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FIG. 4. Differential thermal analysis: glycine silver nitrate
compared to methylammonium aluminum sulfate alum (MASD).
Ordinate=galvanometer deflection, in arbitrary units. Vertical
dashed line indicates temperature of dielectric anomaly of glycine
silver nitrate.

6eld with temperature. The spontaneous polarization is
0.55X10 ' coulomb/cm' at 195'C. The behavior of the
spontaneous polarization as a function of temperature
suggests that the transition is of second order. The
coercive 6eld at —195'C is 740 v/crn, and this field

drops as the Curie temperature is approached, in a
manner suggestive of the behavior of triglycine sulfate. '
No dielectric anomalies appear between —55'C and
O'K.

The result of a differential thermal analysis is shown

in Fig. 4. Methylammonium aluminum sulfate alum is
used as reference material. If a thermal anomaly exists
in glycine silver nitrate, its magnitude is less than the
experimental error.

An x-ray examination of the structure, both above
and below the Curie point, is in progress.

Fig. 1; Fig. 2 shows the dielectric constant es temPera- 3Hoshino, Mitsui, Jona, and pepinsky, phys. Rev. (to be
ture curve; and Fig. 3 gives the variation of coercive published).
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The temperature dependence of the first anisotropy constant for nickel is calculated by averaging the
local anisotropy energy over a J.angevin function. Reasonably good agreement with the experimental
curve is obtained for T/8)0.3.

An estimate has been made of the variation of the local anisotropy constant with changes in volume.

A CCORDING to Zener's theory' the macroscopic which is a solution of the diffusion equation and is
anisotropy energy, determined such as to give the correct average (cost))

=I,(T)/I, (0). Thus Zener obtains
jamng +1(rrl &2 +rr2 rrs +&3 rri )+

Ei(T)=Ei(0){I,(T)/I, (0))",
of a cubic ferromagnetic crystal is the average of a local
anisotropy,

&msg=4(&i rrs +mrs &s +&s &i )+
which for any particular magnetic spin moment results
from the interaction with the orbital moments of its
neighbors, the average taken over the whole distribution
of spin orientations corresponding to a given tempera-
ture. Zener assumes ki to be constant Lki=E'i(0) j and
uses for representation of spin deviations a random-
walk function of the form

(I (T) ) n(n+ii/2

R(g) = P c„l I
I'„(cosi)),

n o(I,(0)=)
i C. Zener, Phys. Rev. 96, 1335 (1954).

a result which 6ts excellently to the experimental curve
for iron, but fails completely in the case of nickel where
one finds approximately Ei(T)=Xi(0){I,(T)/I, (0))".
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FIG. 1. Temperature dependence of anisotropy energy in Fe
and Ni (experimental) and theoretical curve for Boltzmann-
distributed spins I Eq. (1)j.
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Since one cannot see any reason why the proposed
model should hold for iron only, the writer supposes
that the assumption k~= constant and the choice of the
distribution function R(8) should be responsible for the
failure of Zener's theory in nickel.

Now, first of all one has to point out that with a
constant k& any distribution function gives for small
temperatures E~(T)=E~ (0){I,(T)/I, (0))".For a proof
of this fact, which does not need to be given here, the
writer is indebted to Professor Zener. Only the random
walk function, however, seems to yield the tenth power
of I,(T)/I, (0) for all temperatures up to the Curie
point. If instead of the random walk function one
inserts the conventional Boltzmann distribution

one obtains

nI, (T)
f(8) =c exp

kT
cos0 sin0,

10T 35t Tq (T)
E,(T)/E, (0)=1

3 8 9( 8) (8J

XI I (1)
(I,(0) y'

EI,(T) j

(Fig. 1), where 8 is the Curie temperature and where,
according to the Langevin-gneiss formula,

I,(T) (38 I,(T) q T I,(0)
=cothi—

I,(0) (T I,(0) ) 38 I,(T)
(2)

Equation (1) decreases at small T/8's also like
(I,(T)/I, (0)}",but becomes steeper at elevated tem-
peratures and fits well to the experimental nickel curve
for T/8)0. 3. If one inserts in Eq. (1) experimental
values of I,(T)/I, (0), one obtains yet smaller values of
E~(T) 'E~(0). Altogether this shows that the result of
treating the Zener model depends decisively on the
choice of the spin distribution function.

Eebls sic staetibls, it seems desirable now to try
quantum-statistical spin distributions which, as is well

known, yield much better temperature curves of satura-
tion magnetization than classical distributions like
Eq. (2). But such an attempt encounters considerable
difhculties. One obtains the best I, ~s T curves for j= —,',
i.e., one Bohr magneton per atom. Since in this case
there are only two spin orientations, one parallel to the
direction of spontaneous magnetization and one anti-
parallel, Zener's model gives no temperature dependence
of anisotropy energy at all, because e „is equal for
both orientations. This seems to indicate that quantum-
statistical distributions are not adequate for a treat-
ment of our model. This does not necessarily contradict
the fundamental concepts of the model. The fact that
3ust the case j=—,'gives the best saturation curves for
nickel and iron, though neither in nickel nor in iron is
the number of Bohr magnetons per atom one, but

rather 0.6 and 2.2, respectively, makes the assumption
of discontinuous distributions of spin orientation doubt-
ful in general. The assumption that an atomic magnetic
moment in a field can assume only a limited number of
orientations with respect to the direction of the field,
holds rigorously only for free atomic moments, for
example those of gas molecules. In analogy to the
electronic energy levels, however, which broaden when
atoms are brought together to form a crystal lattice,
it should be possible that the orientation ranges of the
atomic magnetic moments broaden too as a consequence
of exchange and spin-orbit coupling with the neighbors.
They may even form a quasi-continuum. The often
successful application of Dirac's exchange-energy ex-
pression,

(3)Eg=A g (s,"sI,),

e.g., in the theory of domain walls, emphasizes the
assumption that —more than is hitherto usual —Eq. (3)
may be considered not only as an operator but in a
sufficient approximation as the real value of the ex-
change interaction energy for any angle between s;
and s~. Then one has a lattice of magnetic spin moments
which are coupled to one another by a sort of elastic
binding and perform oscillations at raised temperature.
This gives a picture of spin waves, not in the somehow
abstract sense hitherto convenient, but spin waves as
wavelike deviations of spin orientation. A "Debye
theory" of these spin lattice oscillations with all its
consequences (e.g., a zero-point oscillation at T=O)
has not yet been developed.

