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hyperfine splittings will also give information regarding
the hyperine structure constant and magnetic moments
of the nuclei; however, it is not likely that these meas-
urements can be made to any greater accuracy than by
existing methods.
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The dipole polarizability nz and the quadrupole polarizability o.~ have been calculated for several ions by
solving the Schrodinger equation satisfied by the first-order perturbation of the wave functions of the
electrons of the core. The results for O.q of the helium-like ions are in good agreement with those obtained
previously by an analytic method. The calculated quadrupole polarizability o.~ of the alkali ions increases
very rapidly with increasing Z, from 0.056 A5 for Na+ to 7.80 A5 for Cs+.

I. INTRODUCTION

~HE electronic polarizabilities of a number of ions
have been calculated previously by means of a

numerical solution of the Schrodinger equation satis6ed
by the perturbation of the wave functions of the
electrons of the core.' For the unperturbed wave func-
tions, the Hartree or Hartree-Fock wave functions of the
core were used. The calculated results for the dipole
polarizability 0.~ were shown to be in reasonable agree-
ment with the experimental data. The purpose of this
paper is to give the results of additional calculations of
the dipole polarizability n~ of the helium-like ions and of
the quadrupole polarizability 0., of several helium-like
and alkali ions.

II. DIPOLE POLARIZABILITY

In Eq. (2), Vo is the spherical potential and Eo is the
unperturbed Is eigenvalue. Actually the function,

E= Vo—Eo= (1/e—t'o) (d'I'o/dr'),

is obtained directly from the second derivative of m p, as
shown by Eq. (53) of I.We note that Eq. (1) gives era in
units aH' (aH= Bohr radius) and must be multiplied by
(0.529)'= 0.148 to obtain era in units Ao.

For the helium-like ions, values of 0.~ have been
presented in Table II of I. In obtaining these values,
Q y, p y was not derived by numerical solution of the
Schrodinger Eq. (2), but was obtained analytically in
the following manner. One notes that for a hydrogenic
wave function I'p,

I'o=2Z'r exp( —Zr),

The method of calculation of o& was the same as that with atomic number Z, the perturbation is given by
used in I. Thus, for the helium-like ions, which involve
only the is—+p excitation, aa is given by

era ——(8/3), I'ott', o,rdr,
p

d' 2
+—+Vo—+o IN r, o t=tt or

dr' r' i
(2)

*The work done at Brookhaven National Laboratory was
carried out under the auspices of the U. S. Atomic Energy Com-
mission.

t Supported by the Otfice of Naval Research.' R. M. Sternheimer, Phys. Rev. 96, 951 (1954).This paper will
be referred to as I.

where I'p is r times the radial 1s function, normalized
according to: Jo"(I'o)'dr=1; I'r, o t is r times the radial
part of the imp perturbation, and is determined by

The zero-order wave functions I'p for the helium-like
ions which were used in I and in the present work are
the wave functions obtained by Lowdin, ' which are of
the following form:

tt'o =ct(2Zr&r exp( —Zrr) g+csL2Zs'*r exp( —Zsr) g, (6)

where Z» and Z2 are two effective values of the atomic
number; c~ and c2 are coeKcients. In the work of I we
assumed that I'j, p y is given to a good approximation by
a linear combination of the functions (5), corresponding
to Zr and Zs, i.e., we took Lsee Eq. (71) of Ij:
I 1, 0 1=crt Zt &r'(1+sZ&r) exp( —Zrr) j

+co)Zs—&r'(1+-,'Zsr) exp( —Zsr) j. (7)

s P. O. Lowdin, Phys. Rev. 90, 120 (1953).
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TABLE I. Calculated values of the dipole polarizability o,~ and
quadrupole polarizability n~ of several helium-like ions. The
second column lists the present values obtained from a numerical
solution of Eqs. (2) and (10), while the third column gives the
values determined analytically in I. The values of o.d and n, are in
units A' and A', respectively.

8'+: 0.00303. Except for H, the agreement between
these values and ours is very good. Wikner and Das'
have given a critical comparison of these calculated
results with the experimental values of o.~ for the
helium-like ions.

