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In a three-level maser, a transition between two energy levels
is saturated in order to produce an induced emission of power at
a lower frequency corresponding to a transition between an inter-
mediate energy level and one or the other of the two saturated
levels. In this paper, certain effects are discussed which cannot be
predicted from a theory in which the population differences alone
are considered in this process. For instance, it is shown that, in
some cases it is possible to obtain for the same system an induced
emission of power at two frequencies given by the resonances
between the intermediate energy level and both of the saturated
levels. Also, it is shown that, even in the absence of inhomogeneous
broadening of the spectral line, one can obtain a net induced
emission at some portions of a resonant line and a net absorption

at other frequencies within the line widths. Such effects become
important even in early stages of saturation in cases where 7= T
which is true for ordinary gaseous systems and individual spin
systems in a majority of very dilute paramagnetic solids. A
complete theory is discussed for a gaseous system and extended
to two limiting cases of paramagnetic materials with 71=T, and
T9KT for each individual spin system. Furthermore, it is shown
that for a saturating field of fixed frequency, the integral of
induced power over the entire line is in full agreement with the
results of a semiclassical treatment in which the population dif-
ferences alone are considered. Some remarks are made as to the
practicability of certain systems of this type.

INTRODUCTION

€< ASER?” action, the amplification of microwave

power by means of stimulated emission. of
resonant radiation, was demonstrated some time ago
for a beam of ammonia gas.! Another possibility for
producing a similar effect is provided by a system
where three energy levels are available such that a
transition is allowed between the lowest and the highest
of the three levels. If this transition is saturated by
means of a large power, then a transition between the
intermediate level and one or the other of the two
saturated levels can be made to result in a net emission
of radiation. When such emission is strong enough to
overcome all losses of radiation, the system will become
unstable and it can be used as an amplifier.

A three-level maser system of this type was discussed
by Basov and Prokhorov,? who suggested its use in a
molecular beam apparatus. Bloembergen has discussed
the application of this technique to paramagnetic solids®
and such a system is reported to have been operated by
Scovil, Feher, and Seidel.*

A semiclassical treatment of the mechanism of
amplification of the microwave power can be given in
terms of the averages of the population differences of
the various levels in the presence of the saturating
power. However, a detailed analysis of the subject
reveals certain features which are not predictable from
such a treatment. For instance, it is shown in Sec. III
of the present paper that one could have a situation
where even in the absence of inhomogeneous broadening
of the spectral line, the induced power at the amplifying
transition would appear in both emission and absorption

* Work supported jointly by the Signal Corps, the Office of
Naval Research, and the Air Force Office of Scientific Research.
1 Gordon, Zeiger, and Townes, Phys. Rev. 99, 1264 (1955).

2N. G. Basov and A. M. Prokhorov, J. Exptl. Theoret. Phys.
(U.S.S.R.) 28, 249 (1955) [translation: Soviet Phys. JETP 1, 184
1955)].
( 3 N?:}iloembergen, Phys. Rev. 104, 324 (1956).

4 Scovil, Feher, and Seidel, Phys. Rev. 105, 762 (1957).

phases within different portions of the line widths.
Such a result cannot be predicted on the basis of a
change in the population differences alone. The presence
of the saturating power will give rise to an admixture
of the two saturated states such that in some cases it
becomes inappropriate to distinguish the two states in
order to speak in terms of the population differences
involving these two levels.

The line shape at the amplifying frequency, and its
dependence on the intensity and frequency of the
saturating power as derived in this paper, at first sight
may seem to contradict the results obtained from a
treatment based on the population differences alone.
However, it is shown that for the saturating power at a
fixed frequency, the integral of the induced power over
the entire line at the amplifying frequency, is in full
agreement with the semiclassical calculations.

The purpose of the present paper is to present some
aspects of the quantum-mechanical effects involved in
a three-level maser. In order to reduce the problem to
its essential points, first a complete analysis will be
given, specifically for a gaseous system where the effects
of the type mentioned above become of importance
from early stages of saturation. Furthermore, the line
structure and the thermal-relaxation processes, as
applied to the three-level maser, are less involved in a
gas than other systems such as paramagnetic solids.
This aspect of the gaseous system makes it possible to
give a systematic interpretation for various terms which
unavoidably appear in a lengthy expression for the final
results. Sections IT through IV are devoted to this case.
It is hoped that the detailed presentation of a gaseous
system in this paper will give a better emphasis to the
physical picture of the quantum-mechanical aspects of
the problem. In Sec. V the results are extended to
include two limiting cases for paramagnetic solids;
namely, the cases with T1=T, and To<T}, for each
individual spin system. In Sec. VI some remarks are
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made as to the extent of practicability of certain maser
systems of this type.

IL. SATURATION EFFECT IN A GAS

In this section, a method is described for calculation
of the saturation effect in the resonant absorption of
microwave power by a gas. Later in the paper, these
calculations are extended to the case of the three-level
system.

The molecular collisions will be assumed to be hard
collisions, i.e., it will be assumed that the process of
radiation is entirely interrupted upon each collision. A
molecule which has undergone a collision will be found
with an arbitrary phase in one of the stationary states
of the isolated molecular energy states.® Let us consider
two stationary states, ¥, and s, with ¢ having a
higher energy than y,. Furthermore, assume that a
transition is allowed between these two states and
that a large radiation field is applied at a frequency near
the resonance of this transition.

Immediately after a collision at a time #, a molecule
which is found in one of these two states will be affected
by the presence of the radiation field and at a later
time ¢, its wave function will take the form

Y=a(t—to) exp[—iEa(i—10)/A ]
+b(t—to) exp[ —2Es(t—t0) /7 s

and is a mixture of the two states. The equations of
motion for ¢ and b are:

d= ybei(w'—wo’) l’

Z'): __y*ae—i(w'—wo’)t,

where 7wy’ =Ey— Ea, y=pasEo/2%, the radiation field
having the form E'= Ey’ sinw't and pq being the matrix
element between the two states of the dipole moment
in the direction of E¢'. It is assumed that no diagonal
matrix elements exist for the dipole moment. In these
equations the nonresonant terms of the form e&i(@+wo’)¢
are ignored since they form rapidly varying perturba-
tions and for y<wo' their effects are negligible.

