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Energy Dependence of Reactions at Thresholds*
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As a development of Wigner's work on the subject, the behavior of nuclear reactions at thresholds is dis-
cussed by employing the R-matrix formalism with special attention to the effect of a nuclear reaction thresh-
old in a particular channel on the energy dependence in other channels. In addition to the characteristic
cusp-like behavior for L=0, ZIZ2=0 it is found that for this case it is also possible to have another type of
plot of cross section versus energy. The second type differs from the first by a relative change of sign of the
extra effect on one side of the threshold.

~ 'HE energy dependence of nuclear reactions at
thresholds has been discussed for the case of

Coulomb fields by Ostrofsky, Breit, and Johnson, ' for
photomagnetic capture by Fermi, ' for slow-neutron
capture by various authors' and more completely and
thoroughly in the general case by signer. 4 In the last-
mentioned paper an essentially new feature is inci-
dentally brought out, vis. , the inQuence of the threshold
of one reaction on the energy dependence of another.
In the present note this matter is discussed somewhat
more fully with an attempt at a more complete enumera-
tion of the possibilities.

The Obmatrix approach to nuclear reaction theory' '
will be used in a manner very similar to that used in
signer's paper4 on nuclear reaction thresholds. The
relations of the R-matrix theory' essential for the pres-
ent purpose are

I= —f(RBco*+iAj 'L(RB(v —id*),

where I is the scattering matrix corresponding to a
definite value of the total angular momentum J,
8„,r,te, , z, k;i' ~Hr, '(k,b~——),

A~ r, =k„ ii~Hr, (k~b, ), (1.1)

H (p) =G (p) + ~ (p), (1.2)

where F&(p), G&(p) are respectively the regular and
irregular Coulomb functions in the notation of Yost,
~heeler, and Breit. s The (R matrix occurring in (1) has
reference to the same J as n. The rows and columns of
all matrices dealt with here are labeled with respect to
two indices, the first of which is denoted by p and has
reference to the fragment pair of the channel. It specifies
the states of both fragments as well. The second index

q= H/(kH'), e =i~'k'*H'. (2 1)

Making use of the %ronskian relation between Ii and
6, one has

q
—q*= —2i/(kH'H'*),

so that (2) may be rearranged as

(2 2)

u= —e 'e*+2ie '((R—
q) 'e '. (2.3)

This formula divers from the corresponding one in
signer's paper4 only with respect to superficial matters
having to do with notation. The quantity q behaves
diGerently for L=O, Z&Z& ——0 and other cases. In the
former case

q=1/(ik), (L=O, Z,Z, =0).
At threshold k=0 and q= ~. On the other hand,

limq = r/L, (L)0, ZtZs ——0—),k~0

(3)

(3.1)

is the orbital angular momentum of the channel ex-
pressed in terms of k as a unit. The matrices A, 8, co

are diagonal and their elements are defined by (1.1)
with the additional requirement that 8 is real. The
simplified boundary condition requiring the vanishing
of the derivative of r times the radial function at the
channel radius b„ is used. The channels may be either
open or closed and all channels are supposed to be
included in the rows and columns of n and (R. One may
rewrite (1) in the form

n= —e—'(5I—q)
—'((R—q*)e*, (2)

the prime denoting d/dp and the following diagonal
matrices having been introduced,
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in (3), then q-' gives the critical energy dependence of
(5t—q) '. To see this more concretely one notes that
the matrix I is used with the first subscript referring to
the incident channel, the second to the outgoing. Since
e is diagonal the threshold behavior enters only one
of the two elements of e contributing to e '((R—

q) 'e '
in (2.3). If the incident channel 1 is going through a
threshold, oneisconcernedonlywith (e&) '((Gt —q) '$r .
A consideration of Kramer's rule for solving linear
equations shows that if q& becomes infinite then all

((6i—q) '1 -"1/q, (q ) (3.2)

