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Evaluation of Transport Integrals for Mixed Scattering and Application
to Galvanomagnetic Effect*
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The Johnson-Whitesell evaluations of the conductivity integrals for mixed scattering have been extended
over larger ranges of magnetic field and impurity scattering parameters to allow their application to the
high-mobility semiconductors. Values are given for the first thermoelectric integral. Use of the magnetic
field dependence of galvanomagnetic and thermomagnetic properties to study charge-carrier scattering is
discussed. Applications of the functions in the analysis of Hall effect, Corbino magnetoresistance, and
thermomagnetic phenomena as functions of magnetic field are illustrated.

I. INTRODUCTION

A N approximate determination of the extent of
impurity scattering present in a semiconductor

has usually been accomplished by comparing the
mobility measured on the specimen with values which
have been determined on other specimens as a function
of impurity concentration and extrapolated to the
limit of zero impurity concentration. ' When applied to
new semiconductors this procedure involves extensive
experimental data and is, of course, subject to uncer-
tainties arising from the fact that specimens produced
with different impurity contents may also differ in
other significant aspects. For example, there can be
variations in crystal perfection, degree of impurity
compensation, and so forth. For obtaining information
on charge carrier scattering, there are therefore distinct
advantages in devising measurements and analyses
which can be carried out on a single specimen. Certain
possibilities are galvanomagnetic and thermomagnetic
phenomena. In the weak magnetic field region, the
conductivity involves averages of the first power of the
relaxation time; the Hall effect involves the square of
the relaxation time, and the magnetoresistance involves
the cube of the relaxation time. ' In the strong-field
region, however, the cross-e6ect coefficients become
independent of the relaxation time. ' Hence, it follows
that measurements of electrical properties as functions
of magnetic field can yield helpful information. 4

In the past, it has been difficult to realize the strong-
field region with ordinary laboratory magnetic fields.

*The research carried on at Battelle was supported by the
U. S. Air Force through the Air Force Once of Scientific Research
of the Air Research and Development Command.' See, for example: E. M. Conwell, Proc. Inst. Radio Engrs.
40, 1327 (1952); M. B. Prince, Phys. Rev. 92, 681 (1953).

2 See, for example: Harvey Brooks, Advances in Electronics and
Electron I'hysics (Academic Press, Inc. , New York, 1955), Vol. 7,
p. 128.' In the case of quadratic energy surfaces this is apparent from
the way in which the relaxation time is present in the integrands,
namely, r2(1+~02rrl ' where coo ——eH/rrl*c.

An example is the analysis of multiband contributions to
transport phenomena. See Willardson, Harman, and Beer, Phys.
Rev. 96, 1512 (1954).

In the case of the high-mobility semiconductors, which
are now being studied, this problem no longer exists
since it is actually the dimensionless parameter pH
which enters into the equations for the galvanomagnetic
effects. However, the analysis of the results when both
lattice and impurity scattering occur is impeded by
the fact that the transport integrals cannot be evaluated
analytically. Numerical evaluations were initially
carried out by Johnson and Whitesell, ' but the tabu-
lation is not sufficiently extensive to encompass the
region from weak to strong magnetic fields nor to
include sufficient degrees of impurity scattering. It is
for this reason that the Johnson-Whitesell calculations
were extended.

II. DISCUSSION OF THE FUNCTIONS

The principal functions are defined as follows:

r" x'e *(x'+p)dx
~(p,v) —=

(x'+p)'+~xa

L(P,v)=-
+~ 'e (x'+p)'+px'

The magnetic field parameter p is defined by

V—=—'s~(~i'II)', (3)

' V. A. Johnson and W. J. Whitesell, Phys. Rev. 89, 941 (1953).
The notation is such that J& and J2 are identical, respectively,
with our E and -', m.&L. Caution must be used to avoid the typo-
graphical errors, some of which are apparent in comparing
Tables I and II with IV.

and the impurity scattering parameter p has been
approximated4 ' by

p =6p I'jar'.

A discussion concerning this approximation is given in
Sec. IV.

For p=0, the integrals E and L can be evaluated
analytically in terms of exponential integrals and error
functions, while for y =0, the solutions involve sine and
cosine integrals and the Fresnel integrals. Power series
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"x'e ~(xs+p)dx
TwnrE I. Numerical evaluations of the transport integrals, E(P,p) =
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0.3
1
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30 000

100 000
300 000

0.0001

0.99866
0.99673
0.99017
0.97260
0.92010
0.81003
0.59637
0.35877
0.15634
0.60768
0.19424
0.66012
0.19941
0.66603
0.19995
0.66663
0.20000
0.66669

10

0.0003

0.99802
0.99613
0.98967
0.97228
0.91998
0.81003
0,59641
0.35880
0.15636
0.60774
0.19426
0.66019
0.19943
0.66610
0.19997
0.66670
0.20002
0.66676

30

0
0
0
0
0
0
0
0
0
1
1
2
2
3
3

4
5

0.001

0,99616
0.99434
0.98809
0.97112
0,91948
0.80999
0.59654
0.35892
0.15641
0.60795
0,19432
0.66041
0,19950
0.66633
0.20004
0.66693
0,20009
0.66699