If at the time #, the molecule is in the state ¢ =1,
the solution to the above equations becomes

o' —w\
a:%e%i(w'—wo’)(l—to) 1— eiv (t—to)
2y

' —wy
DA o
2y

5 Generally speaking, the wave function describing the state
of each molecule is a mixture of the stationary states with arbi-
trary phase factors. The mixed wave function is such that the
average, over statistical ensembles, of the probability of finding
a molecule in a given stationary state is proportional to the
Boltzmann distribution function. However, for the purposes of
this paper, the random nature of the phase factors makes it
possible to assume that the molecules exist in pure states with a
Boltzmann population distribution.
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e
1

bh=——¢}ile'—wo") (t—t0) [ei'y(t—to) —e i (t~—to)] (1b)
2y

where

v=3[(o"—w0’)?4-4yy* 2.

The number of molecules which collide in a time
interval dfy short compared with the mean collision
time 7, but long compared with the duration of each
collision, is Ndty/7, where N is the total number of the
molecules. A fraction, f, of these molecules, after col-
lision, is found in a particular energy state, say E,. This
fraction is given by f=g.e~%e/*T/3" 0,6~ F:/*T where g;
is the degeneracy of the ith energy state and we assume
a large number of energy states are available with
energy separations in the microwave range. In other
words, the total number of molecules which have
undergone a collision in the time interval dfy and are
found in a given energy state ¥, is #n.dto/r, where #,
is the population of this state given by the Boltzmann
distribution. The presence or absence of the strong
radiation field has a negligible effect on the fraction f
for gases considered in this paper. In particular, when
the partition function is small, only a small fraction of
the molecules exist in the states subject to the radiation
field. Considering that the molecular collisions for the
states having energy separations in the microwave
region are diabatic in nature, a collision produces transi-
tion to any one of the many near-by energy states.
Therefore, the presence of the radiation field cannot
appreciably affect the distribution of the Ndt,/r mole-
cules immediately after the collisions while only a small
fraction of these molecules before collision have been
disturbed by its presence. Even though, on the average,
the population difference of the two states is affected by
the applied field, immediately after collision a Boltz-
mann population distribution will be assumed for all
states.

The assumption of random collisions with a mean
collision time 7 implies that the fraction of the mole-
cules which have made a collision at a time # and last
for a time t—# before making a second collision in a
time interval dt is (d#/7)e— o) /7,

Considering that at the end of this time the prob-
ability of the exchange of a photon with the radiation
field for those molecules which at the time £, are in
either of the two states ¥, or ¥ is |b(t—1) |2, where
b(i—to) is given by Eq. (1b), one obtains for the net
absorbed power,

hy pt
pP= (”a—”b)“; f [b(t—to) l23—<t—t0)/7(il0
T Y

27|y |2y
14 (o —wo' 272472 |2

Notice that in this treatment, the Boltzmann popu-
lations 7, and # appear in Eq. (2) because the popu-

= (1a—n2)
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THEORY OF THREE-LEVEL MASER

lation distribution immediately after collisions is
assumed to be a Boltzmann distribution and inde-
pendent of the intensity of the applied radiation field.
The saturation term in this equation arises from the
fact that the transition probability is a periodic function
of time, with a period which is a decreasing function of
the strength of the applied field. Therefore, its average
over the time distribution of collisions asymptotically
approaches the value 3 when the intensity of the res-
onating power is increased.

If one is interested in evaluating the average of the
population difference between the two states subject
to the radiation field, the above technique will yield

ﬁa—ﬁ,,=(n,,—m,)1 ft [1—=2{b(—1t0)|2]

i Xe==0lrdy,  (3)
(o' —wd')? 21

14 (o —wo)2r2 -4y (27

The argument for the validity of this equation follows
from noting that for the molecules #.df,/7 which have
made a collision at time #, and are found in the state ¥,
the probability of their being found in the same state
at the time ¢ of a second collision is [1— |5(t—#)|2].
Also, within this time interval those molecules which
were found in the state ¥, immediately after collisions
have a probability of |b(¢—%)|? of being found in the
state ¥,. Furthermore, this procedure yields

T +16= Qo+ s, 4)

= (na— ”b)

as expected.

These results are in agreement with derivations given
previously® for the power saturation by means of other
treatments.

III. THE THREE-LEVEL SYSTEM

Let us suppose that a third energy level exists which
lies somewhere in between the two levels subject to
the saturating power. Let us change our notation
slightly and designate the three states by ¥4, ¥s, and ¢
(Fig. 1). We assume that the saturating field is given
by E'=Ey sinw’t, with o’ close to w¢'= (E;—E1)/h.
Let us assume that a weak rf field E= E, sinwt is applied
at a frequency w close to wo= (Es— E,)/%.

To begin with, let us summarize some of the relevant
results of the semiclassical treatment of the problem as
mentioned in the Introduction.

In the absence of the saturating field and for the
weak field at the frequency w=uws, the power absorbed,
from (2), is

P=(n1—ns)2hv|x|r, (5)

6 C. H. Townes and A. L. Schawlow, Microwave Spectroscopy

(McGraw-Hill Book Company, Inc., New York, 1955), Chap. 13.-

The parameter ¢ in the Egs. (13)-(74) through (13)-(79) of this
reference should be replaced by 2:.
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F1c. 1. States involved in
the three-level system.

where |x[2=|u1[2E?/(4%%), and it is assumed that
2| x|?<1. When a large saturating power is present at
a frequency «’, the effect of this power on the induced
transitions between ¥, and ¢, can be visualized roughly
by noting that from (3) and (4), 7; decreases as the
saturating power is increased. If, in Eq. (5), we sub-
stitute 7, for #,, since under our assumptions #; is not
affected by the saturating field, it is then possible to
obtain a situation where 7; <#,, resulting in an induced
emission of power. The expression for the emitted power
at the frequency w=wy in terms of the saturating field
intensity and for o’=wy/, calculated as just outlined, is

4]y|2r— p(24-4]y|2r?
y|*r—p 3] )]’ ©
14+-4]y[*r?

where |y|2= |u13|2E2/ (472), and p= (n1—ns)/ (ne—ns).
(Note that |y|? is proportional to the intensity of the
saturating power.) This equation will be used later in
comparing the limiting cases of the calculations which
follow.