Ion

nd(H-)
~d(He)
~,(Li+)
ns(Be++)

~,(H-)
a, (He)
a, (Li+)
a, (Be++)

Numerical

13.4
0.224
0.0307
8.25X10 '

66.5
0.0993
4.73X10 '
6.37X10 4

Analytic

16.1
0.236
0.0316
8.3X10 '

71.1
0.101
4.77X10 '
6.40X10 4

III. QUADRUPOLE POLARIZABILITY

The quadrupole polarizability' n, measures the
quadrupole moment induced in the ion Q;„s by an ex-
ternally applied field gradient BE,(Bx, in the same
manner as the ordinary (dipole) polarizability 4rd is
related to the induced dipole moment. The quantity n,
is de6ned as follows':

(8)
It was shown in I that for the case of Li+ and
presumably also for the heavier helium-like ions
(Be++, B'+, C'+), the approximation of using Eq. (7) for
I y, p y introduces a negligible error in the calculated
value of e&. Thus for Li+, the value of o, & obtained by
means of Eq. (7) is 0.0316 A'as compared to a value of
0.0306 A' gotten by solving Eq. (2) numerically for
R y, p~y, with Vp —Ep determined directly from the
Lowdin function 44'p by means of Eq. (3).

Recently Wikner and Das' have obtained values of
n~ for the helium-like ions by means of a variational
method. In order to compare with their results, it
seemed of interest to recalculate the values of o.d for
several helium-like ions by numerical solution of the
Schrodinger equation. The procedure of the numerical
integration has been described4 in I. The results are
given in the upper part of Table I, which lists both the
present values obtained numerically and the previous
values of I. It is seen that the previously used analytic
approximation is already quite good for He, where the
error is only 5%. For Be++, the analytic approximation
agrees within 1% with the numerical result, so that the
values given in I for crt of B'+ and C4+, (0.00308 A' and
0.00139 A', respectively) are probably also accurate
within 1%.The only case where there is an appreciable
discrepancy between the two results is that of H, where
the extended charge distribution is probably responsible
for the inaccuracy of the analytic approximation. Thus
the maximum of I y, p y for H occurs at r=6aH, and
there are significant contributions to the integral of (1)
up to radii r 12aH.

The present results are in good agreement with the
variational results of Wikner and Das. ' These authors
have used for I'p the wave functions of Green, Mulder,
Lewis, and Woll, which differ slightly from the Lowdin
functions' used in the present work. They have obtained
the following values for rr~ (in units A'): for H: 14.88;
for He: 0.218; for Li+: 0.0305 for Be++: 0.00813 for

' E. G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957). I
would like to thank Dr. Das for sending me a copy of this paper
before publication.

4 Reference 1, p. 955.' Green, Mulder, Lewis, and Woll, Phys. Rev. 93, 757 (1954).

Values of a, for several helium-like ions and for Na+ and
Cs+ have been previously obtained (see Table III of I).
For the helium-like ions, cr, (in units ans) is given by'

where u'&, p 2 is r times the radial wave function for the
1$~d pertulbatlon' s I, p g is determined by:

4f' 6
+—+&o—Eo )44'r, o s=44'or'

dr' r' i (10)

where c~, c2, Z~, and Z2 are the parameters of the
Lowdin wave function, Eq. (6). In order to determine
the accuracy of Eq. (11) for 44'r, p &, we have obtained
44'r, o~s by solving Eq. (10) numerically. The resulting
values of n, are listed in the lower part of Table I,
together with the values previously obtained by means
of the 44't, o s of Eq (11). It. is seen that for H, the
analytic method overestimates cr, by 7%, but that for
He, the analytic approximation is already very good.
For Li+ and Be++ the error is less than 1%, and there-
fore, the values for B'+ and C4+, given in Table III of I
are probably accurate to within 1% (1.40X 10 ' A' and
4.31X10 ' A' for B'+ and C'+, respectively).

Results for o, , for Na+ and Cs+ have been obtained in
I. These values have been recalculated to somewhat
higher accuracy in the present work, and we have also
obtained results for Cl, K+, Cu+, and Rb+. For these
ions with several closed shells, only the outermost shell

J. E. Mayer and M. G. Mayer, Phys, Rev. 43, 605 (1933).

In the work of I, 44'i, p s was not obtained from Eq. (10)
for the helium-like ions, but instead, in the same manner
as for o.d, use was made of the analytic form of I'~, p~~ for
the case of a hydrogenic 6eld )see Eq. (102) of I].Thus
I'~, p 2 was taken as

44~i p s=ct[iZr r'(1+-', Zir) exp( —Z&r))

+co[,'Zs 'r'(1+s'Z&r) exp( —Z&r)], (11)
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makes a significant contribution' to 0, It has been
shown in I that a, is given by

8 (48 72
rrq =—(Jp~s) n ps+

I

—~r~r+ —~i~ s
5 (25 25 ) npy

Ion Na+ C1 Cu+ Rb+ Ca+

TABLE II. Calculated values of the quadrupole polarizability O.q.
The rows above nq list the contributions to nq of the various modes
of excitation of the (outermost) shell with highest principal
quantum number no. All values are in units A5.

