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The behavior of vacancies in gold during quenching is treated theoretically under the assumption that
the total number is conserved, although they may aggregate into pairs and triplets. Approximate solutions
of the equations governing the abundance of isolated vacancies is obtained in the case in which only a small
fraction aggregate, that is, in the limit in which the quench is very rapid. This situation appears to correspond
to that observed in gold when the rate of quench is near 3X10* degrees per sec. It is concluded that the
binding energy of a pair of vacancies is between 0.1 and 0.2 ev and that the activation energy for migration of

a pair is lower than that of a single vacancy by no more than 0.2 ev.

I. INTRODUCTION

HE quenching experiments described in the pre-
ceding paper are important because one of the
defects retained presumably is responsible for self-
diffusion in pure gold. The experiments were actively
pursued initially to obtain information concerning this
defect. However, careful annealing measurements near
room temperature revealed an unsuspected complexity
in behavior. Fortunately, as will be seen, this additional
wealth of information enables new conclusions to be
drawn about the nature of the defects involved.

In an effort to understand in detail what takes place,
we would like to follow the defects concerned from their
birth in the circumstances governing thermal equilib-
rium at the high quenching temperature, through the
quenching process, to their disappearance during a
room-temperature anneal.

ot

Before discussing the life history of the defects which
are quenched in, it is necessary to consider the rela-
tive abundances of vacancies and interstitial atoms.
Huntington and Seitz? and Huntington? have made
calculations which give estimates of the energy required
to form a lattice vacancy and an interstitial copper atom
in copper. They found that the energy of formation of an
interstitial probably is about 4.5 ev, whereas that of a
vacancy is near 1.2 ev. Thus, the equilibrium ratio of
interstitial to vacancy concentration at 800°C would be
about 10719 if these estimates are approximately correct.
Since the values of the formation energies are not ex-
pected to differ much in gold and copper, interstitials
are not believed to be important in the experiments to
be described here. We shall assume the defects quenched
are vacancies in either single or aggregated form.

The differential equations which govern the con-
centrations of defects are:
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Here ¢, ¢y, ¢s are the fractional vacancy, divacancy, and
trivacancy concentrations; » and v, are the appropriate
frequency coefficients for migration of a vacancy and a
divacancy whereas vy’ and vy’ are the corresponding
coefficients for dissociation of a divacancy and a tri-
vacancy. We shall set »y=v,. Ey® and Ep? are
the energies of motion of a vacancy and a divacancy,
respectively; B is the decrease in the energy of the
crystal when two well-separated vacancies combine to
form a divacancy; A is the decrease in energy when

* Supported in part by the Office of Ordnance Research.

a vacancy and a divacancy combine to form a
trivacancy; r is the distance between a vacancy
or a divacancy and the axis of a dislocation; D is
the diffusion constant for lattice vacancies, i.e.,
D=va*/6 exp(— Ey*/kT), where a is the smallest inter-
atomic distance. Similarly Dy=(1/24)v:a? exp(—En?/kT).
We have neglected the fact that there is an energy
of interaction between a lattice vacancy and a dislo-
cation which can increase the rate at which vacan-
1 H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942).

2 H. B. Huntington, Phys. Rev. 61, 325 (1942).
3 H. B. Huntington, Phys. Rev. 91, 1092 (1953).
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1500 KOEHLER,
cies arrive at dislocations. The total elastic binding
energy of a vacancy to a complete dislocation in copper
is about a tenth of an electron volt.* Thus, there is
every reason to believe that the force aiding annealing at
dislocations is negligible if the vacancy is more than a
few atomic distances from the dislocation.

In the first equation, the first term on the right
describes the loss of vacancies by formation of di-
vacancies. The second term gives the rate of production
of vacancies by dissociation of divacancies. The third
term describes the loss of vacancies at dislocation sinks.
The boundary conditions both at the dislocations and
midway between dislocations are important. It is
assumed here that the concentration changes which
occur in the vicinity of the dislocation take place
sufficiently slowly that the vacancy concentration is
maintained at the equilibrium value for the temperature
in question at all points along the dislocation. This
assumption presupposes that the diffusion of vacancies
along the dislocation from the jogs is much more rapid
than the diffusion of vacancies in a direction normal to
the dislocation axis.® Hence, the appropriate boundary
condition at the dislocation is:

c=exp(—Ep/kT) at r=b, alli @

where Ep® is the energy required to form a lattice
vacancy and b is two or three times @. If 2R is the dis-
tance between dislocations:

dc/dr=0, (r=R, alli). 5)

Similar boundary conditions hold for divacancies. Since
trivacancies probably are mobile there should be a
term describing their motion. It is difficult to estimate
its importance.