According to this equation, the threshold for the
saturating power at which the absorption reduces to
zero and the emission just begins is given by

2|yr=p/(1-p). Q)

This relation indicates that an induced emission can be
obtained at a resonance frequency corresponding to the
energy separation of the states 1 and 2, if the parameter
p is less than unity. Notice that for the cases where
the energy separations are less than k7T, one obtains
p==(E,— E1)/ (Es— E.), which means that such emission
can occur if the middle energy level is at most halfway
between the energies of the states 1 and 3. Obviously,
if p>1, then an emission instead may be obtained at
the resonance frequency of the states 2 and 3.

The optimum emitted power as a function of |y|27?
is obtained when this quantity becomes very large
compared to unity, in which case (6) reduces to

P=2[ns—3%(n1+ns) Jhv|x|%r. (8)

These results are obtainable, in exactly the same
forms, from the treatment given by Bloembergen? for

P= (nz—ﬂg)hv‘xlzT[
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the paramagnetic solids, if one assumes that the rate of
thermal relaxation is the same between various energy
states. ’

In this analysis, however, the quantum-mechanical
effects which influence the line shape at the amplifying
frequency are ignored. In order to allow for such effects,
we proceed as follows.

Let us consider a molecule which immediately after
a collision is found in the state y,. After a certain time,
as a result of the rf field at frequency w, its quantum
state becomes a mixture of the states ¥ and ys. On the
other hand, such a mixed state is connected to the
state s via the radiation field at frequency «’. Therefore
a molecule which initially is found in the state s has a
finite transition probability to the state y; before its
next collision. If at the time #, the state of the system
is described by Y =1, then at a later time #, ¥ becomes

1By
1//= dl(t—lo) eXpl:""—h-(t— lo):lllll"’—az (t—lo)

1B, 1E;
Xexp[ —7 (t'—' to) ]1//2+a3(t—— to) exp[ —‘h—(t"" to)]‘[/a.

Let us designate by P;;(¢—i) the probability of a
system which at the initial time 4, is in the state ¢;, and
at a later time, ¢, makes a transition to the state y;.
Then Pas=|as(t—t)|? and Pau=|ai(t—10)|? where as
and a, are the probability amplitudes as given in the
above wave function subject to the initial conditions:
al(t— fo) = d3(t—lo) =0 and ag(t— to) =1 for = to. P21 is
the probability of a direct transition between states ¥
and ¢, and is accompanied by emission of a photon at
the frequency w. On the other hand, P,3 corresponds to
a double photon exchange with the two radiation fields
which induce the transition: one photon emitted at the
frequency w and one absorbed at the frequency o'
Such a process is quite similar to the multiple-quantum
transitions reported by various authors.” The only
difference is that in our case the intermediate energy
state which serves to connect the initial and the final
states has the lowest energy and the resonance condition
is satisfied when the applied fields have their respective
frequencies close to wo and wy'. Thus, instead of absorp-
tion of two quanta [see reference 77, one photon is
emitted whereas a second one is absorbed. The induced
absorption and emission of radiation can be shown
further by means of a study of the average of the dipole
moment over the wave function, ¥, describing the mixed

Pso(t—1g)= ‘ as(t—to) 12
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states. From the expressions given below, one can
evaluate the probability amplitudes @i, as, and a; and
show that the average dipole moment consists of two
oscillating components at frequencies w and «’ with such
a phase relation to the applied fields that if it corre-
sponds to an absorbing system at frequency o/, it will
correspond to an emitting system at frequency w.

The reverse processes to the transitions defined by
Pys and Py arise from the system which immediately
after collisions at the time #, are found in the state Y5
or ¥ and at a later time, #, make a transition to the
state Yo. It is intuitively obvious that the transition
probabilities for the latter processes, Pz and Pia,
satisfy the relations Pss(§—to) = Pas(f—to) and Py (i—2o)
= P12(¢—15). This point is discussed further in the
appendix of this paper.

In order to solve for the P;/s as defined above in
terms of the applied field strengths and frequencies, let
us consider the Schrodinger equation for the coefficients
a1, @3, and a3:

d/l — xa2ei(w—wo) t+ya3ei(w’-—mu’) t’
do= _x*ale-—i('w—wo)t, (9)
az= _y*ale—i(w’—am') t,

where x=pu12Eo/ (2%) and y=pu13E,'/ (2%) as before.

In these equations the nonresonant terms, such as
erize0t are ignored as they form rapidly varying
perturbations and their effects are negligible.

A general solution to these equations can be obtained
for arbitrary values of x and y. However, such a solution
involves the roots of a polynomial of the third degree
which cannot be put in a closed form if « is large and
comparable to y. This solution is given in the appendix
of the present paper. For small values of x, a solution
correct to the first order in x can be calculated con-
veniently as described below, if the initial conditions
are taken as those corresponding to Ps» and Prs.

Let us consider that a molecule at the initial time #
is in the state y=y3; then from (9) one obtains

t

az(t—1tg) = —x*f e w0t gyl

to

(10)

If [(w—wo)— (w'—wd)]x is small compared to |y|2
a1(t— 1) can be solved by ignoring the terms in % in (9)
and its solution is a;(#—7¢)= —b*(—f,) where b(t—to)
is given in Eq. (1b). From this and the above equation,
one obtains

_ |12 *rsin’[(y—9) (t—t0)/2] | si’[(y+9)(1—1t0)/2]

v L

(v—9?