100

0.003

0.99191
0.99019
0.98426
0.96803
0.91786
0.80969
0.59687
0.35923
0.15656
0.60855
0.19452
0.66107
0.19970
0.66698
0.20023
0.66758
0.20029
0.66764

300

0.01

0.98056
0.97901
0.97366
0.95886
0.91208
0.807950, 0.59768

0 0.36022
0.15707
0.61062
0.19519
0.66336
0.20039
0.66926
0.20092
0.66986
0.20097
D.66992

1000

0.03

0.95713
0.95581
0.95122
0.93845
0,89717
0.80147
0.59865
0.36262
0.15844
0.61631
0.19707
0.66983
0.20236
0.67578
0.20288
0.67639
0.20293
0.67645

3000

0.1

0.77815
0,59655
0.36832
0.16258
0.63476
0.20333
0,69175
0.20913
0.69856
0.20972
0.69923
0.20979
0.69930

10 000

0.90350
0.90250
0.89902
0.88924
0,85694

0.3

0.81311
0.81243
0.81008
0.80346
0.78117

0.37513
0.17136
0.68013
0.22007
0.75214
0.22790
0.76277
0.22921
0.76439
0.22936
0.76456

30 000

0.72433
'0.58014

0.65645
0.65610
0.65489
0.65145
0.63972
0,60851
0.52051
0.37060
0,18756
0.79228
0.26669
0.93383
0.28749
0.97275
0.29513
0.98934
0.29756
0.99264

100 000

0.47213
0.47199
0.47150
0.47008
0.46521
0.45188
0.41105
0.32838
0.19696
0,95498
0.35793
0.13360
0.43249
0.15069
0.46707
0.15921
0,48641
0.16361

300 000

0.001
0.003
0.02
0.03
0.1
0.3
1
3

10
30

100
300

1000
3000

20 OOD
30 000

100 000
300 000

0.27093
0.27090
0.27078
0.27043
0.26921
0.26582
0,25470
0.22832
0.17115
0.10541
0.49493
0.21557
0.78771
0.29710
0.97946
0.34657
0.20881
0.37434

0.13406
0.13405
0.13403
0.13397
0.13376
0.23316
0.13111
0,12573
0.11100
0.86274
0,53506
0.29096
0.12876
D.SS407
0.20323
0.77216
0,25646
0.91214

0.51246
0.51145
0.51144
0.51138
0,51120
0.51069
0,50891
0.50395
0.48799
0,45112
0,37141
0,26983
0.16031
0.86430
0.38568
0,16806
0.62466
0.23968

0.18820
0.18820
0.18820
0.18819
0.18818
0.18815
0.18803
0.18769
0.18653
0.18341
0.17420
0.15579
0.12248
0.85734
0.49547
0.263 24
0.11630
0.50405

1
1
1
1
1
1
1
1
1

1
1
2
2

2
3

0.58847
0,58847
0.58847
0.58847
0.58846
0.58845
0.58841
0.58829
0.58786
0.58664
0.58251
0.57165
0.54079
0.48191
0.37888
0.26665
0.15566
0.83535

0.19868
0.19868
0.19868
0.19868
0.19868
0.19868
0.29868
0.29868
0.19866
0.19861
0.19843
0.19794
0.19627
0.19198
0.18022
0.15877
0.12288
0.85211

0.59880
0.59880
0.59880
0.59880
0.59880
0.59880
0.59880
0.59880
0.59880
0.59878
0.59873
0.59859
0.59810
0.59671
0.59203
0.57993
O.S4654
0.48475

0.19987
0.19987
0.19987
0.19987
0.19987
0.19987
0.19987
0.19987
0.19987
0.19987
0.19986
0.19986
0.19984
0.29979
0,19960
0.19908
0.19734
0,19289

0.59988
0.59988
0.59988
0,59988
0.59988
0.59988
0.59988
0.59988
0.59988
0.59988
0.59988
0.59988
0.59987
0.59986
0.59981
0,59966
0.59916
0.59775

4
4.
4

4

4
4
4

4.

4
4

0.19999
0.1.9999
0.19999
0.29999
0.19999
0.19999
0.19999
0.19999
0.19999
0.19999
0.19999
0 19999
0.19999
0.29999
0.19998
0,19998
0.19996
0.19991

& Each entry should be divided by that power of 10 indicated by column Pf.

TABLE II. Numerical evaluations of the transport integrals, L(P,y) =

0.001
0,003
0.01
0.03
0.1
0.3
1
3

10
30

100
300

1000
3000

10 000
30 000

100 000
300 000

0.0001

0.99506
0.99186
0.98118
0.95409
0.88057
0.74464
0.51569
0.29278
0.12173
0.46257
0.14638
0.49588
0,14963
0.49959
0.14996
0.49996
0.15000
0,50000

10

0.0003

0.99080
0.98782
0.97779
0.95175
0.87945
0,74421
0.51558
0.29276
0.12173
0.46257
0.14638
0.49588
0.14963
0.49959
0.14996
0.49996
0.15000
0,50000

30

0.001

0.98091
0.97824
0.96915
0.94502
0.87574
0.74270
0.51519
0.29267
0,12172
0.46256
0.14637
0.49588
0,14963
0.49959
0.14996
0.49996
0.)5000
0.50000