These equations are very general. They should give
the equilibrium concentrations of defects; they should
also describe the concentration changes which occur
during quenching and annealing.

II. EQUILIBRIUM CONCENTRATIONS

Consider first the equilibrium concentrations. Assume
here that the quenched-in resistivity measures the
vacancy concentration in equilibrium at the quenching
temperature (i.e., the temperature from which the
sample is quenched). Experimentally, quenched-in re-

sistivity varies with the quenching temperature as

follows:
Ap=A exp(—Ep*/kT).

The value of 4 found for gold is 4.89X10~* ohm cm. It
was also found during annealing that the decreases in
resistivity were accompanied by decreases in length. If

4 A. Seeger, Handbuch der Physik (Springer-Verlag, Berlin,
1955), Vol. 7, p. 557; J. Friedel, Dislocations (Gauthier-Villars,
Paris, 1956), p. 237 obtains a larger interaction energy in copper,
i.e., 0.35 ev by noting that a vacancy can allow a local relaxation
of the dislocation stresses.

8 D. Turnbull, Bristol Conference on Defects in Solids (Physical
Society, London, 1955), p. 203.
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one supposes that the dimensional changes are isotropic,
the resistivity and the fractional change of volume Av/v
are related by the equation KAv/v=Ap. Experimentally,
K=3.2X10"* ohm cm for gold. If the volume of the
crystal increases by one atomic volume when a lattice
vacancy is produced, ¢=Av/v=1.53 exp(— Er*/kT). On
the other hand, if there is some relaxation around a
vacancy so that the increase in volume per vacancy is
0.4 times the atomic volume,® the coefficient in front
of the exponential is 3.82. The relatively small values
of the coefficient in these two areas indicate the altera-
tions in the atomic vibrational frequencies near a
vacancy do not appear to contribute materially to the
pre-exponential factor.” Using the experimental values
of K and the two estimates of the volume increase per
vacancy, we find that the resistivity increase for 1
atomic percent vacancies is 3.2X107¢ and 1.3X10-°
ohm cm, respectively. It is interesting to note that the
“best” of the theoretical calculations of the resistivity®
agree with the second value and suggest that the
volume increase per vacancy is close to 0.4 times the
atomic volume.

Consider next the divacancy concentration which is
at equilibrium at the high temperature and is present
after quenching. Bartlett and Dienes® estimate that B,
the binding energy of a divacancy, is between 0.23 and
0.59 ev in copper, whereas Seeger and Bross® found
B=0.3 ev for all three noble metals. Since the nearest-
neighbor relaxation is expected to be larger near a
divacancy than near a single vacancy, we shall assume
that »/v,=2.25. We may note that the first two terms on
the right side of Eq. (1) must give zero under equilib-
rium conditions and use this fact to determine the ratio
of the concentration of divacancies to that of vacancies.
Table I gives vacancy concentrations and divacancy to
vacancy ratios for equilibrium conditions at various
high temperatures and values of B equal to 0.3 ev,
0.2 ev, and 0.1 ev which we believe is the appropriate
range to consider.

We note from the table that ¢»/c lies in the range
between 0.14 and 0.01 for the two highest temperatures
in the range of B considered. It has sometimes been

Tastre I. Equilibrium concentrations of vacancies and divacancies.

B=0.3ev B=0.2ev B=0.1ev
T ¢ c2/c c2/c c2/¢
600°C 0.840X10~5  8.154X10~3 2.158X10—3 5.712X10™*
700°C 3.203X1075  2.065X10%2 6.264X1073 1.900X1073
800°C 9.521X1075  4.398X10~% 1.491X1072 5.056X1073
900°C 2.351X10* 8.234X1072 3.061X1072 1.138X1072
1000°C  5.034X10™* 13.963X10°2 5.611X107%2 2.254X1072