Hence e 'q-' for the threshold channel contains all the
critical energy dependent factors in u. The threshold
channel thus gives, according to (2.1), the asymptotic
form

1 (kdr) Ir dH ) k'

ki t dHI (Hdr) H
(3.3)

where the subscript 1.is understood to go with H which
is supposed to be evaluated at the channel radius.
Similarly k refers to the channel in which the threshold
occurs. This channel will be referred to as the criticaL
charnel from now on. If the critical channel is the
incident one the square of its wavelength also behaves
critically and hence 1/k' enters as an additional critical
factor. If, however, particles in the critical channel
arise as "new" particles as a result of "old" particles
in another channel, the square of the absolute value of
the right-hand side of (3.3) can be used directly. The
designations of particles as "new" and "old" is the
same as in Wigner's paper, ' the new particles being
those in the critical channel. One has thus

o.(new ~ old) ~
kGr, s(kb)

o (old ~ new) ~, (3.5)
Gr,'(kb)

since at threshold Fl./Gr, ——0. In these formulas there
enters the channel radius b. It does not affect the law
of energy dependence because at threshold kb(&1 and
the function Gl, ~k ~ if there is no Coulomb field,
while in the presence of a Coulomb interaction it also
approaches a limit with a definite energy dependence.
One may write therefore

o (new ~ old) ~ k'~ ' ~ E~'*,

o (old —+ new) ~ k'~' o- E~+**& (Z&Zs ——0) .
(3.6)

1
o (new ~ old) o-—

O' Hr, (kb)

o(old —+ new) ~ (3.4)
Hr. (kb)

These formulas are equivalent to those stated in
Wigner's paper. They may also be written in the form

O~~~—

(ass s

xii 2~& ) '

(g; s~r
&s~r(~) ~= (gp'~)', (3 7)

(2I.)!(2J

and E„is the Bessel function of imaginary argument of
the second kind in notation of Whittaker and Watson. "
It is apparent from this form that for repulsive fields

(3.8)
and hence

o (new ~ old) ~ k 'e "&,

o (old ~ new) or e—' &,
(3.9)

again in agreement with older work. The case of attrac-
tive Coulomb fields can be obtained by noting that in
(3.7) the e' "—1 is dominated by the —1 in place of
e' & so that one may simply omit the factors e ' & in
(3.9). This results in there being no energy dependence
in the dominant term of the (old ~ new) cross section
for an attractive Coulomb field. This is a well-known
fact in the theory of the absorption of light by atoms,
the absorption in the discrete part of the spectrum
merging practically continuously with the continuum.

H the critical channel 1. is neither the incident nor
the final one and is I.=O, Z~Z2=0, the infinite value of

q~ results in first approximation in the matrix element
of ((R—

q)
' between the incident and emergent channels

being such as though the rom and column corresponding
to the threshold channel did not exist in N.—q. This
may be seen for example from Kramer's rule. The next
approximation involves, however,

1/q&
——ikr

as a factor in a correction term. This may be seen again
from the familiar Kramer's rule used as a way of
forming the reciprocal of a matrix. The matrix I and
the cross section contain therefore the factor (8 Er)i. —
Above the threshold the plot of cross-section ~s energy

J. G. Beckerley, Phys. Rev. 67, 11 (1945). The remark in the
paper by Wigner4 regarding the unavailability of numerical co-
e%cients of the Bessel function must have been caused by failure
to notice the direct reduction in the paper by Yost, Wheeler, and
Breit. 8"G. Breit and M. H. Hull, Jr., Phys. Rev. SO, 392, 561 (1950)."E. T. Whittaker and G. ¹ Watson, Modern Analysis (Cam-
bridge University Press, New York, 1920).

In the presence of a repulsive Coulomb field there is
available' an asymptotic form of 61, which was re-
derived by Beckerley' and for which more systematic
asymptotic expansions have been correctly surmised in
reference 8 and established by Breit and Hull. ' The
dominant term in the asymptotic form is given by

Go=Dr, .p ~o~r, ' Dr, =1 3 5 (2L—1)
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has therefore an infinite slope. The value of the co-
efficient multiplying (E—Ei)' depends on the magni-
tude of the cross-product term arising from 1/ql in N.