100

0.003

0.96272
0,96039
0.95240
0.93083
0.86667
0.73856
0.51406
0.29243
0.12168
0.46251
0.14637
0.49587
0,14963
0.49959
0.14996
0.49996
0.15000
0,50000

300

0.01

0.92332
0.92144
0.91497
0.89720
0.84223
0.72568
0.5101S
0.29156
0.12157
0.46236
0.14635
0.49586
0.14962
0.49959
0.14996
0.49996
0.15000
0.50000

1000

0
0
0
0
0
0
0
0
0
1
1
2
2
3
3
4
4
5

0.03

0.85773
0.85632
0.85142
0.83781
0.79432
0.69617
0.49969
0.28905
0.12121
0.46188
0.14631
0.49580
0.14962
0.49958
0.14996
0.49996
0.15000
0.50000

3000

0
0
0
0
0
0
0
0
0
1
1
2
2
3
3
4
4
5

0.1

0.73878
0.73787
0.73472
0.72588
0.69678
0.62660
0.46921
0.28056
0.11990
0.46002
0,14611
0.49555
0.14959
0.49956
0.14996
0.49996
0.15000
0.50000

10 000

0
0
0
0
0
0
0
0
0
1
1
2
2
3
3
4

5

0.3

0.58234
0.58183
0.58006
0.57506
0.55827
0.51561
0.40861
0.25965
0.11609
0.45399
0,14544
0.49476
0.14950
0.49944
0.14995
0.49995
0.15000
0,50000

30 000

0
0
0
0
0
0
0
0
0
1
1
2
2
3
3

4
5

0.37767
0.37747
0.37675
0.37471
0.36776
0.34929
0,29740
0.20972
0.10431
0.43225
0.14258
0.49043
0,14901
0.49873
0.14987
0.4998S
0.14999
0.49999

100 000

0
0
0
0
0
0
0
0
0
1
1
2
2
3
3
4
4
5

0,20341
0,20335
0.20312
0.20248
0.20028
0.19425
0.17583
0.13881
0.80950
0.37677
0,13381
0.47602
0.14722
0.49588
0.14951
0.49930
0.14992
0.49991

300 000

0.001
0.003
0.01
0.03
0,1
0.3
1
3

10
30

100
300

1000
3000

10 000
30 000

100 000
300 000

0.74633
0.74622
0.74584
0.74475
0.74095
0.73034
0.69575
0,61438
0.44239
0.25453
0,10780
0.42337
0.13900
0.48212
0.14765
0.49643
0.14955
0.49933

0.21083
0.21082
0.21077
0.21065
0.21022
0.20900
0.20487
0.19412
0.16544
0.12001
0.65850
0.31116
0.11709
0.43836
0,14084
0.48474
0.14796
0,49684

0.35849
0.35849
0.35847
0.35841
0.35822
0.35766
0.35573
0.35040
0.33354
0.29625
0.22285
0.14218
0.70587
0.31864
0.11759
0.43796
0.14060
0.48411

0.53536
0.53536
0.53535
0.53533
0.53527
0.53509
0.53448
0.53273
0.52679
0.51115
0.46736
0.38845
0.26739
0.15918
0.75111
0.32992
0.11972
0.44219

3
3
3
3
3
3
3
3
3
3
3
3
3
3

4

5

0.55197
0.55197
0.55197
0.55197
0.55196
0.55194
0.55186
0.55162
0.55079
0.54847
0.54069
0.52098
0,46954
0.38410
0.26119
0.15504
0.73412
0.32427

4

4

4
4
4
4
4

4
5
5

0.64109
0.64109
0.64109
0.64109
0.64108
0.64108
0.64107
0.64103
0.64091
0.64056
0.63934
0.63592
0.62468
0.59717
0.52940
0.42394
0.28110
0.16345

0.58644
0.58644
0.58644
0.58644
0.58644
0.58644
0.58644
0.58644
0.58643
0.58640
0.58629
0.58598
0.58492
0.58295
0.57217
0.54819
0.48870
0.39488

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

0,65469
0.65469
0.65469
0.65469
0.65469
0.65469
0.65469
0.65469
0.65469
0.65468
0.65467
0.65463
D,65450
0.65411
0.65277
0,64004
0.63686
0.60746

0.59020
0.59020
0.59020
0.59020
0.59020
0.59020
0.59020
0.59020
0.59020
0.59020
0.59020
0.59020
0.59019
0.59016
0.59004
0.58973
0.58864
0.58558

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

0.65609
0.65609
0.65609
0.65609
0.65609
0.65609
0.65609
0.65609
0.65609
0.65609
0.65609
0.65609
0,65609
0.65609
0.65607
0.65603
0.65590
0,65551

& Each pntry shouM be Q&viewed by that power of 10 indicated by column N'.
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v/P

0.1
1

10
100

1000

0.01

1..90230 0
1.40340 0
0.43726 0
0.57808 1
0.59861 2

0.1

1.85634 0
1.39770 0
0.44235 0
0.58651
0.60755 2

1.58168 0
1.29836 0
0.47718 0
0.66584 1
0,69581 2

10 N

0.83600 0
0.78202 0
0.48568 0
0.11392 0
0.14591 1

a Each entry should be divided by that power of 10 indicated by column
N.

