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Magnetoresistance of Holes in GerIIIanium and Silicon with
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The series-expansion method which has been described in an earlier paper has been used to obtain
expressions for the magnetoconductivity coefficients in the case of warped energy surfaces and low magnetic
fields. Using the experimental values of Hall coefBcient and conductivity, and assuming a relaxation time
of the form 7 =le ", where l is a temperature-dependent coe%cient, e is the energy of the carriers, and X is
a parameter which most suitably represents the scattering processes, we have calculated the magneto-
resistance coe%cients in p-type germanium and silicon. The results of these calculations are used to interpret
the experimentally derived directional magnetoresistance effects and also the variation of magnetoresistance
with magnetic held in these materials.

I. INTRODUCTION

'"N an earlier paper' we described a method for
~ - carrying out calculations of the statistical properties
and galvanomagnetic eGects of germanium and silicon
which is valid for weak magnetic fields and takes into
account the warping of the energy surfaces. In that
paper we dealt speci6cally with problems related to
the hole densities, conductivity, effective masses, in-
trinsic carrier concentration, and Hall coefficient. We
shall now apply similar techniques to the interpretation
of the directional elects of magnetoresistance in p-type
germanium and silicon and also to the variation of the
magnetoresistance with magnetic field.

II. MAGNETOCONDUCTIVITY COEFFICIENTS

The calculation of magnetoresistance requires a
knowledge of the magneto conductivity coefFicients.
The expressions for these coefFicients which are de6ned
in the manner of Abeles and Meiboom' are summarized
in Appendix A. We need two sets of such coefficients,
one set for the heavy holes and the other, for light holes.
We shall assume that the total conductivity is the
simple sum of these two contributions. For our purposes
we shall ignore interband scattering except in that it
may be described by a suitable energy dependence of
the relaxation time.

Calculations of magnetoconductivity coeScients have
been made assuming that the energy e can be expressed
as a function of the wave vector k in the following
form

A2

{+$2~$+2124+C2(1e2$ 2+/ 2$ 2+$ 2$ 2)71} (1)
2mp

and that the expressions under the radical can be
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expanded to give

A2k2
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Here the plus sign is associated with the light holes and
the minus sign, with the heavy holes. The k coordinate
system is coincident with the cubic axes, esp is the mass
of the free electrons and 2, 8, and C are constants
determined experimentally'~ to have the following
values:

For germanium: A =13, 8=8.7, and C=11.4;
for silicon: 3=4.1, 8=1.4, and C=3.7.

8' and y are dered in terms of 3, 8, and C in the
following manner:

8'—= (82+-'C2):

7=W-'2C2/8'(A&8').

For the relaxation time v- we have assumed the form

v-= le—~,

where l is a constant and X is a parameter which is
chosen to represent the type of scattering. Since the
scattering is actually due to a combination of processes,
one needs a combination of terms. For example, when
both lattice and impurity scattering need be considered,
the relaxation time is given by

1/r=1/rI+1/r;,
where rg and ~; are the lattice and impurity scattering
terms, respectively.

The method of carrying out the integrations which
are necessary to evaluate the conductivity coefficients
has already been described in our previous paper, '
where expressions are given for the hole density P,

4 Dexter, Zeiger, and Lax, Phys. Rev. 95, 557 (1954).' R. N. Dexter and B. Lax, Phys. Rev. 96, 223 (1954),
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zero-field electrical conductivity 0.;;, and Hall con-
ductivity 0-;;& coe%cients. The magnetoconductivity
coeKcients are evaluated by using the same general
procedure. From symmetry considerations it can be
shown that there may be a maximum of four diferent
nonvanishing magnetoconductivity components for any
cubic crystal. ' Actually, however, measurements depend
only on the sum of 0-,» and a.~,„so that measurements
are determined by at most three independent param-
eters. For the holes, whose energy surfaces are warped
spheres centered at k =0, these become the following:

o„„=—0.296ay2(1 —0.4295y+0 0188y2+0.0103''
+0.00249y4+0.000474ys+0. 000085ys+ ~ )

o' »y 0 213a(1 0,2214y+0 3838y2 0 0167ys

+0.00755p4+0.000661''—0.00019&ye—~ )
o,yy, ——0.148ay2 (same y series as o.„„), (5)

o.y.„=0.213m (1—0.0500'—0.0469y2+ 0.0040''
—0.00063''+0.000114ys+0.000004''+ ~ .)

where

2re' exp(e„—eF)/ET
a= P(ET)1-»r(-s, —3) ) (A+8')1,

h'c2 (2mp) '*

e, is the energy at the top of the valence band, t.p is the
Fermi energy level, E is Boltzmann's constant, , 7 is
the temperature, and 1'(22) represents the gamma
function.