(v+9)?

cos®(y (t—t0)) +5{cos[ (v — @) (t—to) J+-cos[ (v+Q) (1—10) I}
+ ], (11)

,Y2_ 92

7 See, for instance, V. Hughes and L. Grabner, Phys. Rev. 79, 829 (1950).
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where @=%(0'—wo)— (w—wo), and y=3[(o'—wo')2+4|y|2]}. Similarly, if one assumes that the molecule is
initially in the state Y=y, then a; will be the same as (1a) and from (10) one obtains

S =00-w/2]  Snl+0)=1/2]

Pyy(t—to)= lxl2[(1+a)2 (y—0)? Ha

cosy (t—to) — 3{cos[ (y—Q) (t—1o) ]+cos[ (v+Q) (¢ —20) 1}

~(1-a)

(y+9)?

where ¢= (o' —wo’)/(2y). The approximation used in
the derivation of the above equations is entirely valid
for the case under consideration in this paper, since at
the conclusion « will be taken as arbitrarily small for
an evaluation of the condition for a self-sustained
oscillation at frequency w, and we shall not be concerned
with the saturation effect at the amplifying frequency.
Also, it should be mentioned that these solutions happen
to be correct for arbitrary values of x and y when
(o' —wo')— (w—wo) =0, and if v is taken as

L'~ P+4(lx >y

This condition is satisfied in particular when both the
applied fields have frequencies at their respective
resonances.

From the above equations, the net induced absorption
or emission of power at the frequency w is calculated as
follows: :

First let us consider only the transition probabilitise
between states 2 and 1. According to the discussions
presented in Sec. IT, immediately after collisions, the
population distribution is given by a Boltzmann dis-
tribution which prescribes a larger number of such
systems in state 1 compared to systems in state 2.
Since P1g(8— to) = P21 (t—to), such transitions will always
result in a net absorption of power at frequency w
given by

hy pt
Pa,= (1’1/1—%2)—2— f Plg(t—to)e'_(t—m)/’dlo. (13)

T YV

The process which results is a net emission of power
at this frequency, however, arises from transition prob-
abilities Pss and Pgq which correspond respectively to
emission and absorption of photons of frequency w in
the double-quantum transitions as described above.
According to the Boltzmann population distribution
n2>ng, and since Pas(t— )= P32(i—1,) the net emitted
power due to this process is

. hv pt
Pe= (nz—"ﬂs)—z‘f P32(t—‘to)e_(t—t°)/’dto. (14)

T —00

In other words, this is a process in which the transitions
from a lower energy state, ¥s, to a higher energy state,
Y3, are accompanied by emission of the photons at
frequency w, whereas the reverse transitions from s
to ¥ take place by absorption of such photons. Ac-

], (12)

"Y2_ 92

cordingly, the Boltzmann distribution gives more
weight to the emitted photons and the net result will be
an emission.

The combined effect of these two types of transitions
will yield, for the total emitted power,

P=P,—P,. 15)

First let us consider a case where the state ¥, lies in
energy very close to ¥; such that 7=, and in the
absence of the saturating power only a negligible ab-
sorption at the frequency w takes place. Furthermore,
assume that (ne—n3)>>(n1—ns), 1.€., wo'>>wo. In this
case, P, can be ignored in (15) since the presence of the
saturating power will produce an emission proportional
to (ne—mn3) given by P, and much larger than P,. The
quantity P, can easily be evaluated by substituting Ps,
from (11) in Eq. (14) which, upon integration, yields

2
P,= (no—mng)hv|x| 27—
72

1 1
x{ +
A1+ (=921 201+ ()]
(P—P) P (1) -1
A4 14 (y— QP [+ (v 2] )

When the intensity of the saturating power is of such
magnitude that |y|272>1, the third term in this equa-
tion becomes negligible and the emission line will
appear as a doublet. The peak of each component of
the doublet will occur when y—Q=0 or y+Q=0, which
correspond to frequencies given by

w=wot3 (@ —w)E£y.

16)

)

For ' =wy/, (17) reduces to w=we=x|y|. The splitting
of the emission line arises from the same effect as
observed in the resonant modulation experiment in the
molecule OCS.? The presence of the saturating power
gives rise to a modulation of the wave function between
the two states 1 and 3 at an angular frequency v [see
Eq. (1b)] which is half the separation of the com-
ponents of the doublet as obtained from (17).

The third term in Eq. (16) can be considered as due
to the interference term originating from an overlap of

8S, H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
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the components of the doublet. Its effect is important
when the splitting of the doublet is not very large.

For a given value of the intensity of the saturating
field, the emission line is largest when w’'=w,’. Under
this condition, from (16), the behavior of the line shape
as a function of |y|2s? (which is proportional to the
strength of the saturating power) is as follows:

Suppose that the quantity |y| is increased continu-
ously from zero by increasing the saturating power. For
small |y|%7%, the emission shows only one maximum at
the frequency w=wy. The emission intensity at this
frequency increases from zero as |\ |272 is increased, to
an optimum value P.= %(ny—ns)hv|x|?r for |y|2r?=1.
For |y|?r2>1%, the peak intensity decreases while the
emission line broadens. At |y|?72=5/7 the line begins
to split and two maxima appear. For |y|272>5/7, the
separation of the two maxima increases and eventually,
the emission will show as a doublet with the intensities
at the peak of each component of the doublet approach-
ing the value

P=%(ne—ns)hv|x|?r. (18)

1
Po=(m—no)liv|x|2r] (1+a)? F(1—a)?
(=)ol (o) o (10

ALI JAVAN

Therefore, the optimum emission occurs at |y|%72=3%
corresponding to an intensity of the saturating power,
somewhat less than that required to split the emission
line.