solutions, either in P or in v, are not possible since P =0
and p =0 are singular points and the derivatives do not
exist at these points. A single exception is the first
derivative with respect to y, which does exist at y=0.
One can therefore write

/BEq
E(p,v)=E(p,o—)+ I

EW &,=2

|'BI.)
«P,v)=«P, 0)+ I

(5)

One differentiation under the integral sign is valid,
and the results with p=0 can again be evaluated
analytically in terms of sine and cosine integrals and
the Fresnel integrals. However, since the equations
designated (5) are valid to approximately five signifi-
cant figures for y=0.001 and 0.003, these derivatives,
as well as the functions E(P,O) and L(P,O), can be
obtained with adequate accuracy through use of those
two entries in the tables. In this way, the tables can be
extended to include any value of p between 0 and 0.003.

TABLE III. Numerical evaluations of the thermoelectric power

(,)
"x4e ~(x'+P)dx

function, E'&'& (P,v) =
Table I gives numerical evaluations of function (1)

for values of P from 0.0001 to 300 000 and values of v
from 0.001 to 300 000 in multiples of approximately 3.
A similar evaluation of function (2) is given in Table II.

The thermoelectric function is defined by

I
"x'e-*(x2+p)dx

E(')(pv)
~ 2 (x'+p)'+vx'

Only a limited number of evaluations of E") were
done. In many cases, however, the ratio E&2&/E is a
much more slowly varying function than is X&2).

Therefore, a fairly accurate interpolation to include
values of v or p for which the E(p,v) are tabulated is
possible.

Table III gives numerical evaluations of function (6)
for values of P from 0.01 to 10 and v from 0.1 to 1000
in multiples of 10.

III. APPLICATION OF THE FUNCTIONS

A. Ha11 Effect

Use of the tabulations to analyze Hall effect and
magnetoresistance in a semiconductor of simple band
structure has already been discussed by Johnson and
Whitesell. ' In the case of degenerate bands where two
bands contribute to the extrinsic conduction processes,
results are much more striking. To illustrate, the Hall
coefficient factor, E~/E„ is shown in Figs. 1 and 2 for
various degrees of impurity scattering and two ratios
of fast hole densities and mobilities. For these calcu-
lations, the extrinsic Hall eGect equations have been
modified to include the contribution of the fast hole
band4 to yield

t'~L, 2 ) (iuL. 2''t
«p2v2)+I II IL(p2,»)

(0L2) (IJL2)R~ 3m' ( n2'l
=—

I 1+—I.

E(P.,v.)+I —,IE(P2,v.) +-: v. «P.,v.)+I, li, IL(P2,v.)
Ea.L, 2') E(rL 2' (PL, 2o) J .

In all cases, the mobility of the slow holes is taken as
45 000 cm'/volt-sec '

In Fig. 1, the density ratio of fast and slow holes is
0.018, with a mobility ratio of 10; in Fig. 2 the values
are, respectively, 0.1 and +10. The effects are most
striking when the mobility ratio is large, as is true for
Fig. 1. Here, it is seen that the weak-Geld Hall coefh-
cient is especially sensitive to P, the impurity scattering
parameter defined in Eq. (4). A small amount of
impurity scattering lowers the Hall curve significantly
at weak fields and slightly at intermediate field strengths.

Although the mobility value is indicative of germanium at
77'K, the examples are intended on'ly to. be illustrative and the
magnitudes of the other parameters may not necessarily apply.
The notation is that used in reference 4 with subscripts 2 and 3
referring to the slow and fast ho1es, respectively.

Additional impurity scattering further lowers the curve
at weak fields but raises it at intermediate field
strengths. This is caused by the fact that the saturation
effects are delayed. Further increases in p raise the
Hall curves in both regions and delay saturation until
higher field strengths are reached. An interesting obser-
vation concerns that value of P for which the Hall
coefficient factor is a minimum. In the case of a single
band it was found to occur at P=0.67.' For two-band
conduction with the characteristics of each band as
stated above, the minimum is seen to occur for values
of P in the neighborhood of 3.

A practical consequence of the calculations illustrated

by Fig. 1 is the suggestion that in order to approximate
closely the weak-field plateau, Hall measurements must
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be taken at magnetic field strengths below 50 gauss.
For impurity scattering corresponding to P)1, this
value may be increased to 100 gauss.

The eGect of decreasing the fast-hole mobility is to
increase greatly the weak-field plateau, even at rather
small amounts of impurity scattering, as indicated in
Fig. 2.

1.6

1.5

1,4

D /tt a Q I

+L,3 +L,2

P2 0 I

Ps AS INDICATED

gL &
~ 45 000 cme/ volt c ec

B. Magnetoresistance Effects

The effect of impurity scattering on the ordinary
transverse magnetoresistance coefficient, hp/pII2, is
very great in the weak magnetic field region. Results
are presented by AppeP for a single band and for a
two-band model with electrons and holes in the case
of the pure lattice scattering. Recently, Seeker' has
completed calculations for the case of mixed scattering
when two types of holes are present, showing that only
a small amount of ionized impurity scattering of the
fast holes can appreciably reduce the magnetoresistance
coeKcient at weak magnetic fields. He also illustrates

P, a Q. i

1.3
F93 a 0.3

1.2 I 1.0

193 a 3.0
I ~ I

1.0
0.03 0.1

MAGNETIC FIELD) KILOGALISS

10

FIG, 2. Effect of impurity scattering on extrinsic Hall coe5cient
factor for the case of a small ratio of moderately fast holes.