The number of terms in the above series that is
necessary in any particular case depends on the value
of the anisotropy parameter y. For the heavy holes in
germanium, where y (=2.1) is relatively large, terms
above the sixth term contribute less than two percent.

Once these conductivity coefficients have been found
for both the heavy and light holes, the current density
J; can be written as

+i +ij+j++ij@jHi++ij imEjHLHm' '
y (6)

where the Z coefficients represent the sum of the in-
dividual 0- coefficients for the two kinds of holes, and 8,.
and II~ are the electric and magnetic field components;
respectively. Then following Abeles and Meiboom, Eq.
(6) may be inverted to give the usual Hall and magneto-
resistance coefficients in the inverse expansion.

E;=A;;J;+4;,iJ;Hi+A, , i J,HiH„+ . (7)

The h. coefficients in Eq. (7) are determined in terms of
the Z coeKcients by substituting Eq. (7) into Eq. (6)
and equating terms of like orders in II. For reference
these A' s, although already published, ' are given in
Appendix 3.

The magnetoresistance coefficients are defined as'

p —
pp 1 (K&;)

7

ppH' H2 (E,J,)rr=p

' G. L. Pearson and H. Suhl, Phys. Rev. 85, '/68 (1951).

where p and po are the resistivities with and without
the magnetic field. For the case in which the current
and magnetic Geld are along cubic axes, examina-
tion of Eq. (7) shows that the longitudinal magne-
toresistance coeKcient is

Mipp/H'= —Z, „/o.p, (8)

where o.p
——1/pp, and that the transverse magnetoresist-

ance coefhcient is

Lyly (Eyyzl

(~p) (9)

Miyo 1
$&xyyx+&2:yyy (&yyyy+&yyzy) j

2&o
2

(10)

and in general, independent of specific model, Mipp'"/H'
=Mire /H .

III. COMPARISON WITH EXPERIMENT

The experimental data available at the present time
for comparison with theory are somewhat limited,
particularly in the region of low fields for which the
theory is most suitable. Consequently, we shall compare
the results of our analysis with the measurements
reported by Pearson and Suhl' on p-type germanium
at 77'K and 300'K and with the data of Pearson and
Herringr on.P-type silicon at 78'K.

Let us consider the magnetoresistance coeKcients in
germanium. As indicated previously, these coe%cients
depend strongly on the relaxation time v. Assuming
that v =le ", it is evident that for calculations one needs
to know four quantities, namely / and X for the two
kinds of holes. The simplest assumption that can be
made concerning the relaxation time is that it is inde-
pendent of energy and the same for both the light and
heavy boles. One might use this as an approximate
representation of the situation at 77 K where actually
the scattering consists of both lattice and impurity.
In order to determine a suitable value of v for describing
the situation, the relaxation time was determined by
matching the largest coefFicient, namely Mippeie/H2,

with the experimental data; this gave a value for

2 G. L. Pearson and C. Herring, Physics 20, 975 (1954).

For the transverse case superscripts on the magneto-
resistance coefficient denote the magnetic-field direction
and the subscripts the current direction. ' The coeffi-
cients for directions other than cubic may be found by
transforming the Z's to other coordinates. In this
manner we 6nd, for example, that

i
Pyyyz+&yyyy+ (& gyyy+&yysy) 7 y
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TAm, E I. Summary of low-field magnetoresistance
calculations in germanium at 77'K.

Coefficient

Energy
Experimental independent Both holes

(Pear son relaxation impurity
and Suhl) time scattered&

Light hole,
impurity
scattered.

Heavy hole,
lattice

scatterede

(M1pp/H&) X10P
(M11p/H2) X lop
(MlppP1P/H2) X10P
(M11p 1p/H2) X10'
Rp X10&

0.14d
2.0

30.4
27.0
4.4

0.093
3.25

30.4
27.4
2.95

0.098
3.95

30.4
27.0
2.2

0.096
3.49

30.4
27.0
2.1

a 71.= TH =1.03 X10 ~& sec.
b Tl, =4.0 X10» SeC, ra =4,9 X10» SeC,
e TL, =4.7 X10» sec, rH =0.86 X10» sec.
d See reference 2, Table II.

TAar.E II. Summary of Iow-6eld magnetoresistance
calculations in germanium at 300'K.