( “C.) W. Tucker, Jr., and J. B. Sampson, Acta Met. 2, 433
1954).
7 G. H. Vineyard and G. J. Dienes, Phys. Rev. 93, 265 (1954).
8 P. Jongenberger, Appl. Sci. Research B3, 237 (1953); F.
Abeles, Compt. rend. 237, 796 (1953); F. J. Blatt, Phys. Rev. 103,
1905 (1956); 99, 1708 (1955).
9 J. H. Bartlett and G. J. Dienes, Phys. Rev. 89, 848 (1953),
10°A, Seeger and H. Bross, Z. Physik 145, 161 (1956).
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supposed that vacancy pairs in metals diffuse much
more rapidly than single vacancies. This postulate
seems possible in gold only if the binding energy B of
the divacancy is exceedingly small. We note, first, that
Okkerse'* did not observe any deviations between the
results obtained at high and low temperatures in his
measurements of self-diffusion coefficient in gold, which
extend to 950°C. It follows that either the density of
pairs is small at the higher temperatures or the diffusion
coefficient of a pair is not radically different from that of
a single vacancy. Combining the energy of formation of
a vacancy, given above, with the observed activation
energy for diffusion, namely 1.71 ev, we conclude that
the energy of migration is near 0.80 ev. This leads us to
a diffusion coefficient of about 0.458X10~% cm?/sec at
900°C if we assume that y=10% sec™™. For comparative
purposes, we shall assume somewhat arbitrarily that
the energy of migration of a pair is 0.6 ev. We then
obtain a diffusion coefficient of 0.366X10~% cm?/sec at
the same temperature, which is about 0.80 times larger
than that for single vacancies. Thus, even if pairs
possessed this relatively small mobility, they would
produce an observable change in the the self-diffusion
coefficient of the metal if B were near to or larger
than 0.3 ev.

In other words, we are led to conclude either that
divacancies migrate in much the same way as single
vacancies, or their binding energy is not larger than
0.3 ev. We shall amplify this conclusion later and
conclude that B should be nearer 0.1 ev.

If divacancies were to predominate at high tempera-
tures and be responsible for self-diffusion in gold, it
would be necessary to require that B2 Ep?. If B=Ep®
and if the measured energy of formation is that of
divacancies, then B=Ep*=Ep*=0.98 ev. This is a
rather large value for B.

III. CHANGES DURING QUENCHING

Consider next the behavior of vacancies during
quenching. The essential features of events during a
rapid quench can be obtained if one assumes that only a
negligible number of vacancies and divacancies are lost
by diffusion to dislocations. We shall see that this
hypothesis is reasonable.

Although the total number of vacant sites remains
constant during the quench, the concentration of
divacancies may be expected to grow at the expense of
the single vacancies. Experimentally, the temperature
and time are related in the manner

T=To—pt

during quenching. Here T’ is the quenching temperature
and B is the quenching rate. It is found that an appreci-
able amount of recombination and breakup occur
during rapid cooling if B lies in the range from 0.1 ev to

11 B. Okkerse, Phys. Rev. 103, 1246 (1956). See also Makin
Rowe, and Le Claire, Proc. Phys. Soc. (London) B70 (June, 1957).
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TasLE II. Fraction of vacancies which are single
before and after quenching.

Afters

Before 40°C 60°C 120°C
B=0.1ev
600°C 09994 09878 0.9902
700°C  0.9962 09551 09637 09784
. 0.8774
800°C  0.9900 O Sass,  0.8994 09384
900°C  0.9777 07435 07836 0.8604
1000°C  0.9569 05751  0.6284  0.7422
B=0.2ev
600°C  0.9957 0.8544°  0.8544°  0.9000
700°C  0.9877 0.5542c  0.5542°  0.7025
800°C  0.9711 01494 02151  0.4427
B=0.3ev
600°C  0.9839 0.1816°

& Values after quenching with no superscript are equilibrium values at the
specified temperature.

b Quenching rate 6 X10¢ °C/sec.

¢ Quenching rate 3 X10¢ °C/sec.