(8 16 144
+ I

-~2~0+ ~2~2+ J2-+4 ), (12)
&5 7 35 ) np~

where ep is the principal quantum number of the
highest filled shell, Jz z is the radial integral corre-
sponding to the @pl~i excitation. Jz & is given by

Q.q(n0s —+d)
O.q(npP~P)
,(n,p f)

cxq (nP(E~s)
nq(npd~d)
n, (nod~g)

0.0133
0.0173
0.0256

0.635
5.38
7.75

0.0562 13.77 2.990 7.80

0.132 0.00451 0.324 0.884
0.183 0.00380 0.759 1.702
0.41.8 0.00937 1.907 5.21

0.840
0.192
0.230

0.733 1.280

Jp
Q'pQ'~ z~z r'dr, (13)

where Q'p is the unPerturbed radial ep/ wave function
and Q'~, z z is the radial wave function for the pertur-
bation and is determined by the equation:

d' l'(l'+1)
+ +l 0 Ep ui imv

dr' r'
=u'p(r' —(r') pi5ii ). (14)

Here (r')npi is the average value of r' over the unper-
turbed function u'o. As is seen from Kq. (14), this term
enters only for qsop —+p and qspd~d excitations.

Equation (14) was integrated numerically in all cases.
For Na+, Cl, K+, and Cu+, the Hartree-Fock func-
tions' "were used for the Q'p. For Rb+ and Cs+, only
Hartree functions (excluding exchange eGects) are avail-
able.""The qspp —+p and qspd~d perturbations u'i, i

have been previously obtained by Sternheimer and
Foley."For ihe perturbations with /'/ 1, the calculations
were carried out as follows. First Eq. (14) was inte-
grated numerically inward starting from large r. Then
Eq. (14) was integrated outward starting from small r
by means of an appropriate power series expansion. The
two solutions were joined at an intermediate radius
(r~0.5arr), and the resulting function u'i, i~i was used
in Eq. (13) to obtain Ji i. It may be noted that the
inward integration must be repeated several times with
various assumed values of u'i, i i (ri) at the large radius
ri at which the integration is started. Unless u'i, i~i. (ri)
has the correct value, the function u'i, i i (r) will diverge
near r=0. Of course, the actual solution is found by
the procedure of joining with the internal solution at
small r. This situation is similar to that which arises in

'V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368
(1934).

o D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A156, 45 (1936).

D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

»D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936)."D.R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935)."D. R. Hartree, Proc. Roy. Soc. (London) A143, 506 (1934)."R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(1956).

the calculation of the dipole polarizability [Eq. (58)
of If.'

The results of the calculations of u, are given in
Table II. It is estimated that each of the terms is
accurate to &5%%. For Na+ and Cs+, the present results
differ very little from those previously published' (o.q for
Na+=0.0562 A' as compared to the previous value
0.058 As; for Cs+: 7.80 As as compared to 7.62 As). The
signi6cant increase of o., in going from K+ to Cl shows
that n, is very sensitive to the radius of the charge
distribution. There is also a large increase with in-
creasing Z for the alkali ions, in. going from Na+ to Cs+.

For the case of Cu+, it may be noted that the inner
electrons among the rsp ——3 group, i.e., 3s and 3p,
contribute very little to a„which is due almost entirely
to the 3d electrons. This result is in accordance with the
fact that rrq depends essentially' on [(r')noigq/(hE),
where (AE) is a mean energy denominator for quadrupole
excitation. The value of [(r')npi$' is a factor of ~4 times
larger for 3d than for 3s and 3p. Moreover (DE) is con-
siderably larger for 3s and 3p than for 3d (~10 ry for 3s
and 3p, as compared to &1 ry for 3d). Within the 3d
group, the 3d—+s term is 4 times larger than the 3d—+d

or 3d~g term. This is due to the fact that the energy of
the 4s state E4, is very close to the 3d energy E3g. Thus
Q'~, 2 p for the 3d~s excitation contains a contribution
a4,Q p, 4„where Q'p, 4, is the unperturbed 4s function and
the coefficient a4, is given by

oo

a4.= u o, oar u o, q.dr/

0

(E4.—Ep.) (15)

The 4s eigenfunction Q'p 4, has been calculated for the
same effective potential Vp in which the 3d electrons
move, and it was found that E4,—Esq=0.334 ry. (The
Hartree-Pock eigenvalue" E3~ is —1.613 ry, so that
E4,= —1.279 ry in the effective-field approximation. )
The integral J~" u'p sor'u'p 4,dr was found to be —2.020,
so that the 4s term of u'r, s~o is (—2.020/0. 334)u'o, 4,
= —6.048Q p, 4 . A comparison of a4,Q'p, 4, with the com-
plete perturbation Q'&, 2 p shows clearly that the 4s term
almost completely accounts for the total Q'&, & p, as was
expected from the smallness of the energy denominator.
Thus c4 Q p, 4 is very close to Q y, 2 p for all values of r.
The ratio p —=a4,u'p, 4,/u'i, s o is 0.984 at the outermost
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=0. (17)