7 = 1.03&10 "sec. Using this value of relaxation time,
the other coefficients were calculated. The results are
given in Table I; it is seen that the fit in this case is
reasonable and that semiquantitatively the anisotropy
features of the magnetoresistance coefficient are fairly
well described. Included in Table I are results for other
assumptions concerning the type of scattering. In these
cases it is assumed that the relaxation times for the two
holes are not necessarily equal. In order to obtain the
appropriate values of relaxation parameters the theo-
retical expressions for the two transverse magneto-
resistance coefficients are equated to the experimental
values. This was the scheme utilized when impurity or
lattice scattering was the principal mechanism for either
one or both carriers. The energy-independent scattering
time which in essence is a phenomenological approxima-
tion to the true situation seems to give a slightly better
description than the others when only one type of
scattering is considered for each of the holes.

In Table II we give a comparison between theory and
experiment for germanium at 300'K. Following the
argument proposed by Brooks' we have assumed in the
case of lattice scattering that the relaxation time for
both holes is the same. We have for purposes of com-
parison also used an energy-independent relaxation
time. Both sets of calculations again account semi-
quantitatively for the anisotropy, with lattice scattering
as one might expect giving a better value for Eo, the
Hall coe%cient.

We have made a similar comparison for silicon at
78'K; the results are given in Table III. Without a
knowledge of the Hall coefficient, it is difficult to calcu-
late the scattering parameters for each of the carriers
separately. Partly because of this and partly because of
the experience in germanium where it was possible to
make calculations and the 7-'s came out nearly equal,
we have made the simplifying assumption that even
for the impurity case the average relaxation times for
light and heavy holes are equal. Here again the most
suitable value for the relaxation time was obtained by
equating the experimental value of Mrw"'/H' to the
theoretical expression. We have obtained again fairly
good semiquantitative agreement between theory and
experiment with a slightly better fit for the assumption
of an energy-independent relaxation time.

Pearson and Suhl also give the variation of magneto-
resistance with magnetic held and this variation for the
coefficient Mqse "/H' at 77 K is given in Fig. 1. It is
seen that Mres"'/H' starts out at some value at H=O
and then decreases, finally leveling off when the mag-
netic field reaches about 4000 oersteds. At low fields
both the light and heavy holes are eGective in the
magnetoresistance. As the field increases the light holes
move in tighter orbits and their contribution to the
magnetoresistance decreases. We have made calcula-
tions of the changes in the transverse magnetoresistance
coefficient with magnetic 6eld considering that this
change is due primarily to the light holes. In our first
calculation we assumed spherical energy surfaces for
the light holes and for both holes a constant relaxation
time v = 1.03&&10 "sec (the value used in the calcula-
tion of Table I).This value of r gave the curve labeled 1
in Fig. 1.Abetter fit (curve 2) was obtained by choosing
a lower value for r(=0.88&(10 "sec). The third curve
(curve 3) shows the effect of an approximate calculation
which considers the slight warping of the energy surfaces
of the light holes (v=0.88)&10 "sec). It will be noted
that the warping of the light hole sects primarily the
low-field end of the magnetoresistance curve, the high-
6eld end being determined principally by the heavy
holes.

Calculations of M~ssem/H' as a function of the mag-
netic Geld have also been made assuming constant ~ for
the light hole and either lattice or impurity scattering

Coefficient

(M1pp/KP) X1OP
(M»p/K2) X1O'
(MippP1P/HP) X10P
(M11p11p/H2) X10p
Rp X104

Experimental
(Pear son

and Suhl)

0.04
0.21
1.3
1.3
8.4

a r L, =TJI =1.51 X10» sec.
b Tg =TH =2.11 X10» sec.

Both holes
lattice

scattereda

0.004
0.12
1.3
1.2
8.8

Energy-
independent

relaxation
timeb

0.004
0.14
1.3
1.2

10.3
Coefficient

(Mlpp/H2) X10p
(M11p/H ) X1op
(M1pp /H ) X10P
(Mglppp&/H2) X10p

Experi-
mental

Pearson and
Herring

(B=4400
gauss)

0.5
0.5
1.6
2.0

Energy-
independent

relaxation
timea

0.018
0.44
1.6
1.6

Both holes
impurity

scatteredb

0.012
0.3
1.6
1.6

Both holes
lattice

scattered'

0.014
0.35
1.6
1.6

TABLE III. Summary of magnetoresistance calculations
in silicon at 78'K.