Although, in the semiclassical treatment, as men-
tioned at the beginning of this section, no allowance was
made for the behavior of the line shape, it is interesting
to compare the results with the peak intensities as
calculated above. Notice that Eq. (6) for #;=n, and
for |y|%272=4% reduces to the same value as the optimum
peak intensity calculated here. However, (6) predicts
an optimum emission intensity when |y|2r2>1, with a
value twice as large as that obtained above at the peak
of each component of the split doublet.

Let us now consider the case where w, is not very
small, ie., #ni##ny and (m;—ne) is comparable to
(ny—n3). In this case, the absorption term, P,, arising
from transition probabilities P15 and Py, will be super-
imposed on the emission term discussed above. If the
expression (12) for Py, is substituted in (13), after
integration one obtains:

21+ (v+9**]

(v2— 0372 (2y* 2 +1)—1

—(1—a?) (19)

The net emitted power P=P,— P, can then be calcu-
lated from Egs. (19) and (16).

Notice that the same interference term appearing in
the expression for P, also shows as the third term of
Eq. (19) for P,.

For |y|272>1, the absorption term, P, also presents
two peaks, however, with an intensity ratio given by

1+a)2=[E“"'—wo'>z+4|ylﬂj%+<w'—wo') :
[(' —ed)244]y] 2Tt — (@' —wd) |

which for «’=w,’ is equal to unity and independent of
|9]. The two peaks occur at the same frequencies as the
centers of the emission doublet, P,, given by (17).

An examination of (19) and (16) shows that in the
limiting case where |y|272<1, P, approaches zero, while
P, approaches the usual absorption formula:

1—a

2(%1—nz)hll| leT

1+ (w—wo)?7? '

Also, if (0’ —wo’) becomes large, i.e., the saturation

power is tuned away from its resonance frequency, w’,
both components of the emission doublet P, diminish
in intensity while the peak of the stronger component
of the absorption doublet P, approaches the frequency
wo with a line shape approaching the absorption formula
given above, and the other component of this doublet
reduces to zero.

“(+4r [+ (= eIl (o)

Since the optimum intensity for the emission doublet
given by (16) appears for o'=wy’, let us consider, in
what follows, this condition to be satisfied. In this case
the parameter @, appearing in Eq. (19), is zero and for
|y|27%>1, the two peak intensities for P, become
(m1—n2)hv(|x|%7/2). Combining this result with (18),
the total emitted power at the peak of each component
of the doublet is therefore given by

P=P,—P,
=[ne—3 (nm+ns) Jov | 42| 7. (20)

This result should be compared with the Eq. (8)
derived from the semiclassical treatment. They differ
by a factor of two, which evidently originates as a result
of the splitting of the emission line. However, such an
agreement of the intensities is obtained under the con-
dition where |y|2r2>1, for which the separation of the
two components of the doublet is large and the inter-
ference effect, as given by the third terms of Egs. (16)
and (19) is negligible. In order to study this effect,
first let us examine the behavior of the induced power,
P, at the frequency w=wo as a function of the intensity
of the saturating power. As |y|%r® is increased con-
tinuously from zero by increasing the strength of the
saturating power, the emission term P, reaches its
maximum at |y|272=%. A further increase of power
results in a decrease of P, at this frequency, and even-
tually, for |y|27%>1, it approaches zero. However, the
absorption term, P,, at this frequency shows its maxi-
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mum value for |y|272<1 and continuously decreases
towards zero as |y|27?isincreased. In fact, for | y|272=1,
where P, is at its maximum, P, is reduced by a factor
of % from its value at |y|272=0. In terms of the transi-
tion probabilities, the above behavior’ means that the
average of the transition probability over the collision
time from state ¥, to state y1, (Pa1), decreases as the
saturating power is increased, while (Ps3) first increases
from zero and has its maximum at |y|?2=}. For
|9]272>3%, (Pss) becomes larger than (Ppp). This fact
immediately suggests an anomalous behavior for the
necessary requirement of the population differences
(ne—m3) and (m1—mn,) for observation of the induced
emission at the frequency wo. From (16) and (19), for
w'=w¢’ and w=uw,, one obtains

P=P,—P,
3|y|*r—p(14y[*7)
(1+4]y 2 (1+]y]2r)’
where the parameter p is

p=(m1—n2)/ (n2—ns)=(Ea— E1)/ (Es— E»),

as before. This equation should be compared with the
relation (6) of the semiclassical calculation.

For |y|272(3—$)>#, Eq. (21) becomes positive, re-
sulting in a net emission of power. This condition can
be satisfied if ¢ is less than 3, or

(Es— E1) L3(Es—Ey). (22)

As long as the middle energy level is at most £ of the
way up in between the lowest and the highest levels,
then, in principle, amplification at frequency wo may
be possible. The intensity of the saturating power which
yields an optimum emission at the frequency w=wo can
be evaluated from the value of |y|2#2 for which Eq. (21)
is maximized. For larger values of |y|%r2, Eq. (21)
decreases monotonically towards zero. Accordingly, for
|y]27%>1, one always obtains an induced emission,
however small, at the frequency w=wy if p<3. On the
other hand, Eq. (20), which holds for |y|27>1, shows
that at the peak of each component of the doublet
occurring at frequencies given by (17), emission results
only if p<1. Therefore, it is clear that for 1<p<3,
the induced power around wo appears in both the ab-
sorption and emission phases, depending on the fre-
quency of the applied field and its closeness to the
resonance frequency wo. A closer examination of the
expression for the induced power shows that a similar
behavior could also be encountered for p<1.

