 4 gUlc 0
mlmrmnmcmc mnc XAPy a&o'nay lXLI L L

( )/~i I+I I r I+r I /+i Ill

(2l+1)'(2li+1) (2l2+1) (2l„+1)(2l„+1)(2l„'+1) **

x (g c,i )ci„i„(LO;oo)c,(I.'o; oo)
(2L'+1)

Xc)2t(L"0) 0)oct~i( L"' 0)00)C&,t, '(LX p l,', li» —X.')Cz,—ii(I'li, —li.'+Xi) li.—X,', Xi)

Xci2t(L"0; X, X)ci i(L'"0;——li, li) t k*' '(ri)k'"(ri) f"(ri) jz. (kiri)ri'dri

I,+,(.,)
t

~+~( «-) .tf*"(r) 2jz (-', k&,)«22d«2 g*' (r„) jr,".(—,'k&„)r„'d«„Yr, " ""'+"'(ki,kz). (48)
rgb

This, together with Eqs. (37) and (39), is the required result.
1t can be seen that

~
Gi.

~

' will not have such a strong angular dependence as
~
Gi„~', since in Kq. (48) there is

no analog of the factor j I,'(Kr„) in Eq. (31), which varies rapidly with the angle (ki,k&) because of the change
produced in E. Rough calculations using Kq. (48) suggested that

~
Gi,

~

tends to be fairly isotropic in practice;
at worst it contains only spherical harmonics of low order which give rise to an angular distribution not unlike
those produced through compound nucleus processes.
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To obtain the total exchange intensity, we have from Eqs. (11), (15), (16), and (37):

(1 2M''
)A(nr))'=( —

( ) P (Gr ' "' ""'+Gr. '"'"""')['
(4ar ks ] miwasm rrz'

(49)

Since the final state of the system can be expressed in terms of the complete set of eigenfunctions describing the
initial system, the cross terms in Eq. (49) belonging to different sets of the quantum numbers mi, ms, m„ irr

cancel out, so that we can write this equation in the more tractable form:

t'1 2M)'

(4gr jss ) mimsy, ni'
(50)

V. EVALUATION OF iEr i'

Both F»„and F», have been considered by a number of workers, the theories of Butler' and of Bhatia et ul. '
being concerned with the former, and the modification introduced by Horowitz and Messiah, Francis and
Watson, "Tobocman, "Grant" and others taking into account the additional contribution from F»,. It is however
of interest to re-evaluate the ordinary direct stripping intensity using as nearly as possible the same approximations
as those used in obtaining the expression for Q» in Sec. III of the present paper. This enables a rough estimate to
be made of the ratio of the cross sections for the direct and exchange processes.

Since the states of the nuclear "core" and proton 2 are unchanged by the direct collision process, we shall not
need in this case to expand the total wave function describing the target nucleus in terms of eigenfunctions of the
constituent subsystems. We merely replace P, (2c) by P&, (2c) in Eq. (12).Now for the direct process:

1t„" '(2nC) = p Ci :(j„m„;)—„a„')C&&&„(j„m-, ; m&m„)X ~'(S„)p&&'"'(2C)g'"(r )Vi„""(0). (51)

Also
ii4"'(ln) = P Cr, ;(jsms', ata„))r,"(st)xr, '"(s„)its(r»).

rf1 re
(52)

Using these two equations in Eq. (12), we obtain

~rn "' " '= P C ', ', (gams& a'-r 0'm)Cine(pnmn& )ivor)Ci ijn(Jrmr) m'im~)

With Eqs. (21), this gives

iki rlgs—l„(r ) p'& sex„(II ) Ir &1iks ~ (rz+r )y (r )Jr gr (53)

Fr„' '"""'=Vista(0) p C;, (j dms, at'ir„)Ci ,'(j m„;) „rr„)C—&&&„(j„m„;m&m'„')W()t„),

where
r

W()t„)= e '" '&g*'"(rr) Fi *""(Qr)drt, (55)

Then
k=ks —kr.

]~r„['=&a'Lgs(0)]' P P P C;;(jsmd, ~,'~„)Ci„;(j„m„;).rr„-)C&,&„(j m„; mim„)
+'n8'dEnhn tmn~n 7775777d777r&1

XC;;(j&m&, o r'a. „)C&„-*,(j„m„;&„o„)C&&&„(j,m„; m. &m„)W()t„)W ()t ), (56)

the bars denoting quantum numbers associated with F»„.The sum rules for Clebsch-Gordan coefficients give the

Bhatia, Huang, Huby, and Newns, Phil. Mag. 43, 485 (1952).' J. Horowitz and A. M. L. Messiah, J. phys. radium 14, 695, 731 (1953).
's N. C. Francis and K. M. Watson, Phys. Rev. 93, 313 (1954).
"W. Tobocman, Phys. Rev. 94, 1655 (1954)."I.P. Grant, Proc. Phys. Soc, (London) A67, 981 (1954); 68, 244 (1955),
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relations:
2jr+1

C„(joman,
' trt'o. „)C;;(j&md, tr&'o „)= tt(o.„,o „),

2j"+1
Ct'u n(J'rmt t mtmn)Cj iJn(grmrt mttrtn) = &(mnttoin)t

terms 2j„+1
2j„+1

p Ct„-*,(j„m„;X„tr)Ci,*(j m;'h o„)= 5(X,X ).

(57)

These, together with Eq. (56), give

2jr+1 2j„+1
lp, „l =I', [4,(o)j P w(~„)w*(l „).

2 21.+1
(58)

Expanding the plane wave in WP ) along the direction of k, we have

Thus
o t" '"=P t[4tr(2)+1))lot jt(kr&) I'to(Q&).