Just below threshold the calculations still apply
formally even though the threshold channel is closed.
It is necessary, however, . to take into account the
dif'ference in the requirements on the function in the
nuclear exterior. This has to be taken as a constant
multiple of

(H) L p
——exp(iklr) =exp( —Plr), (4.1)

where the quantity ik»r is meant to be taken in the
convention

(4.2)ki=+i, Pi= lkil.

One may still use

(P)L p
=sink, r = 2 sinhp lr, (4 3)

all other relations working out similarly to the case
above threshold. Accordingly there appears in u below
threshold the quantity —pl where iki occurs above
threshold. Since

Pl ——
i
(Ei—E) i, (E(El) (4.4)

the plot of o- against E below threshold should also
have an infinite slope at E=E». In 0- the coeKcient of

pi below El is in general different from that of k, above
Ei because of the factor 2 in (4.2). On account of this
factor the cross-product terms of k» above threshold
and Pi below threshold arise from different parts in the
remainder of n diGering in phase by 90'. There is
therefore no general relationship between the coefB-
cients of these quantities above and below threshold.
It will be remembered that e contains in general phase
factors which can be made to vary by arbitrary amounts
as, for instance, through the introduction of central
potentials. There can be therefore no general relation-
ship between the signs of the coefficients of (E—El)'*
above threshold and of (Ei—E)'*below threshold. If
the two coeKcients have the same sign, the curve of
cross section es energy should show a cusp, a phe-
nomenon pointed out by %igner. If the coefficients
have opposite signs, the plot has approximately the
appearance of the central portion of the letter S turned
on its side.

For L)0, Z»Z2=0 the q» is not infinite and the row
and column corresponding to the critical channel do
not disappear from ((R—

q)
' as they do for L=0. This

formal di6erence between L=O and L)0 is a conse-
quence of the choice of boundary condition and will
not be discussed here further. Its practical significance
is however that q» enters the formulas in the first
approximation. Its dependence on k» and L)0 can be
inferred from

ql kl(GL GL+PL PL+2)/(GL +PL )y (5)

it being understood that the argument of Fl. and GL,

is klbi The denomin. ator on the right side of (5) con-

tains only even powers of k». The combination Gl, 'Gz
+PL'PL is therefore odd in kl. The real part of 1/qi
is accordingly even in k» while the imaginary part is
odd. It is also readily verified that the highest power of
1/ki in HL is (1/kl)'L. It follows therefore from (5)
that the lowest odd power of ki in 1/qi is

k)2~'~ term of lowest odd power in ki. (5.1)

which is equivalent to

1/q, L/r+dOL/(O—Ldr—) (6.1)

in the same notation as (3.7). The quantity OL is
known" to have an asymptotic expansion in powers
of E—Ei. This series does not represent a part of OL
containing exp( —22r2)) but this quantity is negligible
just above threshold.

For E(E„ it may be shown that the %hittaker
function satisfying the diGerential equation for r times
the radial function may be expressed as

(2L) (f(OH P7

i(.()). +(:)-(2')=- (6 2)
I"(L+1+(1/aP)) (28r) L

where "O~L" is an extension of the usual O~L to negative
energies and may be expressed as

(x/2) 2L-(-2

"HL"=[HL]ZB—
(2L) (

)xaq2 L x( 1q
u' —P'f —

[ exp ——
I u+ —

[(4) 2& ei
X

x P't'xa&' P'(xa') '
———

(

—
i +—

(

—
i + dl. (6.3)

2u 3 ( 42') 5 442')

This term gives the first nonvanishing effect of a dis-
continuity in a derivative of the reaction cross section,
the even powers of k» giving a smooth transition across
the threshold. According to (5.1) the Lth energy deriva-
tive of the reaction cross section should show therefore
the same type of dependence on the energy as the cross
section shows for L=O, Z»Z2 ——0.

