
DECAY SCHEME OF Co''

state at 234 Mev and the fourth at 4.37 Mev are both
required to have high spins and even parity since the
ground state of the parent is 4+ or 5+ and both P-ray
transitions are allowed. A spin of 4+ for the second
excited state is reasonable from the shell model.

The 2.5-Mev y ray is too intense to be the result of a
crossover transition from the second excited state to the
ground state and therefore must arise from the third
excited level. Hence the order of the 1.74- and 1.47-Mev
y rays given in Fig. 3 is the most likely. This would
require a spin of 2 or 3 for the third level. The fact that
the third level is not populated by P decay, together
with the ratio of the intensities of the 1.74- and 2.03-
Mev p rays, suggest the following level assignments:
spin 3+ or 2+ for the third level, spin 4+ for the fifth
level, and spin 5+ for the ground state of Co".

The 1.6-1nin isomer of Co" found by Parmley' was

not found here due to the length of time required by the
chemical separation. It is quite reasonable to expect,
however, that the first excited state of Co" would have
a proton configuration of [(1f&~s) '$7/s and a neutron
configuration of L(1fs~s) 'js~s. These would couple to
give a spin of 1+, producing an isomeric state with an
energy not much above ground state. This hrst excited
state would have a high probability of decaying directly
to the ground state of Ni". For the sake of completeness
this hypothetical excited level has been included in
Flg. 3.
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A theory of nuclear collective oscillations is presented which does not involve introducing extra variables
and subsidiary conditions. This time-dependent self-consistent held method is applied to the breathing
mode of a spherically symmetric nucleus and yields a value for the frequency of oscillation which is more
accurate than that from a previous treatment in terms of one-nucleon excitation, but which becomes identical
to the latter in the case of weak nucleon-nucleon interaction. In cases where nucleon exchange can be
neglected, the new estimate reduces to the frequency derived from the simple classical theory of a com-
pressible fluid. By means of an electric monopole sum rule which is derived for T=O—&T=O transitions,
it is shown that in general the classical. formula overestimates the breathing mode frequency. From the sum
rule it also follows that the 6.06-Mev 0+ state in 0" is related only indirectly to the breathing mode, which
must itself be at a higher excitation energy.

I. INTRODUCTION

' "N an earlier publication' it was shown how a collec-
t . tive oscillation in a nucleus could be identified as
the coherent superposition of one-nucleon excitations.
This identihcation depended on an approximate treat-
ment of the Hill-Wheeler-GriKn' wave function. The
purpose of the present note is to outline in a very
idealized case a time-dependent self-consistent held
treatment of collective oscillations which can be formu-
lated within the framework of the shell model, but
which does not suffer from the approximation made in
reference 1.In order to emphasize the essential features
of the approach, we shall limit ourselves to the breathing
mode (the simplest type of nuclear oscillation) in a

~ Research supported by the National Science Foundation.
$ A report on this work has been presented at the 1957 New

York Meeting of the American Physical Society LBull. Am. Phys.
Soc. Ser. II, 2, 26 (1957')g.

' R. A. Ferreli and W. M. Visscher, Phys. Rev. 102, 450 (1956).' References 3 and 4 of reference 1.

fictitious mass-twelve nucleus composed of a vacant
1s shell and. a filled 1p shell. This has enough nucleons
to exhibit collective eR'ects without the complication of
coupled shell vibrations. The fact that such a nucleus
(actually an excited state of C") would in fact be
unstable need not concern us here, since we can con-
sider that the parts of the nuclear interaction which
would give rise to 1p—1s transitions have been removed.
from the Hamiltonian. This procedure does not a6'ect
the 1p—2p transitions, which are the ones involved in
the breathing mode.

II. MONOPOLE SUM RULE

The degree of the inaccuracy of the one-nucleon
approximation to a breathing mode excitation can be
most easily exhibited by considering a sum rule for
electric monopole transitions. Following Sachs and
Austern, ' we consider the double commutator of the

' R. G. Sachs and N. Austern, Phys. Rev. 81, 705 (1951').
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monopole operator 8=p—„r~s=p, I 1+r,t"jr;s/2 with
the Hamiltonian, H. The sum is over the squares of all
the proton coordinates. 8 can be separated into the two
parts, BP=+, r,'/2 and 8'=—P; r,"'r /2, scalar and
vector in isotopic spin, respectively. I.et us now restrict
ourselves to T=O—+7=0 transitions, to whose transi-
tion probabilities only 8' contributes. This restriction
seems first to have been employed by Gell-Mann and
Telegdi' (in connection with E2 transitions) and has
the very great advantage of leading to a sum rule which
is independent of the exchange character of the nuclear
interaction. In general, for any J3P of the form BP=—P, g, ,
where g, is a function of the spatial coordinates of the
ith nucleon alone, we 6nd

where E is the number of nucleons and M the nucleon
mass. Taking the expectation value with respect to the
state 0 and indicating the excitation energy of the
various other T=0 states by h~„o, we find the sum rule