0.3 ev, so that terms corresponding to both effects are
important. Since the defects are in thermal equilibrium,
we have the initial conditions dc/dt=0cy/di=0. The
equations are solved in the appendix under the assump-
tion that only small changes occur during quenching.
The result is

l 32VZ02 (EM‘i-B)f’olms CXp(—Em/kTo)

=Zo+

2
yogs(l“f‘—)ﬂk(%)

Yo
(tro)*(1—ys)!
X { 1—————(1—5) } (6)

Here Z is the ratio of the concentration of single
vacancies to that of total vacancies after quenching, Z,
being the ratio for thermal equilibrium at the quenching
temperature. It is assumed that the difference between
Z and Zj is small. The other symbols represent the
following quantities:

s=B/(Ex+B),
Yo=(Eu+B)/ kT,
t=vs(Ex+B)/Bk,
evo 2 6 24 120
ro=—( 1——+ | )

2

Yo

I

yo ¥ ¥’y

The fraction of single vacancies is given in Table II
before and after quenching from various temperatures.
The equilibrium value of the ratio has been given for
temperatures near room temperature for low values of
B. In this case, the assumption is made that the total
concentration of voids is conserved during quenching.
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However, it is also assumed that sufficient time elapses
at the low temperature to attain the equilibrium ratio
of double to single vacancies. The resulting ratio is
given by Eq. (6) for larger values of B and sufficiently
fast quenches. This equation tends to overestimate the
formation of divacancies, because the integration is
carried to the absolute zero of temperature. In all
cases in which (6) gives a larger number of divacancies
than the equilibrium result for the temperature in
question, the equilibrium value was used. In a few
cases, two values, an equilibrium value and a result
derived from Eq. (6), are given. The quenching rate of
3X10* °C/sec was sufficiently low in these cases that
equilibrium could be achieved; however, the more
rapid rate of 6)X10* °C/sec was sufficiently fast that a
nonequilibrium ratio was retained. Both the equilibrium
ratio and that for the fast quench are given in this case.
We have used »=108 cycles per second, E;=0.80 ev,
and v/vy=2.25.

An examination of Table IT indicates that B must be
less than 0.3 ev. If this were not the case, the defects
quenched from all the temperatues used would be
divacancies and perhaps other larger vacancy clusters.
In fact, Table IT implies that B must be less than 0.2 ev.
Otherwise, one would have essentially no single va-
cancies present after a quench from 800°C. As we shall
see, the annealing behavior after a quench from 800°C
leads one to believe that an appreciable number of
single vacancies are present. Hence, B must be small if
the annealing found on quenching from 600°C and
700°C is to be interpreted in terms of single vacancies.
This conclusion is in agreement with the earlier dis-
cussion according to which a small value of B is required
if vacancies are to predominate at equilibrium at the
high temperatures. It should be noted that the defect
which is present in largest concentration after a 1000°C
quench is the divacancy or some larger cluster even if B
is of the order of 0.15 ev.

Another conclusion can be drawn from the fact that
the resistivity retained is not very dependent on the
quenching rate. Table I shows that on quenching from
900° or 1000°C one has an appreciable concentration
of divacancies for any of the values of B given. Suppose
the energy of motion of a divacancy were as low as
0.3 ev. A simple analysis shows that in this case the
divacancies, and hence a large fraction of the resistivity,
would disappear within a few seconds in any specimen
held at 40°C. Since the resistivity is retained easily and
a large transient is not found on annealing at room
temperature, one is compelled to conclude that the
energy of migration of divacancies is not as low as
0.3 ev.

IV. ANNEALING AT ROOM TEMPERATURE

The annealing behavior is complex and depends upon
the quenching temperature. As the quenching tempera-
ture increases, the rate of annealing observed at 40°C
increases; a decrease is observed in the measured energy
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of motion. Moreover, when the quenching temperature
is high, not all of the quenched-in resistance anneals out
at 40°C.

This behavior can be understood in a semiquantita-
tive way by noting that one should obtain more
vacancies than divacancies on quenching to room
temperature from a low temperature. In contrast, more
divacancies and other larger clusters are to be expected
on quenching from higher temperatures. Hence, one
expects the quantities measured to reflect the properties
of divacancies and perhaps of larger clusters rather than
of vacancies, as one raises the quenching temperature.

Experimentally, the room-temperature annealing
following a quench from below 750°C obeys first-order
annealing kinetics. The specimen behaves as though
the vacancies were diffusing to dislocations. The differ-
ential equation describing this process is

dc % 14dc
Zopl (7)
ot art ror
The boundary and initial conditions are
¢=0 at r=b, allt
dc/dr=0 at r=R, alli; (8)
c=cy at (=0, allr.