8H. Brooks, Advances &s E/ectrorlics and Electron Physics
(Academic Press, inc. , New York, 1955), Vol. Vll, p. 152.

a TQ rH =7.7 X10» sec.
b Tl. =TH =2.63 X10» sec.' Tg =TH =5,14X10» sec,
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for the heavy hole, which throughout this range of
magnetic ield is in the low-6eld region. The results in
either of these two cases, however, were not as good as
the case where an energy-independent v was assumed
for the heavy hole. This seems to indicate that the
scattering is due actually to a combination of mecha-
nisms where the relaxation time is given as in Eq. (4).
Assuming that the heavy holes are scattered mainly by
the impurities but with some small contributions from
the lattice, the expression for the relaxation time
becomes

r=l, et—(1'/fr) e"'

I
X
ILI
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IL.
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ILI
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FIG. 1.Variation of the transverse magnetoresistance coe%cient
with magnetic field at 77'K in Ge. Points are taken from data of
Pearson and Suhl. Curves are obtained from our calculations and
are labeled (1), (2), (3), and (4). (1) Spherical energy surfaces for
light holes, warped energy surfaces for heavy holes, and energy-
independent relaxation time (v = 1.03&(10 " sec) for both.
(2) Spherical energy surfaces for light holes, warped energy
surfaces for heavy holes, and energy-independent relaxation time
(r=0.88X10 '2 sec). (3) Warped energy surfaces and energy-
independent relaxation time (~=0.88)&10 " sec) for both light
and heavy holes. (4) Spherical energy surfaces and energy-
independent relaxation time (r= 1.05X10 " sec) for light holes,
but warped energy surfaces with impurity scattering (7;=1.03
)&10 ' sec) and some lattice contribution (7g=1.43)&10 " sec)
for the heavy holes.

Curve 4 in Fig. 1 is a plot of the results by assuming
values for /; and l~ which give ~;= 1.03)(10 '4 sec and.
7~=1.43&10 " sec for the heavy holes, and spherical
energy surfaces and constant g——1.05)(10 ' sec for the
light holes. It is seen that curve 4 gives the best 6t to
the experimental data. The assumption of energy-
independent relaxation time for the light hole is only
an approximation. A more exact representation for the
light holes would be to assume that they are partly
impurity and partly lattice scattered and to include the
warping which although small is quite important as
may be seen by a comparison of curves 2 and 3. Such
a calculation may give a good quantitative agreement
with experiment but is quite formidable and we have
not attempted it.

The variation of magnetoresistance with magnetic
field at 300'K is also given by Pearson and Suhl. Their

1

t 000
l I

2000 3000
MAGNETIC FIELD (oersted ~ )

I

4000 SOOO

FIG. 2. Variation of the transverse magnetoresistance coeKcient
with magnetic field at 300'K in Ge. Points are taken from data of
Pearson and Suhl. Curves are obtained from our calculations and
are labeled (1), (2), and (3). (1) Spherical energy surfaces for
light holes, warped energy surfaces for heavy holes, and energy-
independent relaxation time (~=2.29' 10 '3 sec) for both.
(2) Spherical energy surfaces and lattice scattering (T=1.89
X10 "sec) for both. (3) Spherical energy surfaces for light holes,
warped energy surfaces for heavy holes, and lattice scattering
(f=1.64X10 '3 sec) for both.

experimental points along with three calculated curves
are shown in Fig. 2. Curve 1 was obtained by assuming
an energy-independent relaxation time y= 2.29)(10-"
sec, spherical energy surfaces for the light holes and
warped energy surfaces for the heavy holes. Using the
expressions of Willardson, Barman, and Beer,' i.e.,
assuming lattice scattering and spherical energy surfaces
for the two types of holes with f.=1.89X10 " sec,
curve 2 was found. Curve 3 shows the results for the
assumption of spherical energy surfaces for the light
hole, warped energy surfaces for the heavy hole, lattice
scattering for both holes, and f =1.64X10 "sec. It is
seen that curve 3 gives the best 6t to the experimental
points.

IV. DISCUSSION

We have calculated the directional eGects of magneto-
resistance in p-type germanium and silicon by assuming
anisotropic energy surfaces, whose parameters were
determined from microwave cyclotron resonance meas-
urements at O'K and by making simplifying assump-
tions about the scattering mechanisms. Thus, we have
been able to account semiquantitatively for the ani-

sotropy in the magnetoresistance. At 77'K in both
germanium and silicon an energy-independent relaxa-
tion time gave a good approximation to the true
situation. This may be fortuitous since for these ma-
terials in this temperature range the energy dependence
due to lattice scattering (rr ——4:)" and impurity

' Willardson, Barman, and Beer, Phys. Rev. 96, 1512 (1954).
' This assumed energy dependence gives the mobility IJ. T '5.