This behavior, which occurs in the absence of an
inhomogeneous broadenining of the spectral line, cannot
be explained in terms of a physical picture where a
change in the average population differences of the
various levels is taken as the factor responsible for
producing an induced emission of power. However, in
terms of the transition probabilities, such an effect

= 2(”2—n3)h1' ] X l 27

21)
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Fi1G. 2. The line shape at the amplifying frequency for various
values of the strength of the saturating power. The ordinate
represents an induced-emission coefficient defined by

P/I:(%z"‘ns)hlelz‘r]

and the abscissa is x = (w—wo)7. The parameter « is proportional
to the intensity of the saturation power and is defined by
o= (|u1s|2E"2/4h2)72. The frequency of the saturation power is
taken at the resonance of the 13 transition. Also, p= (#1—n2)/
(ne—ms) is arbitrarily chosen as 0.5. )

arises because at certain frequencies around wq, {P23) is
larger than $(Ps;) such that the result is an emission,
whereas at some other frequencies the reverse is true
and the result is an absorption.

In Fig. 2 a normalized line shape defined by
P/[ (na—ns)hv|x|2r] is plotted against the dimension-
less quantity x= (w—wo)7 for p=0.5 as a function of
various values of |y|%72.

In the treatments presented in this section, similar
results would be obtained if wo, were defined as
(Es—E,)/h and a matrix element existed between
states 3 and y,. In this case, condition (22) should be
replaced by (E;— Es) <3(Ee.— E;) for which an induced
emission would be obtainable at a frequency near
wo= (Ea“— E),)/h

It is interesting to note that if transitions of the
magnetic-dipole types are included, then it is possible
to obtain simultaneously matrix elements connecting
the state ¢ to both of the states ¢, and ¢;. In this case,
if the separation of the middle energy level from the
highest and the lowest levels is larger than (E;— Es)/4,
an induced emission near two frequencies (E.— E1)/#%
and (Es;—Es)/% could be observed. This effect also
cannot be accounted for on the basis of a change of the
population differences alone.

In applying the expression for the induced power to
the case where matrix elements exist between all the
three levels, care has to be taken when p is very close
to unity. In this case some of the nonresonant per-
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turbations which were ignored in Eq. (9) as rapidly
varying terms are no longer negligible and their effects
should be included. A more general situation arises for
any value of p when, in addition to the saturating
power, two rf fields are present at frequencies close to
(E2s—E,)/% and (Es;— E,)/%. This case can be treated
by evaluating the average dipole moment g= J/Y*uydr,
where ¢ is the wave function describing the state of a
molecule at the time ¢ subject to the initial condition
prescribed by its state at the time 4y immediately after
a collision. The induced power can then be evaluated
by calculating the susceptibility from an average of i
over the time distribution of collisions and observing
a Boltzmann population distribution immediately after
collision.

IV. INTEGRATED LINE INTENSITY

The discrepancies with the calculations presented at
the beginning of Sec. I1I evidently occur because of the
presence of the saturating power giving rise to a drastic
change in the line shape. However, a calculation on the
basis of a change of the population difference should
give a correct answer if, instead of intensity at a given
frequency, the integrated line intensity is considered.
This quantity. is, in effect, an average intensity. One
expects that a principle similar to that of “spectroscopic
stability” is operative, such that any details of the line
shape do not affect the integrated line intensity.

Equation (6) is calculated at the resonance frequency
w=wo. The result for the integrated line intensity will
be the same if (6) is multiplied by a factor of /7. On
the other hand, the integrated intensity for the actual
line shape is /¢ Pdw, where P=P,— P, with P, and P,
given by Egs. (19) and (16). This integral can be
evaluated easily by extending the integration from — o
to +« and then closing the integral at infinity. The
result is

® T
f Pdw=—(ns—ns)hv|x|?r
0 T

{‘Hy |27 = p[242(o —wo'Yr*+4 [ y[*7*]

]. (23)
14 (o —wo')2r2+-4| y| 272

For o' =wy/, this equation is the same as (6) when mul-
tiplied by /7. If we calculate (6) for the case where
the frequency of the saturating power o', is taken off
the resonance frequency wy’, the result becomes also the
same as (23) in all details. Consequently, the semiclas-
sical results, as derived from (6), are all correct for the
integrated line intensity.

V. EXTENSION TO PARAMAGNETIC SOLIDS

The analysis as presented has been based on an
assumption of hard molecular collisions and is complete
for a gaseous system. Various effects of the types
described are also present in any three-level maser
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system such as in paramagnetic solids. However, the
extent to which such effects may become of importance
as a function of the intensity of the saturating power
will depend on the type of thermal-relaxation mecha-
nism operative in the material.

Two limiting cases in solids are encountered for
which the above results can easily be extended ; namely,
when for each individual spin system 7's=T'; or ToT.
In solids or liquids with 71=TY5, the results obtained
above will apply directly without any essential modi-
fication. It should be noted that the collision processes
as described in Sec. IT are equivalent, in other words,
to assuming that when a molecule emerges from a col-
lision it has essentially no memory of its past history.
Such an assumption may be justified in all cases where
the correlation time is very short, which implies that
T1="T,. These cases cover a majority of paramagnetic
materials with very dilute concentration. The func-
tional dependences, as expressed by Egs. (15), (16),
and (19) will apply in these cases to all the spin systems
which have their center resonances at the frequency wo.
The presence of inhomogeneous broadening, which is
usually the major source of the total width of the
spectral line, can easily be allowed for by integrating
(15) over a slowly varying function for the distribution
of the local magnetic field.