Here B~,„, B~, b, are matrix elements of the
perturbation B~, and E~ is the first-order change of the
energy due to B&. For a unit point charge placed along
the positive x axis at x=8, B~ is given by'

Hi —(r'/R') (3——cos'fI —1), (18)

where e is the angle between the radius vector (of length

r) and the x axis. In Eq. (18), Hi is given in Rydberg
units, if r and E. are in units aH. We denote the 3d state
by u and the 4s state by b. It may be noted that the only
3d state of interest here is the state with magnetic
quantum number m=0. One obtains

Hi, «= —(4/7)R I p, ogr dr

= —0.734R 'rydberg, (19)

(fourth) maximum of I'p 4, at r =2.0aH, p is 0.964 at the
third maximum of I'0, 4, at r=0.55aH, and p=0.912 at
r=4aH. Another way of showing the predominance of
the 4s term consists in evaluating the 3d—&4s contribu-
tion to e„which is equal to

a, (3d~4s) = (8/5) (0.0415) (2.020)'/0 334
=0.811 AP. (16)

Here 0.0415= (0.529)' is a factor needed to convert to
units A'. Comparison with Table II shows that
o, (3 d +4—s) accounts for 0.811/0.840=0.965 of the com-

plete 3d—&s term.
The large magnitude of the 3d—+4s excitation raises

the question as to the applicability of the first-order
perturbation theory which has been used here. In
particular, the diGerence E4,—E3~ depends sensitively
on the effective potential Vo used in the calculations,
and one may inquire about the magnitude of the
induced quadrupole moment Q;„p for the case that the
3d and 4s states are exactly degenerate (Eog E4 )."In
this case, following the usual methods of perturbation
theory, one must solve the secular determinant":

tion'o has the value 1.285aHP. Upon solving Eq. (17),one
obtains two roots: E~ = —2.210K ', E~p=1.4768 '
rydbergs. The wave function P corresponding to the
lower energy E~ is found to be":

P =0.775/op p
—0.633/4„ (22)

where P~q, p and P4, are the unperturbed 3d function
(with m=0) and the 4s function, respectively. In order
to obtain the induced quadrupole moment Q; p, we note
that if the 3d electrons with no= 0 had the wave function
Poz, p, the total quadrupole moment of the ion would be
zero, because of the equal population of the 3d, m=0,
&1,and ~2 states which results in spherical symmetry.
Thus the replacement of Jog, p by/ leads to a quadrupole
moment:

Q;~p=2 (P f)r—(3 cos 8—1)dV=2.96@ii (23)

2~p (2)(o 811)
Qj~g =0.0871 A' =0.311aH', (24)

R' 2.65'

which is a factor of 10 smaller than the maximum
value 2.96aH'. Another way of making the comparison
is to obtain the 4s admixture coefficient b4, which is
found to be

1.806

where the factor 2 arises from the presence of the two
electrons with m=0. The numerical result 2.96uH' for
Q;„p is obtained in a straightforward manner, using the
values of Jo"I"o,o~r'dr= 1.285aH'and Jo" I'o, o~r'I'o, 4.d»
= —2.020aH'

Equation (23) gives the maximum value of Q; p due
to the 3d—&4s excitation. In order to determine whether
the first-order perturbation result for m, (3d—+4s)
=0.811 A' is adequate in a typical case, we will obtain
the corresponding value of Q;„p and compare it with
(23). It will be assumed that the external charge (e.g. ,
the neighboring ion in a polar molecule) is at a distance
R=5uH ——2.65 A. By virtue of Eq. (8), Q; & is given by

Hi, , p IIi, p, =—(2/5'*)R ——' u'p, opr'u'p, 4,dr

b.———
~4.—~3~

= —0.0431, (25)
(125)(0.334)

Bg, bb=0.

= 1.806R 'rydberg, (20)

(21)

In Eqs. (19) and (20), the factors 4/7 and 2/5& arise
from the integration over the angular wave functions.
The integral Jp" I"p, 3$»'dr over the Hartree-Pock func-

'4 I wish to thank Professor R. H. Dalitz for suggesting to me a
consideration of the case of degenerate 3d and 4s levels.