(2)

where the oscillator strengths are given by

In the present case g=r'/2, so (IgradgI')=(&')=5/2&,
if one uses oscillator wave functions with Gaussian
factors exp( yr'/2) —Lettin.g v=1 designate the one-
nucleon collective excitation of reference 1, it is easily
established' that B,p' ——(2y) '(5X/2)l. If we further
introduce A~' to represent the 1p—2p excitation energy
without collective effects, we can use the oscillator
shell model' to write Iicp'=2k'y/cV. Substituting into
Eq. (3) yields ftp= (~tp/cp')lV, or the fraction &p&p/tp' of
the sum rule limit. This result is clearly inconsistent
with the fact that 8' applied to the ground-state wave
function yields identically the a=i state, up to a
constant. Thus, no other transition can contribute to
the sum rule and f,p must be just jV. The magnitude of

4 M. Gell-Mann and V. L. Telegdi, Phys. Rev. 91, 169 (1953).' R. A. Ferrell and W. M. Visscher, Phys. Rev. 104, 475 (1956).
'This convenient relation between excitation energy and the

scale of length cannot be expected to be strictly valid. We believe
that it is probably a satisfactory approximation for the ip —2p
excitation but that it may possibly underestimate the is —2s
excitation in 0'6 by a factor of as much as two. Such a correction
would raise the estimate in reference 1 of the breathing-mode
excitation energy to roughly 15 Mev and make untenable its
identification with the 6.06-Mev 0+ excitation in O16. This con-
clusion is strengthened by computing from the experimental data
the oscillator strength for the transition of this level to the ground
state. One 6nds f=0.66, or only about 4% of the sum-rule limit.
Eote added ie proof.—Our conjecture concerning the single-
nucleon excitation energies Ands con6rmation in some explicit
calculations of F. C. Barker (private communication), who 6nds
54.4 Mev for s excitation in 0".His p-excitation energy of 36.6
Mev is much closer to Ace'=29. 7 Mev.

this inconsistency is larger the more ken&0 is decreased
by collective interaction below the single-nucleon excita-
tion energy of Ace'. As the nucleon-nucleon interaction
strength is gradually increased from zero and collective
e6ects first begin to appear, the error is not serious,
but for strong collective lowering of Serio the theory
of reference 1 is clearly inadequate for quantitative
purposes.

where the higher terms can be neglected for small
values of the expansion parameter n. This relationship
between differentiation with respect to the scale param-
eter and excitation in the shell model is illustrated in
Fig. 1, where the difference between the 1p radial wave
function for et=+0.1 and n= —0.1 is seen to be
identical, up to a constant, with the 2p radial wave
function. Thus, when the nucleus is oscillating we must
expect that the one-nucleon orbitals acquire small 2p
admixtures, with time-dependent coeKcients. They can
therefore be written in the form

4'( ,s)1= I I'( )s+~'( )1u( )she "'"", (5)

where the argument i denotes the space, spin, and
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Fio. 1. Radial wave functions (in arbitrary units) vs radius
(in units of y —~). The curves labeled o.=&0.1 represent an
expanded and a contracted 1p wave function, respectively. Their
difference is proportional to the 2p wave function. In this way a
collective oscillation can be expressed in terms of single-nucleon
excitation.

7 P. S. Zyrianov and E. M. Eleonski, J. Exptl. Theoret. Phys.
U.S.S.R. 30, 592 (1956) Ltranslation: Soviet Phys. JETP 3, 620
(1956)g.

R. A. Ferrell, Phys. Rev. 107, 450 (1957).
D. R. Inglis, Phys. Rev. 97, 701 (1955); see also S. Moszkow-

ski, Phys. Rev. 103, 1328 (1956)."J. M. Araujo, Nuclear Phys. I, 259 (1956).