2.4

2.0

Pa
0.1,

o:io:

I-r
lal

IL
U
42
O
CJ

1.6

Z

82
Q, 3 i

I,

30, 100
f

10, 30

1.4

1.2

2 2 p2
II,OI I ~ a 0.018

tt

~3* 10
&L, a

)92, ps AS INDICATED

/ L 2'45000 cm & volt cec
I

how the approximation of the relaxation time by a
simple power dependence on energy produces large
discrepancies when one attempts to account for magni-
tudes of both the Hall and the magnetoresistance
effects in cases when mixed lattice-ion scattering occurs.

Therefore, we shall limit our illustrations to the
Corbino magnetoresistance. ' Because of the boundary
condition that the transverse electric field be zero, the
cross-effect terms (namely, the L coefficients in the
present notation) drop out of the transport equations.
One can therefore obtain directly the coedlcfieity
mobility rather than the Hall mobility from galvano-
magnetic measurements. At weak fields, the Corbino
magnetoresistance is relatively insensitive to impurity
scattering. Also, the contributions of the charge carriers
do not depend on their sign. Therefore, the Corbino
eBect is especially suitable for analyzing semiconductors
in the intrinsic region, especially when electrons and
holes have significantly different mobilities. Although
measurements are usually carried out with a Corbino
disk having metal contacts plated along the periphery
and at the center of the disk, similar results are achieved
in rectangular specimens of large width-length ratios. "

In terms of the function E(P,y), the Corhino effect
is given as follows":

(~P I rrL, 1'&(Pig)+~L, 2 +(82)o)

~ PO ~ Ey =o &L, 1 It(Pl yl)+oL, 2 It (P2 'Y2)

1.0 0.05 CII

MAGNETiC FIELD, KILOGAUSS
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FIG. 1. Effect of impurity scattering on extrinsic Hall coeKcient
factor for the case of a small ratio of fairly fast holes.

7 J. Appel, Z. Naturforsch. 9a, 167 (1954).' J. H. Becker, Bull. Am. Phys. Soc. Ser. II, 2, 57 (1957).
A detailed article will appear as a National Bureau of Standards
Report.

For discussion of the Corbino eBect, see E. P. Adams, Proc.
Am. Phil. Soc. 54, 47 (1915);H. gneiss and H. Welker, Z. Physik
138, 322 (1954).

DO. Madelung, Naturwiss. 42, 406 (1955). This arrangement
has also been used by C. Goldberg in magnetoconductivity
analyses of germanium (Bull. Am. Phys. Soc. Ser. II, 2, 65
(1957)7.

"Derivation of the equations in this section is straightforward
and details are omitted. Further information, as well as the use
of data to determine electron and hole mobilities in intrinsic InSb,
can be found in A. C. Beer et a/. , "Research and development
work on semiconducting materials of unusually high mobility, "
0$ce of Technical Services Report PB-121288 (unpublished).
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where 0.~, ~' and o.l„~' are the conductivities due to
electrons and holes, respectively, in the absence of
magnetic field and impurity scattering. The impurity
scattering parameter and the magnetic field parameter
are defined as in Eqs. (4) and (3), respectively, the
mobility and magnetic fields being in consistent units.
Instead of saturating at large fields, the Corbino effect
due to a single carrier continues with an H' dependence
as indicated below:

=—(pL'H)2, lattice scattering, pL'H»1, (9)(p, ) z„=o 32

(Ap l 32r
(ploH) 2,—impurity scattering,

( po) z2 ——0 32
pl2H»1. (10)

When Corbino disk measurements are taken on
intrinsic InSb where p&' Sop2', only the electrons make
a significant contribution at weak magnetic fields, as
can be seen from the following equation:

(~p) 9~ 1+(p2'/pl')'=—(pl'H)', weak field,( po) z„=o 16 1+(p2'/121')

lattice scattering, ploH«1. (11)

However, as H is increased, the holes become more
important and the curve drops away from the H' line.
Finally, when the holes are also in the strong-field
region, the following relationship applies:

Pap)
pl'p2'EP, str—on—g field,

L po) z„=o 32
lattice scattering, p2'H»1. (12)

For the case of mixed scattering, several examples
somewhat representative of InSb were calculated using
Eq. (8), and the results are shown in Fig. 3. It is seen

that the Corbino magnetoresistance e8ect in the inter-
mediate field region is quite sensitive to the degree of
impurity scattering and to the ratio of carrier mobilities.
If the former is obtained by other measurements, say
the ordinary magnetoresistance effect at weak fields,
then an analysis of the Corbino data at weak fields
should give reasonably precise information on the
electron mobility and that at intermediate and high
magnetic field strengths should yield the mobility of
the holes.