Now let us consider a case where for each individual
spin system 7'»<7T;. The exchange of energy between
spin systems and the thermal bath takes place pri-
marily as a result of spin-lattice interaction. This
process is the major factor responsible for bringing
about thermal equilibrium. The rate at which the
system approaches equilibrium is given by 1/7', and
this approach may be a slow process if T is long. On
the other hand, the presence of spin-spin interaction
will give rise to a simultaneous energy exchange
between two spin systems without necessarily a net
exchange of energy with the thermal bath. This process,
in effect, shortens the lifetime of the states of each spin,
and by including the adiabatic thermal processes which
tend to disturb the phases of the spin system at random
without causing a transition, the mean lifetime will be
given by T2 We assume that 7»<7y. The principal
feature of the treatment presented earlier lies in the
presence of a transition of the type Pss. Such a transi-
tion becomes of importance if the strength of the
saturating power is large enough to produce appreciable
transition in a time shorter than 7', where a spin system
has a chance to show the effects which require its
coherence. Let us first assume that the applied power
is not large enough to produce such a transition. In this
case, since the presence of the applied field does not
result in an appreciable admixture of the states 1 and 3,
it becomes permissible to speak in terms of the popu-
lation differences of various states involving 1 and 3.
Also, transitions between states 1 and 2 are of the
ordinary type and the line shape at this power level is
not affected by the presence of the saturating power.
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If Ty is long enough, the rate at which the energy
absorbed from the saturating power is delivered to the
lattice becomes slow and the population of the states
1 and 3 tends to become equalized. The semiclassical
treatment, as discussed at the beginning of Sec. III,
will apply rigorously and the situation is discussed by
Bloembergen for an arbitrary rate of relaxation of the
type T between various energy states. For |y|2T,T
>1, one obtains

(ﬁ2—ﬁ3)—_— (7’7/2'—77L1). (24)
Under the assumption of equal rates of relaxation
between various levels this equation becomes equal to
[n2—31 (11+ns) ], where #1, 7, and n; are the popu-
lations of various states given by the Boltzmann dis-
tribution. At this power level, the induced-emission line
shape for each individual spin system is the normal
shape of the corresponding absorption line.

However, as soon as the applied power is increased
further, such that saturation of levels 1 and 3 begins to
set in a time Ty, then transitions of the type Pi3 begin
to become important at the expense of a change in Pys,.
Under this condition, in addition to power emitted as a
result of a transition of the type Py, which is propor-
tional to (7is—71), an emission will occur because of
Ps; and proportional to (is—7i;). Considering that at
this power level (24) holds, one obtains for the net
power emitted:

P=(fis—7i3) [ (Pas)+{(Pa1) ],

where (Ps3) and (Ps1) are averages for the transition
probabilities over the time distribution of the relaxation
processes of the type T's. (P23) and (Pay) will be given by
P, /[ (ns—mn3)hv] and P,/[(ni—ns)kv] respectively,
with P, and P, as given by Eqgs. (16) and (19) and
with 7 substituted as 7. The result for w’=w,’ becomes

P= (’}'_Lg‘—ﬁ?,)hv I xl2T2
1+Ly| = (0—wo) PT2

1
+ .
4Lyl + (@—w) PT#

For o’ #w¢’ an extra term will appear in this expression
because of the third term in P, and P,. Therefore, in
the presence of a homogeneous broadening of the
spectral line where for each individual spin system
To&Ty, for |y|2T:T>>1, the power emitted is given
by (25). This equation shows that for |y|?7T#<1 the
emission has the usual shape of an absorption line;
however, for |y|2Ts>>1, the line appears as a doublet,
resulting in a decrease of the induced emission at the
frequency wo. The presence of inhomogeneous broaden-
ing may easily be accounted for in this equation in the
manner described for the case T'e=T,. Clogston has
discussed the general case with arbitrary values of T
and T, using the apparatus of density matrices. His

(25)
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method can be shown to give results which are in
agreement in all details for the two limiting cases as
discussed in this paper.

From the above treatments we can conclude that in
a three-level maser, there are various types of physical
phenomena involved which cannot be explained on the
basis of a change in the population differences alone.
In particular, when 7;=7% or in any case where a
saturation is set up in the time 7'y, the states 1 and 3
will be so mixed that it becomes inappropriate to dis-
tinguish states 1 and 3 in order to speak only in terms
of the population differences.

It should also be pointed out that, generally speaking,
a three-level maser can be described as a type of mono-
chromatically excited fluorescent effect. The two-
quantum transitions of the type Ps; involved in this
process are similar to Raman-type scattering phe-
nomena.

VI. CONCLUDING REMARKS

An obvious extension of a three-level maser can be
be made in systems where a fourth energy level is
present with an energy larger than Es. In this case, the
power induced at the amplifying frequency can be
enhanced somewhat by applying a second saturating
power at a resonant frequency close to (Es—Ejs)/h.
For T1=T,, the emission occurs as a result of the
multiple-photon processes in the manner described for
the three-level system. The expression for the emitted
power is given in Appendix II for a special case where
the frequencies of all the applied fields are taken at
their respective resonances. A similar extension can also
be made for systems with more than four energy levels
where matrix elements exist between the required
levels.

There exists a variety of substances with at least
three energy levels where an induced emission of
radiation could be observed on the basis of the mecha-
nism described in this paper. However, the require-
ments for obtaining sufficient intensity to overcome
other types of losses of the microwave power for the
purpose of amplification are generally severe.

One is not limited only to electron-spin paramag-
netism in solids for this type of amplification. For
instance, direct nuclear quadrupole transitions in a
crystal such as I provide the required energy levels and
at low temperature the condition for amplification may
be satisfied. Such a crystal is not lossy and can be used
with a large filling factor.

As far as gaseous states are concerned, for ordinary
molecules, amplification may be obtained if the sepa-
ration of levels 1 and 3 is large and in the
millimeter range of frequency. The practicability of
such systems for a CW operation will therefore require
the availability of CW power in this range of frequency.
For instance, the rotational transition J=2«1 in the
first excited state of the bending mode of vibration in
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the molecule HCN could be used as the saturating
transition. The direct transition between the I-type
doublets with AJ=0 will then provide amplification at
two frequencies corresponding to splittings of J=1 or
J=2 levels. There are other molecules which can be
used similarly. It should be noted that in these cases
the expression for the emitted power is given essentially
by Eq. (16), since P, becomes negligible compared to
P, in (15) as soon as a reasonable saturating power is
applied. Such systems cannot be used at very low tem-
peratures which, at present, seem to be required for
solids. :

An interesting mechanism which provides the transi-
tions of the required types in symmetrical-top molecules
is encountered when a nucleus with large quadrupole
coupling is present in the molecule. The hyperfine
structure will give rise to forbidden transitions with
AJ=22 or AJ==3 and can be used as the saturating
transition. An allowed transition with AJ==-1 can then
be used as the active transition. For example, the
molecule ICN seems to be a good example for this
type of operation. Unfortunately, saturation of the
J=3«0 transition in this molecule does not yield
sufficient intensity for a convenient amplification at
the J=1«0 transition. However, observation of the
resonance line at the allowed transition and its depend-
ence on the frequency of the saturating power seems to
constitute a convenient way for detecting such types of
forbidden transitions.
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APPENDIX I

A general solution of Eq. (9) can be calculated as
follows.