The increase in the centrifugal barrier caused by
increasing L makes the threshold channel assume some
of the characteristics of a stationary state even when
E)E». If the state were truly stationary, there would
be no distinction between E&El and E(Ei. Quali-
tatively this is the explanation of the difference be-
tween L=O and L)0. One expects an even smoother
transition between the two energy regions in the case
of a repulsive Coulomb field. This expectation is in
fact confirmed on closer inspection as follows.

I'"or E&E the large values of GL'+PL' make the
imaginary part of 1/ql disappear as is clear from (5).
Since furthermore PL2/GL2 contains the square of the
barrier penetration factor, it may be neglected. Hence
(5) may be replaced by

1/qi —k,GL'(kibl)/GL(klbi), (ZiZ2&0) (6)



ENERGY DEPENDENCE OF REACTIONS AT THRESHOLDS 1615

Here (O~&)&s is the power series in the energy already
referred to. The coefficients of the series are expressible
in terms of Bessel functions of imaginary argument of
the second kind E„.The argument of the E„is (Sr/a) i,
with a=A'/(pZrZ2e') standing for the Bohr length of
the channel and p for the reduced mass. The second part
of the right hand side of (6.3) contains an integral
which is very small for small P, the factor exp|' —x/(2u)]
in the integrand being very small in the range of
integration. The part of "O~q" which is not expressible

by the power series is therefore negligible at threshold.
There is therefore no discontinuity in any energy deriva-
tive at threshold.

For attractive Coulomb fields the continuous merg-

ing of eGects of the infinite level density just below
threshold with effects of the continuum above threshold
leads one to expect the absence of discontinuities in
the derivatives of a reaction cross section as a result of
the occurrence of a threshoM of another reaction. The
threshold phenomenon merges in this case with the
establishment of an infinite number of new open chan-
nels each of these corresponding to the excitation to the
discrete level in the attractive Coulomb field. Each of
the newly opened channels can have effects of the type
already discussed but it is simpler to consider these not
as threshold eGects of the Coulomb field channel but of
other channels.

The diGerence between eGects just below and just
above threshold which leads one to expect the possi-
bility of other than cusp-like shapes of the 0 eersls E
plots in the discussion immediately after (4.4) is
analogous to eRects in electromagnetic oscillations of
cavities. The critical channel introduces a resistive
component into the eGective mutual impedance of the
cavity if the propagation made in the critical channel
is oscillatory. If the mode is attenuated the component
is reactive. The two eGects are 90 degrees out of phase
and combine with different parts of the mutual im-

pedance in the calculation of the current. Hence one
has the possibility of different signs of the effect in
the nuclear case.

The cusp phenomenon has been looked for by
Hemmendinger, Jarvis, and Taschek" and by Ennis

"Hemmendinger, Jarvis, and Taschek, Phys. Rev. 76, 1137
(&949).

and Hemmendinger" in p —T scattering and some
evidence of it appears to have been found. Employing
the data of the latter reference as the more complete
and plotting the values of the diGerential scattering
cross section, one sees at least a strong suggestion of
the eGect for the scattering angle 8, . of 150' in the
center-of-mass system. If, on the other hand, one plots
their values for 0, .=46' or 64.8' against energy, the
shape of the plot at 8= 1.1(5) Mev is suggestive of the
S-shaped type. The reason for looking at effects at
the energy mentioned. is that at this energy the sharp
break occurs for 0, =150'. The possibility of shifts
in energy scale during an experiment is present and
judgment must be reserved regarding the proper in-
terpretation of the data. It appears likely that ascer-
taining the nature of the effect experimentally will lead
to a more certain interpretation of scattering data,
particularly because the two branches of the (o,E)
plot can be used as a measure of the magnitudes of two
parts of I which have a 90' phase diGerence between
them. Reasonably restrictive information on u is thus
obtainable through the examination of the phenomenon.
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