Since experimentally @~7 "in the lattice-scattering region, this
assumed energy dependence is not strictly correct. H. Ehrenreich
and A. W. Overhauser )Phys. Rev. 104, 649 (1956)g are able to
account for the correct temperature dependence in germanium by
including optical as well as acoustical modes if they assume a
Debye temperature 0=300'K.
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scattering (0;=EE&) may compensate one another. In
principle one should really consider a combination of
impurity and lattice scattering for each of the carriers;
this, however, is a tedious calculation and was not our
immediate objective. Similar calculations in p-type
germanium at 300'K were carried out with lattice
scattering providing a slightly better fit than constant r
as one might expect.

Using the assumptions discussed above, we have also
calculated the variation of magnetoresistance with
magnetic field at both 77'K and 300'K in germanium.
At 77'K we found the best fit by assuming an energy-
independent relaxation time for the light holes, a mix-
ture of' impurity and lattice scattering for the heavy
holes, and that the change in the magnetoresistance
with magnetic Geld is due primarily to the light holes.
A good 6t at 300'K was obtained on the assumption
of lattice scattering for both types of holes. In most of
these calculations of the variation of magnetoresistance
with magnetic 6eld we have assumed spherical energy
surfaces for the light hole. This introduces an error at
very low 6elds. Even though the warping of the light
holes is small, neglecting it in germanium lowers the
transverse magnetoresistance in the limit of zero 6eld
by about fifteen percent.

The one disturbing feature of these calculations is
that the calculated values of the longitudinal coe%cient
Miop/H' are consistently lower than the experimental
values both for germanium and silicon. Similar results
have been found for germanium by Goldberg, Adams,
and Davis. "As the temperature increases the agree-
ment is less satisfactory. We have also made com-
parisons with recent experimental results of Long" on
higher resistivity silicon in which all the coefficients
give good agreement again with the exception of
M $00/EP. As can be seen from an examination of
Eqs. (5) and (8), it is the longitudinal magnetoresistance
coeScient along a cubic axis which is most sensitive to
anisotropy since its leading term goes as y'. The
difhculty here is that magnetoresistance is really a
measure of ratio r/m rather than the mass jN, or
curvature of the energy surfaces, so that one is not
really able to separate the anisotropy of the scattering
from that of the energy surfaces. In other words, we
may have an anisotropy in the scattering as well as in
the energy surfaces. Apparently the anisotropy of 7/te
is increasing with temperature.

The significance of the calculations carried out in
this paper is the fact that one can semiquantitatively
account for the anisotropy of the magnetoresistance in
p-type germanium and silicon by using the parameters
which define the degenerate warped energy surfaces. In
this instance we have used the results of cyclotron
resonance measurements to demonstrate the situation.
"Goldberg, Adams, and Davis, Phys. Rev. 105, 865 (195/)."G. D. Long (private communication).

APPENDIX A. CONDUCTIVITY COEFFICIENTS

The single-energy-surface conductivity coe5cients
are de6ned in the following manner: The current density
ji per energy surface may be expressed as

gi ttij~j+&ij I+jIIl+&ij lm~j+lIIm+ ' ' '
t

where
Clfp Clp ClE

d VI„
4n-'h' ~ Be Bk; Bk,

Bfp BE BE B ( BE)

4m'k'c ~ Bc Bk; Bk, Bk, ( Bkj)

4m'h'c' &

f Bfp BE BE B

Be Bki Bk„Bk,

BE B lt BE)
X r

~

7'
I EmrtpltttdVk. Bkt Bk E Bk,)

In the above, r is the relaxation time, fp is the unper-
turbed distribution function, e is the energy, d VJ, is an
element of volume in k space, and the remaining symbols
have their usual meaning; the Einstein summation
notation is used.

APPENDIX B. MAGNETORESISTANCE
COEFFICIENTS

The magnetoresistance coeKcients obtained by sub-
stituting Eq. (7) into Eq. (6) and equating like orders
in B, but neglecting terms higher than H', are

A;j=8;j/00,

A; jl= —stijl/ '= tT—0+OEijl,

~ijim ~ijim ~ial~a jm
Op

2
Op

However, in principle, one could perform similar calcula-
tions from magnetoresistance data on new materials
with the zinc blende structure, when cyclotron reso-
nance experiments are not feasible, and determine the
parameters of the energy surfaces within the limitations
of the theory.
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