2

l
~i

l
'=2«o'[tt4(0)$'(2 jr+1) (2j,+1) g*' (ri)j' (kr&)riodr& (60)

It should be noted that the expressions in Eqs. (58) and (60) above, and the corresponding expressions for
l
G l',

are all to be divided by the factor (2jd+1) (2jt+1) if the cross section evaluated as an average over the initial
spin states is required. The familiar statistical weight factor in the direct stripping cross section may then be
recognized.

The internal motion of the deuteron has been partially ignored in Eq. (60), whereas in the evaluation of Gi„
it has not. Since we shall be concerned to compare the probabilities of direct and exchange processes, the insertion
of a correction factor in lF»l is properly called for. At the peak of the normal stripping curve we shall postulate
a correction factor p2 given by"

(Eo+n )
(Eis+a'J

(61)

where Eo, Ei are the values of
l

—,'ks —kil' at 0' and at the peak of the lF»l' distributions, respectively. y' then
corresponds to the usual factor resulting from internal motion of the deuteron in the theory of direct stripping.
It also seems more realistic to assume that the interaction concerned in producing the stripping reaction becomes
effective at a distance about equal to the range of nuclear forces. To give approximate expression to this idea,
we replace Pz(0) by P&(ro) in Eq. (60), where ro ——1.5&(10 "cm. Thus finally we put

ltEo2+ts2 l
2 tn 2

l &o'[tt4(ro)p'(2jo+1)(2j„+1) J~
g*' (ri) j'"(kr&)risdr&

&Eis+n'l
(62)

VI. DISCUSSION

Equations (31) and (62) provide a basis for com-
paring the properties of direct and exchange contri-
butions to stripping processes under the assumptions
that we have made. One important feature has, however,
been omitted in our discussion of the exchange process.
It has been pointed out by Lane" that, if there are Z
protons in the target nucleus, then the value of

l
Gi„l'

for a (d,p) reaction should be enhanced by a factor Z'
over the value obtained assuming that only one of these
protons can exchange with the proton in the deuteron.

"We should strictly include some terms involving P (see refer-
ence 1), but their effect on y2 would be very slight.

"A. M, Lane (unpublished, 1955),

For the purposes of the present treatment, in which the
exchanging proton is assigned to a de6nite orbital
state in the target nucleus, it seems more reasonable
to multiply the exchange amplitude by the number of
equivalent protons for the transition considered. (One
can, of course, envisage a more elaborate treatment of
the problem in which one uses the complete wave
function of the target nucleus throughout, instead of
arbitrarily dividing the nucleus, as we have done, into
one odd particle and a "core").

One of the main questions of interest is the relative
magnitude of G and P, and it is by no means obvious
that exchange will be of negligible importance, as is
often assumed. It is difficult to generalize on the basis
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of an equation as complex as (31), but it may be noted
that an exchange process will (granted the assumptions
underlying our calculation) be encouraged if /„= (r, i.e.,
if the captured neutron enters the same shell as the
exchangeable proton. The extensive recoupling of
angular momenta in the exchange process will evidently
tend to discourage it, as will the limited amount of
overlap in the radial integrals appearing in G~„and G~, .
There is little doubt that the direct reaction amplitude
will exceed the exchange amplitude in any case where
both are possible. On the other hand, it may happen
that restrictions imposed by conservation of angular
momentum will render a direct stripping process impos-
sible in circumstances that do not rule out exchange.
Indeed, it was the recognition of this as a practical
possibility in a particular reaction —3"(d,p) leading to
the first excited state of B"—that led to the present
investigation. The detailed calculations (reported
separately" ) for this case indicate that one may have
an exchange stripping cross section that is of the order
of 10/~ of a direct stripping cross section under com-
parable conditions.

Reference must be made to the work of Grant" and
of Madansky and Owen" who have approached this
same problem in diGerent ways. Grant makes the
formal separation of the reaction amplitude into direct
and exchange terms, as we do, but proceeds to identify
the exchange part explicitly as a compound nucleus
eBect. This is then evaluated in the normal way as a
transition through an intermediate state, but the
properties of the intermediate are suppressed through
summation over all possibilities. The final result is an
angular distribution whose form is essentially similar
to Gr. of the present paper [Eq. (48)j, being dominated
by spherical harmonics of fairly low order. Madansky
and Owen, on the other hand, concentrated on a simple
and ingenious treatment of a true stripping process in
which the roles of the deuteron and the target nucleus
are interchanged. This then corresponds to our exchange
process, in that the outgoing nucleon is assumed to

"N. T. S. Evans and A. P. French (to be published)."L.Madansky and G. E. Owen, Phys. Rev. 99, 1608 (1955).

come from the target nucleus, but from the way in
which the problem is formulated by Madansky and
Owen it necessarily follows that their angular distri-
butions are in general peaked towards the backward
direction with respect to the incident deuteron. The
treatment in the present paper, on the other hand, will
give peaking in the forward direction. To this extent
the two methods (both of them approximations) may
perhaps be regarded as complementary. Both types of
peaking seem to occur in practice.

It is hardly necessary to stress the drastic nature of
the simplifications in the present treatment. The main
aim has been to draw attention to the general features
of an exchange contribution to stripping reactions,
namely the possible combination of a forward peak,
rather similar to that of a conventional stripping
process, together with a more or less isotropic angular
distribution of the compound nucleus type. As has been
pointed out by Thomas, '~ there is no clear division of
nuclear configuration space into separate regions be-
longing to compound nucleus and to surface transfer
processes. Peaslee, " in his review of nuclear reactions
at intermediate energies, similarly emphasizes that
features of the optical and the statistical models, repre-
senting two extremes, will both normally appear in
some compromise form in actual reactions. The present
treatment of a (d,p) or (d,e) reaction as a combination
of direct and exchange processes is one way of realizing
such a synthesis.
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