IIL BREATHING MODE FREQUENCY

The most important feature of a collective oscillation
is of course its excitation energy, or, speaking more
classically, its frequency of vibration. This can be
calculated in analogy with a time-dependent self-con-
sistent field derivation" of the Bohm-Pines dispersion
relation for plasma oscillations of a degenerate electron
gas. The present work is also related to some earlier
work of Inglis' and of Araujo. "The eQ'ect of expansions
and contractions on the one-nucleon oscillator orbitals
is given by

u,„(e—"x)e
—'"=u,„(x)—n(-', )lu„(x)+, (4)
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isotopic spin coordinates of the ith nucleon. I;and e, are
1p and 2p one-nucleon wave functions with the same
angular, spin, and isotopic spin factors.

The A;(t) are to be determined from the time-
dependent Hartree-Pock equation,

ih j;(i,t) =r,y;(i, t)

+E; (4,(i,t), l";(1—~';)A(j,t))A'(i, t) (6)

Here time diGerentiation is represented by a dot, T; is
the kinetic energy operator for the ith nucleon, V;; is
the interaction between nucleons i and j, I';; is the
exchange operator, and the subscript j on the paren-
thesis signifies that the scalar product over j is to be
evaluated after the exchange operation has been carried
out. It is a simple procedure to substitute from Eq. (5)
into Eq. (6) and linearize. Exhibiting only the terms of
first order in the A s, we have

i', v; (i)+E;A,v, (i)
=32''+Z (~ (j), l" (1—~')I (j))1&'(i)A'

+perturbation= (8,+he')v, (i)A;+pert. (7)

The perturbation consists of. the first-order terms from
the scalar product acting on the zero-order part of
|t,(i,t). The bracketed terms form just the shell-model
operator and yield E~+h~' when operating on e, (i).
(8; is the 1p single nucleon energy. ) Taking the scalar
product with respect to v, (i) and writing out the
perturbation explicitly gives

ikey; = Ace'A;

+P;((e;(i)N, (j), V,, (1—P,;)e,(j)m;(i))A;
+( '(i)o (j), l",(1-~'~)N U)N'('))A *l. (8)

Because of the spherical symmetry of the breathing
mode all of the A, 's are equal, so that Eq. (8) reduces to
the single equation

ihA =ha)'A+CA+C'A*, (9)

involving the quantities C and C' which are the sums
over j of the scalar products appearing in the second
and third lines, respectively, of Eq. (8). The direct and
exchange parts of C and C' are illustrated in Fig. 2.
It may be noted that the direct parts of C and C' are
equal, since the directions of any of the arrows in the
vertical transitions may be reversed. (Only the real
radial wave functions are involved in these transitions. )
There does not, however, seem to be any simple relation
between the exchange parts.

Equation (9) and its complex conjugate comprise a
pair of simultaneous linear homogeneous equations for
the two unknowns A and A*. It is easy to show that
the only frequency, co, for which there exists a non-
trivial solution is given by

FiG. 2. Nucleon-nucleon
interaction matrix elements
which determine the fre-
quency of the breathing
mode of oscillation. The
upper half of the figure illus-
trates the matrix elements
already present in the one-
nucleon-excitation theory of
the breathing mode, while
the lower half shows ad-
ditional correction terms
which are derived by means
of the time-dependent self-
consistent Geld. Direct and
exchange terms are shown
on the left and right, re-
spectively.
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obtained in reference 1. Equation (10) clearly reduces
to Eq. (11) in the limit of C'—4, but for not-too-large
values of C' the right-hand member of Eq. (11) must
be reduced by the second-order fractional correction
—2 '[C'/(her'+C)]'. It is of interest to compare
Eq. (10) with the classical fluid model for a nucleus
vibrating in the breathing mode. The inertial parameter
related to n is in the present case I=60h/cv', while one
can also show that the Feenberg compressibility coefFi-
cient" is given by

Eo"=60(h(o'+C+C'). (12)

As mentioned above, C and C' diRer only in their
exchange parts. Thus, in cases where exchange is
negligible, the classical formula gives correctly, as
would be expected, the frequency of oscillation.

Note added iN proof J Touchard, .—(Co. mpt. rend.
244, 2499 (1957)j, has derived the classical formula from
the Inglis "cranking model, '" which seems to indicate
that the "cranking model" also does not adequately
take into account the effect of exchange.