"See, for example, Eyring, Walter, and Kimball, Quantum
Chemistry (John Wiley and Sons, Inc., New York and London,
1944), p. 96.

where Eq. (20) has been used. It may be noted that b4,
divers from a4, of Eq. (15) by a factor (2/5'*)R ', which
comes from the integration over the angular wave
functions and the deanition of Hi LEq. (18)j.

The results of Eqs. (24) and (25) show that Q; p and
b4, are suKciently small that the erst-order perturbation
value u, (3d—+4s) =0.811 A' is expected to be quite
accurate. Actually, one can carry out an exact treatment
of the 3d—4s admixture also when the zero-order
energies E3~ and E4, are diferent. One obtains a secular
determinant similar to (17). Upon taking the next
higher order term in the admixture, one finds that b4, is
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changed by an amount

864,=
(+1, bb +1,aa)+1, ab = 7.5X10- .

(&4*—&sa)'

Upon including bb4, and a term (ccbe,s) due to the
normalization of the perturbed wave function, one
obtains Q; q=0.303ttHs, so that the correction to (24) is
less than 3/o. This conclusion depends, of course, on the
value of E4,—E3&. If this energy difference were sub-
stantially less than 0.3 ry, the actual Q; s would be
appreciably smaller than the first-order result and
would have to be obtained from an exact calculation of
the 4s admixture.

As has been discussed in I, the induced quadrupole

moment contributes to the spectral term defects of the
alkalis, for which it gives of the order of 10 to 30% of the
amount contributed by the induced dipole moment. 6

The perturbed wave functions obtained in the present
work may also be of interest in the construction of
appropriate wave functions for polar molecules. "
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The low-energy losses of 20-kev electrons passing through the vapors of Zn, Cd, Hg, Na, K, Mg, Ca,
Sb, Pb, and KC1, have been measured by using an electrostatic analyzer previously used for measuring
electron energy losses in thin metal films. The atomic transitions corresponding to the measured energy
losses are in many cases fairly easily established. However, there remain some which are questionable due
to the fact that there is more than one feasible transition with energy differences of the order of the given
energy loss. It is established that the principal interaction results in the excitation from the ground state
of the neutral atom to the first excited level —the resonance excitation. It is also found that dipole excitations
predominate

INTRODUCTION

' ~ROM the time that Franck and Hertz' first demon-
strated in 1914 the existence of quantized inelastic

collisions between electrons and gas atoms, many ex-
periments were performed to measure such quanta of
energy loss. This work was summarized up to 1925 by
Compton and Mohler. ' Brode, ' in 1933, reviewed the
study of the collisions of electrons with atoms, and more
recently Massey and Burhop4 have brought this infor-
mation up to date. The energy losses have been called
resonance losses and critical potentials. Most of the
measurements were made for the permanent gases
although a few were made for the metal vapors. All of
these measurements were made at very low primary-
electron energies, generally not extending beyond. the
value of the 6rst ionization potential of the atom.

*This work was supported in part by the V. S. Atomic Energy
Commission.' J. Franck and G. Hertz, Verhandl. deut. physik. Ges. 16,
457 (1914).

~ K. T. Compton and F. L. Mohler, National Research Council
(U.S.) Bull. 48, Vol. 9 (1924-1925).' R. B.Brode, Revs. Modern Phys. 5, 257 (1933).

4 H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Clarendon Press, Oxford, England, 1952).

The measurements to be described were performed
with primary electrons of 20-kev energy, principally
because we were interested in obtaining the energy
losses in metal vapors under the same conditions as
our measurements previously reported' for the energy
losses of 20—30 kev electrons in thin metal films. ' With
high-energy electrons one is not limited, in principle, to
exciting only dipole and higher multipole transitions as
is the case with electromagnetic radiation; it should be
possible to excite monopole transitions as well. 7

However, the Born approximation predicts that dipole
excitations of the atomic electrons should predominate.
Pano has described the relative probabilities of
excitation and ionization when a high-energy electron
(1—100 kev) interacts with hydrogen atoms. In Fig.

' Marton, Leder, and Mendlowitz in Advances in Electronics
and Electron Physics, edited by L. Marton (Academic Press, Inc.,
New York, 1955), Vol. 7, p. 183.

e E. J. Sternglass, Nature 178, 1387 (1956), has stated that
measurement of the energy losses of electrons in metal vapors may
provide a test for distinguishing between individual atomic and
collective losses of electrons in thin solid 6lms.

'In what follows, all transitions other than dipole will be
referred to as optically forbidden or forbidden transitions.

U. Fano in Radiation Biology, edited by A. Hollaender
(McGraw-Hill Book Company, Inc. , New York, 1954),Vol. 1,p. 56.