The first boundary condition should require that the
concentration at the dislocation be equal to the equilib-
rium concentration appropriate for room temperature.
However, this concentration is so small in comparison
with ¢, the equilibrium concentration at the quenching
temperature, that we select it to be zero. The solution is

c=co Y. {AnJo(ar)—BuNo(awr)} exp(—Dai). (9)
n=1

Here Jo, and N, are Bessel’s functions of the first and
second kinds, respectively. The first two boundary
conditions are used to determine A4, and a,, whereas
the last condition is used to determine the B,. The
first two values of a are ¢;=0.486/R and a;=4.032/R.
Upon using the series in such a way as to include terms
with #=1 and #=2, the third boundary condition was
satisfied at 0.1 R and 0.6 R. In fitting the conditions at
the dislocation, we have taken d=a. The resulting
values of the constants are A4:;=1.176, B;=0.1800,
A,=0.2318, B»=0.04585. Thus, the series converges
rapidly. Note that this description of annealing agrees
with the observed behavior, that is, there is an ex-
ponential decay with a small portion which falls more
rapidly in the initial stage of the -anneal. The time
required for the concentration to decay to one eth the

original value is
6+E'M/k’T
0.2362 ( )

The annealing time is inversely proportional to the
dislocation density and is independent of the vacancy

(10)
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concentration. There is some question concerning the
value of Ej which should be used. At 700°C one finds
E;=0.821+0.05 ev. If one uses the activation energy
for self-diffusion measured by Okkerse'* and the energy
of formation of the defects, one finds Eyy=Q—Er=0.73
ev. We have used E»=0.80 ev since this value appears
in the annealing experiments. Bauerle observes that
the time for the concentration to decay by one eth after
a quench from 600°C is 72.2 hours during an anneal at
60°C. Inserting these numbers into the foregoing
expression one finds that (R/a)?=0.478 X108 if »=10'
cycles per second. Taking a to be one atomic diameter
we find that about 10% jumps are required before a
vacancy reaches a dislocation. This would imply a large
dislocation density, i.e., #=8.9X108 dislocations per
cm?. However, there probably is a small attractive
interaction between lattice vacancies and dislocations.
This can be taken into account by supposing that the
capture cross section of a dislocation has a radius which
is several atomic diameters, i.e., that ¢ is several atomic
diameters. Thus, if a¢ is three atomic diameters, the
dislocation density is 10® dislocations per cm?, whereas
it is 107 if ¢ is ten atomic diameters. It is clear, of course,
that further work should be carried out to establish a
correlation between the dislocation density and the
annealing time in specimens quenched from low tem-
peratures. In this connection, the influence of deforma-
tion after a low-temperature quench should be studied.
Further precise measurements should be made to
determine accurately the energy of motion in a specimen
quenched from 600°C.

If defects anneal only at dislocations and not by
recombination, the spatial distribution which exists
after a quench can be found by solving Eq. (7) with
boundary conditions (8). The diffusion constant in this
case is not a constant but depends on time; in fact,

D=va?® exp[ — Ey/k(To—Bt)], (11)

for vacancies. Here T is the quenching temperature and
B is the quenching rate. Inserting this into the differen-
tial equation, separating variables, and solving, one
finds that the concentration at a distance r from the
dislocation after quenching is given by

c=co 2, {AwJo(an?)+BiNo(anr)}
n=1
Ey
Xexp( —a2va>—F (zo)) ,
kB

(12)

where

e 2
F(z0)= l 1——+

20° 20 20 %° 3¢

6 24 120 }

Z0= EM/kTo.

The constants 4,B. and a. take the same values as
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before. Using E;;=0.7 ev and the values of the parame-
ters previously given, one finds that the exponentials
associated with #=1 and #=2 have the values 0.838
and 4.8%10~® after an 800°C quench if =5X10*°C
per second. In contrast, the exponentials take the values
0.700 and 2.3X10™ if =2.5X10*°C per second.
Moreover, the exponentials are 0.979 and 0.245 in the
case of a 600°C quench if 8=5X10*°C per second.
Finally, the exponentials are 0.959 and 6.01X102 if
B=2.5X10*°C per second and the quench is from
600°. Hence, none of the terms having # greater than
one remain after quenching from 800°C, whereas one
may expect a little of the fast component with #=2
after a salt-water quench from 600°C. Doubling the
quenching rate at 800°C and at 600°C increases the
amount quenched in by 19.79, and 7.19, respectively.
The experiments indicate that doubling the quenching
rate increases the amount quenched in by about 159,
in both cases. Thus, the theoretical results are in
reasonable agreement with the experiments. Actually,
the behavior is considerably more complex than this
analysis would indicate. We conclude that the theory
gives about the right order of magnitude for the
quenching rates required to retain the defects, if defects
having energies of motion in the range 0.6 to 0.8 ev
disappear by diffusion to dislocations.