IV. MONOPOLE MATRIX ELEMENT

The solution of Eq. (9) associated with the frequency
of Eq. (10) has the form

where

A(t) =A,
r (1+a)e '"'+(1—a)e'"'g- (15)

Designating the classical frequency by co,&, one finds

h~ g
——(h'Eo"/I) &= Puo'(hcu'+C+C'))~. (13)

The ratio of the true frequency to the classical fre-
quency is therefore

Puo = [(kro'+ C) '—C"]l
which can be compared with the expression

ho& =h(o'+ C,

(10) (her'+C+C') &

(hs)'+ C—C']
' E. Feenberg, Phys. Rev. 59, 149 (1941).
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Ao depends on the degree of excitation of the nucleus, "
or the number of quanta, v. By taking/the expecta-
tion value "of the Hamiltonian, one can show that
ulcc =4aA0'EKo, or

~o= (~/4~Ã)'*. (16)

But according to Eq. (14) this is just the square of cu/or, &.

Since the sum rule limit may never be exceeded, we
seem to have arrived at the general result

(o/a), )&1; (19)

i.e., the actual frequency is always less than, or at most
equal to, the classical estimate. Equation (19) would
also seem to require C&C'. Whether or not this is a
genuine restriction on the nucleon-nucleon interaction
is not clear at the present time.

V. SUMMARY

In conclusion, we would like to emphasize that the
simple shell model description of collective excitation
given in reference 1 remains correct for the case of weak
nucleon-nucleon interaction. For stronger interaction,
where the excitation energy undergoes a relatively
large shift downward from the one-nucleon excitation
energy, it still provides a useful qualitative picture but
can no longer be applied quantitatively. The qualitative
picture is equivalent to the nuclear version of Hund's

' For a more complete discussion of this type of calculation see
Sec. IlI of reference 8.

Calculating the expectation value of the monopole
operator 8 to first order in Ao, we And

—:z'(a'(,~), 'v'(, ~))'
=—,'1V(r') o+-,'N (e,r'u) (A *+2)
=-',X(r')0+ (vE/4a) l(v, r'u) (e

—'"'+e'"'). (1l)

The static term is of no interest here but the Quctuating
term proportional to e '"' can produce an electron-
positron pair and de-excite the breathing mode. Taking
v=1, we 6nd BM =(2y) ~(SE/2a)', or just u '* times
the matrix element for the one-nucleon collective excita-
tion discussed in Sec. II. The fraction of the sum rule
limit accounted for by the breathing mode is conse-
quently a ' times that found there, or

rule: For a given excited configuration the state having
the lowest multiplicity (greatest spatial symmetry) lies
energetically lowest. Sy expanding the Slater determi-
nant composed of one-nucleon wave functions of the
form of Eq. (5), one sees that the improvement brought
about by the time-dependent Hartree-Pock calculation
of the vibrational frequency and monopole matrix
element amounts to including three-nucleon, five-
nucleon, etc. , admixtures in the one-nucleon collective
excitation of reference 1. Although not exhibited
explicitly in the above work, the two-nucleon, four-
nucleon, etc., admixtures in the ground state have also
been taken into account. By working in the classical
limit of large quantum numbers" we have been able to
avoid explicitly writing down the ground-state wave
function for the nucleus. It is nevertheless clear that,
for many problems, explicitly exhibiting the wave
function will be inescapable, and it will be essential to
cope with the correlation in the ground state.

As noted in reference 6, we no longer believe the
6.06-Mev 0+ excitation in 0" to be essentially the
breathing mode. It provides only 4/o of the limit of
the sum rule derived in Sec. II. Since the remaining
96% must still be accounted for, the true breathing-
mode excitation must lie at a higher energy. The
breathing mode must nevertheless play an important
role in determining the properties of the 6.06-Mev
level. By mixing to some extent with the two-nucleon
excitation the breathing mode pushes the energy level
down, and also provides the nonzero monopole matrix
element. Before the present theory can be applied
numerically to the 0" breathing mode, it will be
necessary to extend it to coupled oscillations of the
1s and 1p shells. Also it will be necessary to have better
estimates of the one-nucleon excitation energies. Besides
these improvements it should also be possible to extend
the above time-dependent Hartree-Fock treatment to a
study of damping. In case the breathing-mode excita-
tion energy turns out to be above 12 Mev, it will

probably be broadened considerably by proton emission,
and if above 16 Mev, also by neutron emission.

"This is, of course, an idealization, since the quantum number
of excitation cannot be allowed to become comparable to the
number of nucleons, which in the present case is only twelve,
without considerably altering the excitation properties of the
nucleus. We are confident, however, that the applicability of
Kqs. (10) and (18) extends on down to the 6rst-excited-state-
ground-state transition, and that the restriction to large quantum
numbers is only a convenience, enabling the time-dependent
Hartree-Pock method to be applied.