C. Thermomagnetic Measurements

(hV(H) q
PQ(H)gz2-o= lim

(&r-o& ~T i (13)

The transport equations for simple conduction and
valence bands yield, for the boundary conditions
Ey = 8T/8$ =J~ =0:

Also of interest in investigating high-mobility semi-
conductors is a thermomagnetic effect investigated by
Willardson and Beer,"defined under the condition that
the transverse electric and thermal gradients be zero.
It is therefore the thermomagnetic analog of the
Corbino effect. An important advantage to measuring
this quantity is that one avoids the dilemma of trying
to reconcile the simpler theory derived for isothermal
transverse boundary conditions with measurements
which are often more realistically described by adiabatic
conditions. Also, a great simplicity in analysis is
a8orded by the fact that, as in the Corbino effect, the
cross-effect transport coeKcients (the I integrals in
this case) are eliminated. "

A convenient means of measuring this thermomag-
netic eGect is to contact the semiconductor in the shape
of a Corbino disk between two concentric copper
cylinders maintained at temperatures T& and T2 and
to measure the potential difference AV between the
copper cylinders. Then

(Q)z.=o=
BT/Bx

feL, 1 L+ (Pl)71) gilt(Pl)71)) &L, 2 L+ (P2)72) 92+(P2)72)]

fe[ 4
)&L1 I~ (pl) Yl)+e L, 2 E(p2) Y2)

(14)

where E(2) and E are the functions defined and tabu-
lated in the foregoing sections; g is the reduced Fermi
level measured from the bottom of the conduction band
(positive upward) for electrons, and from the top of
the valence band (positive downward) for holes, so that
gl+2t 2 —— Eg/12T. —

The calculations performed with Eq. (14) were done
for parameters representative of intrinsic InSb at room

temperature. Hence, the partial conductivities can be
replaced by the mobilities and also P2 can be taken as
zero. However pl, although small, will not be negligible
because of electron-hole scattering which, due to the

large hole-electron mass ratios, can be treated as an

impurity scattering. Under these conditions Eq. (14)
reduces to

fpL, 1 Llt (pl) Yl) glIt (pl) Yl)j pL, 2 p (72+52)rt (0)72)$)
Ey =0=—

/e/ pL, 1 +(ply71)+pL, 2 It (0)72) )
"Preliminary accounts of these measurements on InSb were given by R. K. Willardson and A. C. Beer, Bull. Am. Phys. Soc. Ser.

II, 1, 54 (1956)."For a discussion of the theory of thermoelectric and thermomagnetic effects in semiconductors, consult P. J. Price, Phys. Rev. 104,
1223 (1956) and literature referenced therein.
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FIG. 3. Corbino magnetoresistance for various degrees of electron-
ion scattering and various electron-hole conductivity ratios.

FIG. 4. Thermomagnetic effect (zero transverse electric and
thermal gradients) for various degrees of electron-ion scattering.

Results are shown in Fig. 4. The effect of a small
amount of impurity scattering is to render the thermo-
magnetic eGect more positive at intermediate and
high-held strengths and more negative at weak fields.
It is especially interesting to note the disappearance of
the minimum as p increases above 0.3.

IV. COMMENTS ON APPLICATIONS OF THE
FUNCTIONS IN ANALYZING DATA

IN SEMICONDUCTORS

It is believed that the use of mixed scattering theory
and the measurement of galvanomagnetic properties of
semiconductors as a function of magnetic field can be
very helpful in studying relationships between struc-
tural characteristics and transport phenomena. A
limited number of illustrations were given in the
preceding section. However, realization must be made
of the region of applicability of the results which were
presented. There are pertinent limitations imposed as a
result of the derivation of the relationships.

In the first place, all equations were derived under
the assumption of spherical energy surfaces. Extension
to more general quadratic surfaces is readily possible,
however, as has been done by Abeles and Meiboom, '4

and by Shibuya. "
More serious is the fact that in the evaluation of the

transport integrals, the slowly varying factor in the
energy dependence of the relaxation time for mixed
scattering has been taken as a constant over the range
of integration, being designated by the symbol P in
Kqs. (1), (2), and (6). It has been pointed out that this
can lead to difFiculties as one goes to lower temperatures
and higher impurity concentrations so that the term in
question ceases to be slowly varying. "More recently,
quantitative investigations of impurity mobility, in-

"B.Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954).
'~ M. Shibuya, Phys. Rev. 95, 1385 (1954).
'8 See reference 11, p. 33.

eluding the implications of the Born approximation,
which is the basis of the Conwell-Weissko6 and Brooks-
Herring equations, have been carried out by Sclar"
and Blatt."

The method employed here to evaluate the transport
integrals, namely, that of replacing the slowly varying
term by a constant, appropriately chosen, is discussed
by Dingle" and by Mansfield, ' and applied to magneto-
resistance in germanium by Willardson and Seer."
The procedure is to determine this constant by using
that value of the variable for which the remaining
integrand assumes a maximum value (Mansfield and
others) or by using a value which, when applied as a
cutoff, gives a median value for the integral (Dingle).
It is readily established then that the factor p is related
to the lattice and impurity mobilities" as follows:

p = 6(lz z'/Iz z') $g (x)/g(xz)], (16)

where g(x) is the slowly varying factor in the integrand
and x, which depends in general on p and on y, is that
value of x for which the integrand, with the g function
a constant, is a maximum or which when used as a
cutoff limit causes the integral to assume a median
value. The argument xz is the value of x for the X(p,0)
function in the case when impurity scattering only
occurs, i.e., p—+~. The criterion that the integrand be
a maximum yields xl ——3.