There is still the problem of accounting for the
gradual increase in rate and the decrease in the measured
energy of motion as the quenching temperature in-
creases. We note that as the quenching temperature
increases, the fraction of divacancies and larger clusters
rises. For simplicity, let us discuss the matter by
assuming that only vacancies and divacancies are
involved. This will illustrate the principles involved.
Consider a single vacancy. If 7, is the length of time it
diffuses before encountering another vacancy, we have

1/71=8ve FulkT¢,

The divacancy so formed will diffuse for a time 7, before
it disintegrates into single vacancies. For this case,

1/7’2: Ve("‘EM‘I'B)/kT’

where we assume that the vacancies must separate by
at least one atomic distance to be considered dissociated.
One can, therefore, define an effective diffusion constant
D, for the vacancy-divacancy complex as follows:

D,= (11D 1:Ds)/ (r1+72).

Here D is the diffusion constant for vacancies and D,
that appropriate for divacancies (Sec. I). Qualita-
tively the gradual decrease in the energy of motion
occurs because the defects spend a larger fraction of
their lifetime as divacancies, or larger clusters, if the
initial concentration of defects is high. This picture
will also account for the decrease in the annealing time.
A drop of Ej in Eq. (10) from 0.80 ev to 0.60 ev will

(13)
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produce a drop in annealing time from 72.2 hours to
0.0678 hour on annealing at 60°C if there is no change in
sink density. This.is not very different from the change
actually observed (¢ is about 0.2 hour after a quench
from 1000°C).

The annealing which takes place in a simple quench
from temperatures near 850°C or higher is sufficiently
complex to make detailed description difficult pre-
sumably because larger clusters are present. Let us
examine this matter. As the defect concentration
gradually increases, one would expect larger clusters to
play an important role when a divacancy has sufficient
time to encounter another single vacancy and form
a trivacancy before the divacancy breaks up. One can
expect a trivacancy to form in time 75 given by the
equation

1/73=24vy" exp(—Ex?/kT)c.
Hence, one expects clusters to become important when

7’3< T2,
or when

1<T2/T3=3V2,/VC exp[(EM-I—B—EM2)/kT] (14:)

After a 700°C quench we find 72/73=0.62 for an anneal
at 60°C. It has been assumed here that Ey~+B—Ey®
=0.275 ev. Thus, we can arrange matters so that an
average divacancy breaks up before it encounters
another vacancy. For a quench from 800°C, annealed
at 60°C, 75/73=1.84 so that some clustering might be
expected here. To achieve this result, it is necessary to
assume that both B and Ejy— Ey?® are small quantities,
of the order of 0.15 ev. Equation (14) predicts that it
should be possible to suppress clustering by annealing
at a sufficiently high temperature. For example, at
120°C, 75/73=0.43 instead of 1.84. Thus, first-order
annealing should be observed in a sample quenched
from 800°C. The annealing time is short, being 1.53
hours, but not too short to make reasonably accurate
measurements.

The annealing observed in gold specimens quenched
from below 750°C implies that dislocation climb occurs.
The driving force for climb is the desire of the specimen
to eliminate the large supersaturation of vacancies.
According to Bardeen and Herring,? the decrease in
free energy per vacancy is

w,=kT log(c/co). (15)

We find x,=0.695 ev for a specimen quenched from
800°C and held at 40°C initially, whereas a specimen
quenched from 600°C and held at 40°C has an initial
chemical potential per vacancy of u,=0.630 ev. Bardeen
and Herring point out that climb is difficult in the noble
metals where the dilocations have partial form and

2 T Bardeen and C. Herring, Imperfections in Nearly Perfect
Crystals (John Wiley and Sons, Inc., New York, 1952), p. 261.
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associated stacking faults. They note that the super-
saturation is equivalent to a pressure