Let us substitute in (9) a;=A4 ;'™ where the
a;’s are the probability amplitudes with the subscript 7
standing for the levels 1, 2, and 3. If we then take
x1=0, x2=— (w—wo), and xs=—(o'—w(’), Eq. (9)
reduces to the following secular form:

N 1+ixd o +-iyA5=0,
—ix*A 1+ (N +x2)42=0,
—iy*A4 1+ A\ +x3)42.=0.
These equations can be solved simultaneously for the

Aj’s if the determinant of their coefficients vanishes.
This condition yields an equation of the third order in
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A, with real roots. With each root, one of the amplitudes
A4 ; can be assigned arbitrarily. Accordingly, by writing
a;=eXit Y, A ;,e™¢ one obtains a general solution of
(9) in terms of three unknown constants. The values of
these constants can be chosen to satisfy the initial
conditions.

Unfortunately, for arbitrary values of x and y, the
roots of the secular equation cannot be expressed in a
closed form except for (w'—wy’)= (w—wo). However, if
x is small and ¥<y, a solution to the first order in %
can be found easily and the relevant probability am-
plitudes in this order are given as follows: For the
initial conditions that as;=1, as=a;=0 at ¢=4, one
obtains

gy (D1 il e 1

agg=—" + ,
2y ¥+Q v—Q

where the first subscript in @3, is used to indicate the
initial condition, and vy and Q are the same quantities
as defined in Eq. (11). For ¢s=1, az=a,=0 at t=/,
ay3 can be evaluated in the same way and is found to
be related to as» by

*
Qog=—-e (' —w0" )= (=) I (t—t0) g 0

ya*

Also, for initial conditions a;=1, as=a3=0 at t=1,
one obtains

& ((y=xa) et -0 —1]
ai2 =’L“"

2y v+Q

([ - —1]
v—Q ’

Finally the probability amplitude as; defined by a.=1,
a1=a3=0 at =14 is found to be related to a2 by

x*
ao1= ____e~i(w——wo) 1(112.
X

Notice that from these probability amplitudes one
obtains P (b‘—‘ Ifo) = P3,y (t“‘ Zfo) and Py (l— to) = Pm(l‘" lo)
as expected.

APPENDIX II

For a four-level maser, the probability amplitudes
can be found with similar manipulations. Let us con-
sider the case where all of the applied fields are at their
respective resonances and the saturating powers are
chosen such that |us| E”/(28) = |u13| E'/ (2%)= | y| and
|piz| E/ (2%) = || <|y| with E, E’, and E" as defined
in Fig. 3. Under these conditions, the probability
amplitudes can be evaluated to the first order in x,
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Fic. 3. States involved in a
four-level system. The applied
fields are: E=E sinwf, with

w=wo= (Es—E1)/h;
' =E’ sinw't,
with
'Sy’ = (E3—E1) /h;
E”=E" sinw’t,
with
o=y = (Ey—E3) /h.

and their averages over the time distribution of col-
lisions yield the following expression for the power

THREE-LEVEL MASER
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emitted at the frequency wo:

6ly[*r*
(1+8[y ) (142]y[*r*)

P= [xlzrhv[ (nog—mns3)

+( )( - bl
BT 208y (r2ly ey 2)

( )( 1 + 1 + 1) }
— \N1— Ny - .
2(1+8[y[*%)  (1+2]y[2)? 2

This expression shows the characteristic behavior of the
interference effect as pointed out in some detail in Sec.
IIT of this paper.
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The angular correlation of the two-photon annihilation of positrons annihilating in gases at high pressures
demonstrates the two modes of decay—(1) from a bound state, positronium, and (2) from an unbound state
—in all gases tested that have low-lying energy states. The increase in the narrow component in argon, plus
suitable thermalizing gases, due to the application of a dc magnetic field obeys the theoretical increase due to

“the mixing of the 1 1S and 1 3S m =0 states. The increase in positronium formation due to the application of a
dc electric field is observed. Preliminary evidence for the existence of #=2 states of positronium is seen.

I. INTRODUCTION

HE study of the process of positron annihilation

by measurement of the angular correlation of the

two quanta from the annihilation event has been used
successfully in solids.'~® Prior to the present research, no
precision experiment on the angular correlation of the
two quanta from the annihilation events in gases has
been reported. When positronium, the bound state of a
positron and electron, is formed, the singlet state (1 15)
decays by two quanta and the triplet state (1 3S) decays
by three quanta. The half-life for 1 1S positronium is
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1.25X 1071 sec and for 135 is 1.4 1077 sec.® In this
work the distribution in angle is usually limited to
within ten milliradians of 180° with particular attention
to the effect of a dc magnetic and/or a dc electric field on
the events within two milliradians of 180°. The pres-
sures used were from one to 28 atmospheres. The ex-
periments on the magnetic quenching of orthoposi-
tronium done previously in various gases™® have been
extended to higher fields. The effects on the angular
correlation and magnetic field dependence of argon by
adding thermalizing and/or quenching gases has been
studied. Some experimental evidence for the n=2 states
of positronium has been found. Some of the methods
used here found immediate extensions, and those re-
lating to parity nonconservation have already appeared
in print.!! However, for the sake of clarity, they are in-
cluded here.
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