The approximation in Eq. (4) is therefore to neglect
the deviation of g(x)/g(xz) from unity. This has been
done in the calculations for Figs. 1 to 4. However, as

"N. Sclar, Bull. Am. Phys. Soc. Ser. II, I, 48 (1956); Phys.
Rev. 104, 1548 (1956)."F.J. Blatt, Bull. Am. Phys. Soc. Ser. II, 1, 48 (1956), also
1, 331 (1956);J. Phys. Chem. Solids 1, 262 (1957).

"R.B. Dingle, Phil. Mag. 46, 831 (1955).
20 R. Mansfield, Proc. Phys. Soc. (London) B69, 862 (1956).
2' R. K. Willardson and A. C. Beer, Bull. Am. Phys. Soc. Ser.

II, 2, 142 (1957),
22 It is to be noted that Mans6eld's or is so defined that his p, lD

differs from ours by the factors g(xz)/g(&).
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Mansfield points out, x is actually a function of iiz, /pr'
and is different for E(P,O) and L(P,O). In the general
case considered here where y/0, Eq. (16) is still
applicable although the determination of x is more
complicated since it is also a function of y.

Finally, in very high mobility semiconductors, even
moderately strong magnetic fields can lead to copT

values" such that the applicability of the usual Boltz-
mann theory treatment is in question, and e6'ects such
as electron orbit quantizations should probably be
considered. '4 This has been discussed by Swanson" in
connection with the saturation Hall constant and by
Argyres and Adams" for magnetoresistance.

In conclusion, calculations made by using the mixed-
scatte~ing transport integrals should yield better results
than those based on a single scattering process in such
cases where scattering by acoustical phonons and ion-
ized impurities occurs. However, the limitations of the
treatment must always be kept in mind.

V. ACKNOWLEDGMENTS

The authors wish to acknowledge the valuable
assistance of R. K. Willardson of Battelle Memorial
Institute, and R. Brown, J. Borsuk, and L. Leskowitz
of the U. S. Army Signal Engineering Laboratories in
preparing the manuscript and graphs and carrying out
the numerical evaluations. It is a pleasure to acknowl-
edge helpful suggestions from Professor V. A. Johnson
and Professor R. Bray of Purdue University.

VI. APPENDIX

1. Method of computation The ba.s—is of the compu-
tations is Simpson's rule:

~nb

ydx = s h(yo+4yi+2ys+ 4ys
0

+" 2y=s+4y=i+y-). (A-1)

A digital machine program was set up to calculate
(A-1) automatically, given n and h.

In order to determine an upper limit of integration,
eh, such that truncation error might be neglected, the
integrands of (1), (2) were written, respectively, as
follows:

( p vx l ' 2 t' 2p p vi--.
~

1+—+ I, x-:.-*] 1+ + +
x'yp) g~ & x' x4 x)

For x&10, the numerical value of each of these expres-
sions is less than that of xe . Thus, for a&10, integrals

2'Note that y was de6ned on the basis of lattice scattering
only and it is therefore usually larger than cd0r, depending on the
value of P.

'4Willardson, Haxman, Choquard, and Beer, Phys. Rev. 98,
227(A) (1955).

'5 J. A. Swanson, Phys. Rev. 99, 1799 (1955)."P.N. Argyres and E. N. Adams, Bull. Am. Phys. Soc. Ser.
II, I, 298 (1956);Phys. Rev. 104, 900 (1956).

(1) and (2) over the range u to eo are each less in
value than

(A-2)

x„=ph.

The values x„, p, y were then used to calculate

p Vx. &-'
y.=x.& *'~ 1+ +

x„' x„'+p&

(A-3)

2p p' v i-'
y„=xone

~
1+ + +—

[

x„i
(A-5)

"This follows from the usual rule Lace J. B. Scarborough,
ÃNmerica/ Mathematica/ Analysis (Johns Hopkins Press, Balti-
more, 1950), second edition, p. 1781: "If we compute the value
of a definite integral using subdivisions h and recompute using
twice as many subdivisions, the error in the second result will
be about 1/15th of the difference of the two results. "

For a=25, the latter expression has approximate value
4)(10 ". That is, the error generated in integrating
(1) and (2) from zero to 25 instead of to oo is less than
10 '. Since this is small in comparison to unit values of
quoted results, nb=25 was taken as the upper limit in
all evaluations of (A-1). The adequacy of this range
was checked by calculating (A-1) for a few boundary
combinations of P, y over the range 0—50. Results
agreed to at least seven significant places.