Such a theory may reveal structure-dependent diGer-
ences between the spin distributions of body-centered
iron and face-centered nickel and thus within the frame-
work of Zener's model may explain partially the differ-
ences in the temperature dependences of anisotropy
energy. However, in addition, we should abandon the
assumption k~=const, and consider a different tem-
perature dependence of k~ in Fe and Ni. A temperature
dependence of k~ is necessary from the following
reasons:

(1) kq must depend on temperature since spin-orbit
interaction varies with increasing intensity of atomic
vibrations.

(2) In a number of metals and alloys (for ex-
ample nickel) E~ changes its sign. The average of
k~(n~'n2'+n2'na'+nq'n~'), however, has the same sign as
k~ has. If one sets k~ ——E~(0) a change of sign is not
possible.

(3) Magnetic anisotropy energy varies with increas-
ing temperature also in consequence of lattice dilatation.
During an isotropic dilatation of a cubic crystal, '
e;I,= (AV/3Uo)8;I, (where 8;I, is the Kronecker symbol),
E~ varies as

DEg= bg(d V/Uo),
' R. Seeker and %. Doring, Ferromageetismus (Verlag Julius

Springer, Berlin, 1939), pp. 136, 298.



TEM PERATURE DEPENDENCE OF MAGNETI C ANI SOTROPY

The constant b3 may be obtained from measurements of
volume magnetostriction, but this procedure is dificult
and the uncertainties are often as large as bs itself.
Seeker and Doring' give on page 298, for room tem-
perature,

bs——5.2X10' erg/cm' for Fe,

bs= —1.2X10' erg/cm' for Ni.

It is very remarkable that the volume effect thus
increases magnetic anisotropy (lattice dilatation makes
Eq more positive for iron, more negative for nickel).
Since all anisotropy effects must decrease with in6nitely
increasing distance of the atoms, ba should in both cases
go through zero somewhere above room temperature
(maybe above the Curie point).

With (4) and nF.=3.5X10 '/'K, nN;=4X10 '/'K,
one obtains

dEt/dT= 182 erg/cm' 'K,

dEt/dT= —48 erg/cm' 'K,

as compared with the experimental values

dEt/dT= —750 erg/cm' 'K,

dEt/dT=1000 erg/cm' 'K.

(Ni)

(Fe)

(Ni)

The contribution of vacuum expansion to dEt/dT at
room temperature is therefore not negligible.

As Dr. W. J. Carr has recently pointed out to the
writer, the volume effect on E~ appears to result from a
volume dependence of k~ as well as of the exchange
integral aod therefore of the saturation magnetization. '
These two eGects may not be separated by inspection
of experimental data. In Zener's theory the volume
dependence of the exchange energy may perhaps be
accounted for by inserting the experimental I,(T) as
parameter.

'%. J. Carr (private communication).

where bs is the third magnetoelastic constant. ' If
n= (dV/dT)/Vo is the volume expansion coeiIltcient, we
thus obtain for the thermal isotropic dilatation an
additional temperature dependence of E~.

bEg= b3ebT.

If we write

Et(T)=At{I,(T)/I, (0)}"
(where I=10 for iron, m=21 for nickel), k~ is in both
cases approximately a constant according to experi-
ment. If, however, we give k~ the meaning that it has
in Zener's model, it must depend on volume. This may
be shown in the following way:

b3 t/'p dEg
=Vp

Eg Eg dV

d in)u, ) +-
dt/ I, dt/'

9.6=d ln
~
kt

~
/d(V/Vs)+5. 3 (Fe),

2.1=d ln~ kq~ /d( V/V )a+3.7 (Ni).
(5)

This should provide experimental evidence for the tem-
perature variance of k~. In a rather heuristic manner
we may furthermore conclude from (5) that ~kt~ in-
creases with increasing temperature in I'e and decreases
in Ni.

As long as more is not known about the temperature
variation of 53, it is uncertain whether the differences
between the temperature dependences of Eq(Fe) and
E&(Ni) may entirely be interpreted by means of this
volume effect. But it might be possible that the
temperature variation of the spin distribution (the
exchange integral assumed to be constant) yields a
ratio Ez(T)/E&(0) which (except for very small tem-
peratures) decreases a little faster than {I,(T)/I, (0)}",
and that the comparatively small volume eGect in
nickel results in Et(T)/Et(0)={I,(T)/I, (0)}", the
large volume effect in iron, however, in E~(T)/Et(0)
={I.(T)/I. (0)}"

4W. J. Carr, reference 3. See also Becker and Doring, refer-
ence 2, p. 299.' J. L. Snoek, Physica 4, 853 (193/).

can be brought into the form'

E f ~V/Vs

Et dV/V0 Is ~ cIII J saturation

where E is the bulk modulus. 8(V/Vs)/BII was found
by Snoek' to be (5—5.3)X10 " and 0.95X10 " for
iron and nickel, respectively (at room temperature).

Thus we obtain