P=#v/90: (16)

where Q is the atomic volume. For gold quenched from
800°C $=0.92X 10" dyne/cm? Thus the driving force
for climb is very large, although the detailed way in
which climb occurs is obscure. The experiments indicate
that climb does indeed occur on annealing at 40°C after
a quench from 700°C, for it is found that both the re-
sistance and the change in length follow the same
curve. If appreciable clustering occurred, one would not
expect such behavior in most cases. Unfortunately,
the climb would be difficult to detect directly. If
the dislocation separation is 10~ cm (i.e., if the dis-
location density is 1.2X107 lines per cm?), each dis-
location climbs only about 10 atomic distances in a
quench from 700°C.

SUMMARY AND DISCUSSION

To summarize, it appears that the quenching and
annealing data for gold can be interpreted by supposing
that vacancies are retained and migrate. The energy of
formation of vacancies in gold is 0.9824-0.04 ev, whereas
that of migration is 0.784:0.06 ev. Upon quenching,
an appreciable number of divacancies are formed,
particularly if the higher temperature is above 850°C.
The binding energy of the divacancy is small, being
between 0.1 ev and 0.2 ev. The energy of motion of a
divacancy does not differ much from that of a single
vacancy, being only of the order of 0.1 ev to 0.2 ev less
than Ej for a single vacancy.

It is possible that the critical defect which plays the
dominant role is a divacancy, rather than a vacancy,and
that the trivacancy is the important aggregate. This
does not appear to be likely since it would require a
rather large value of B that is one near 0.98 ev.

It should also be mentioned that the assignments
made here have a bearing on other experiments in-
volving imperfections. For example, Manintveld®® de-
formed gold at 78°K and found two annealing processes
having activation energies of 0.29 ev and 0.69 ev.
Divacancies cannot be used to explain the 0.29 ev
process if they move with an activation energy of the
order of 0.6 ev.

APPENDIX

Since the defects do not disappear at dislocations in
this approximation, the total number of vacancies pres-
ent per unit volume is a constant. Thus

n=N (c+2¢s), (A1)
where N is the number of atoms per cc. Let Z be the

fraction of vacancies that are single and let Z, be the

13 J. A. Manintveld, Nature 169, 623 (1952); J. A. Manintveld,
thesis, 1954 (unpublished).
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equilibrium value for this fraction. Then, taking vy = s,

1

8y .
(1+_e(B—EF)/kT0)
V2

If Z=_Z+n, n is the change in the fraction of vacancies
which are single during the quench. In the cooling
process, the time may be replaced by the temperature
using the relation T'=T,—p¢. The resulting equation
giving 7 is
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If y&<Z, the nonlinear term in #? can be dropped and one
finds

(A3)
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To To
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For values of B in the range from 0.1 ev to 0.3 ev, the
second term in f(7") is an order of magnitude larger
than the first, using E3;=0.8 ev and »=2.25»,. The first
term has therefore been neglected. Introducing

y=Eu+B/kT’
’ (A7)
yo=EM+B/kT0,
one finds that

14 E. T. Whitaker and G. N. Watson, Course of Modern Analysis
(Cambridge University Press, Cambridge, 1927), p. 352.
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It is important that as few approximations as possible
be made for high temperatures, near T',. With this in
mind, we define:

z=e"v/y",
(A9)
20= e—yo/yOZ’
and
; vo(Em+B)ho
kB
V2(EM+B) 2 6 24 120
_ (1— ; : —) (A10)
kB Yo ¥ Yy et

Then if we assume that the final temperature is so low
that no motion or divacancy breakup occurs, that is if
the final temperature is taken to be 0°K,

fT : o(T") exp(— : f(T”)dT”)dT’

A(Ey+B) o 11
=~——~—~———f e‘(ZO—Z)dz(———), (A11)
yo2k(14+2/y0) Vo 208 2°

where
A= (16v/8)(n/N)Z7?,

(A12)
s=B/(Ex+B).

The foregoing integral has been evaluated by intro-
ducing a new variable #n=1z. It has been assumed that
the upper limit of integration of # can be replaced by
infinity. This is a very good approximation for the cases
examined here. The resulting value of 7 is

320Z 2 (Ey+B)rot—se~EmlkTo

y0** (14+2/30)Bk(tro)
(tro)s(1—s)!

><(1-~—————~ , (A13)
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