To determine the minimum number of intervals, e,
into which the range of integration should be divided
to provide 5-decimal accuracy, the following rule was
used

"An integral calculated by Simpson's rule using E
equal intervals is correct to as many decimal places as
it agrees with the same integral calculated for 2E
equal intervals. "

Preliminary machine calculations of (A-1) for numer-
ous boundary combinations of P, p were made to deter-
mine the minimum number of intervals necessary to
give results stable to 5 decimal places or to at least 4
significant places. It was found that, depending on p
and p, between 200 and 1000 intervals were required.
Final calculations were based on these minima. Quoted
values are calculated values rounded to five significant
places. Therefore, there may be occasional errors in the
fifth significant place where more than five decimals are
indicated in the tables.

2. Details of computing process. Because of—the
similarity of Eqs. (1) and (2), both were calculated on
a single machine run. The machine program and all
relevant constants including all p, 7 were read into
machine memory by means of punched cards. The
program then caused the machine to select a combi-
nation of P, y for calculating (A-1).

To calculate each y~ of (A-1), an x„was first calcu-
lated as
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The integer p was then examined to separate even and
odd y„of (A-4) and of (A-5); yo and y, were further
separated from the even yo. The y„of (A-4) were
accumulated to give:

P even yo, (A-6)

Q odd y„, (A-7)

Z(yo+y. ). (A-8)

A similar accumulation was done for the yo of (A-S).
When a test of p indicated that all y„of (A-1) had

been calculated, the accumulation (A-6) was multiplied
by the factor 2It/3. The accumulation (A-7) was
multiplied by 4It/3. These products were then added to
the sum of yo+y„ to give E. Similar steps produced
2x 'I.

The integrals for the thermoelectric function,
E&'&(P,y), were calculated in the same manner as the
conductivity integrals, using 400 intervals over the
range 0—25. Results agreed to five significant places
with a recalculation using 400 intervals over the range
0—50.
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Hall Effect in Titanium, Vanadium, Chromium, and Manganese

SrMoN Fozzzt
Carnegie Institute of Technology, Pittsburgh, Pennsylvania

(Received June 14, 1957)

The Hall effect in Ti, V, Cr, and Mn has been measured at room temperature with fields up to 30 kilo-
oersteds. The Hall constant was positive for all of these elements. The effect is extremely small in Ti and
apparently sensitive to small amounts of impurities. The results for these transition elements indicate tnat
electrical conduction is predominantly due to hole conduction.

I. INTRODUCTION

HE complex nature of the transition elements has
generally limited calculation of their band struc-

ture although some detailed calculations for copper, '
nick:el, ' and iron' have been made. Because of the
approximations introduced, only qualitative compari-
sons with experiments can be made. Usually these
calculations are extrapolated to the nonferromagnetic
transition elements for purposes of discussion. The
general feature is a complex 3d band structure with a
high density of states and thus a low mobility. This re-
sult agrees with both the magnetic properties and the
electronic specific heat. Electrical conduction is gen-
erally considered to arise from the 4s electrons because
of the low mobility of the 3d electrons. Since the Hall
e8ect allows estimates to be made of the number of
conducting particles per unit volume and their sign,
this unique measurement is useful for examining some
details of the band structure.

Recent measurements in the Cu-Ni' alloys and the

*This work was supported in part by the U. S. Atomic Energy
Commission and the 0%,ce of Naval Research.

t Now at Lincoln Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts.' H. M. Krutter, Phys. Rev. 48, 664 (1935);J. C. Sister, Phys.
Rev. 49, 537, 931 (1936).

2 G. C. Fletcher and E. P. Wohlfarth, Phil. Mag. 42, 106
(1951);G. C. Fletcher, Proc. Roy. Soc. (London) 65, 192 (1952);
G. F. Koster, Phys. Rev. 98, 901 (1955).' M. F. Manning, Phys. Rev. 63, 190 (1943);J. B. Greene and
M. F. Manning, Phys. Rev. 63, 203 (1943).

4A. I. Schindler and Emerson M. Pugh, Phys. Rev. 89, 295
(1953).

Co-Ni' alloys have demonstrated that electrical con-
duction is predominantly due to the 4s electrons; how-
ever, the results of Armco iron' indicated predominant
hole conduction. The increased interest in the transition
elements and the availability of pure materials led to
the Hall measurements described in this p~per.

A brief summary of the results for Ti, V, Cr, and Mn
has been given earlier. ' The method of measurement is
that described previously. ' Unless speci6ed, the sample
dimensions were 6.0 cm&&1.00 cm&(0.100 cm and car-
ried a current from 10 to 20 amperes. Whenever pos-
sible, chemical analyses of the samples are given since
some of the results may be sensitive to small impurities.

II. EXPERIMENTAL RESULTS

1. Titanium

Three titanium samples were investigated, desig-
nated below as I, II, and III. Samples I and II were
obtained from a commercial bar of material. Sample I
was measured after machining whereas sample II was
vacuum-annealed at 600'C for two hours and slowly
cooled to room temperature before measurements were
made. Sample III' was vacuum-annealed at 800 C for
6 hours and slowly cooled to room temperature. Con-
siderable care was exercised to avoid contamination

5 S. Foner and Emerson M. Pugh, Phys. Rev. 91, 20 (1953).' S. Foner, Phys. Rev. 91, 447(A) (1953).
7 D. S. Billington of the Oak Ridge National Laboratory pro-

vided this sample and obtained the chemical analysis of the three
samples investigated.


