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Penetration of Electron Beams into Water below the Critical Energy*
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(Received April 23, 1957)

The "moments technique" has been applied to the calculation of the spatial distribution of the energy
dissipation in water by electron beams of energies 10—25 Mev. A continuous energy loss is assumed and the
energy-range relationships are obtained taking into account the ionization and radiation losses. These
relationships are introduced in the proper Boltzmann transport equation to approximate the scattering
term by a simple function of residual range. The stopping power is approximated by a sum of powers of
residual range. This leads to expressing the spatial moments of the energy dissipation as a combination of
triple moments of the electron distribution function. These triple moments are the angular, spatial, and
residual range moments, which are connected by a recursion system. The first three moments are calculated
together with the boundary condition and the asymptotic trend. With this information, the distribution is
constructed by using a simple analytical function. The agreement with experimental results is satisfactory.

I. INTRODUCTION

'HIS work concerns the following problem: A
planar monodirectional and monoenergetic source

of electrons is embedded in water. We wish to determine
the energy dissipated by this electron beam at diferent
depths in the medium.

Spencer' (hereafter referred to as SP) has recently
succeeded in calculating the distribution of energy
dissipation with depth in different media for source
energies ranging from a fraction of a Mev to a few
Mev. The scheme is to calculate a number of the
spatial moments of the distribution in question and
then construct the distribution by the "function-
fitting" technique' already developed in x-ray problems.
The functions used are selected to have the same
asymptotic trend as that of the energy dissipation,
which has been analyzed (SP). The knowledge of the
asymptotic trend of the distribution makes it unneces-
sary to calculate the higher moments and hence guaran-
tees the reliability of the method.

The basic assumption made by Spencer' and earlier
by Lewis is the continuous-energy-loss approximation.
This implies that the energy lost by an electron in a
collision, on the average, is much smaller than the
electron energy before the collision. Such an assumption
is valid when hard collisions are infrequent as in
ionization losses by electrons of energies, say, above
0.2 Mev in general. In this case there is a fairly definite
energy-range relationship which gives the track length
of an electron for a given energy. When the distribution
of electrons, of a given energy, with track length is
narrow, we say that range straggling is small. But
when the bremsstrahlung losses are important, strag-
gling becomes the rule. The reason is that photons of
energies comparable to that of the radiating electrons
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are frequently emitted. The energy-range relationship
will have no meaning, then, except in an average sense.

Here we assume the continuous-energy-loss approxi-
mation to hold and set as our task the "modification"
of Spencer's method to cover higher energies. Since the
critical energy for water' is about 100 Mev, we are
limited to considering energies of the order of 25 Mev
where the radiation losses are about ~ of the ionization
losses.

In the following sections we shall develop this
"modified" method and apply it to calculate the energy
dissipation by electron beams of 10—25 Mev in water.
The results are compared with the measurements of
Skaggs' and the agreement is satisfactory.

2oro (P,g) =—,sod oZ(Z+1) (1—P')P '(sin'(-', 0)+r)') '
&($1+z.nPZ sin(rzt)) —(P'+rrnPZ) sins(zt)) $,

n= 1/137. (2)

The scattering potential is assumed to be of the Yukawa
form (Ze'/r) exp( —r/a), where a is the screening radius
for the Coulomb Geld of the nucleus. This gives rise to
the screening angle 2r) given by X/a, where X(=2z A) is
the de Broglie wavelength of the scattered electron.

Dalitzr has derived Eq. (2) by using the relativistic
Born approximation to second order. This approxima-

'W. Heitler, The QNamtam Theory of Radhattoe (Oxford Uni-
versity Press, ¹wYork, 1954), third edition, pp. 367—377.' L. S. Skaggs, Radiology 53, 868 (1949).

6 W. A. McKinley, Jr, , and H. Feshbach, Phys. Rev. 74, 1759
(1948).

r R. H. Dalitz, Proc. Roy. Soc, (I,ondon) A206, 509 (1951).

II. SCATTERING

We adopt the notation of SP and start from his
Eq. (6):
—c)Ig„/c)t+S((t)I(„(t)=N(2t+1) '[(3+1)It~r, ~r(t)

+tI, , „,(t)$+5„g(t—1). (1)

For the scattering cross section we use the McKinley-
Feshbach' formula:
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tion is valid' for Ze'/t'ts«1 which is well satisfied here,
since Z for water is less than 8 and es/Ae rr for electrons
of a few Mev.

The expression for the collision term, Sg, which is
derived from (2) for s)l«1, is

St(T) =-,sypZ(Z+1)Xr p(T+1)'T '(T+2) '

Ct+27rrrPZl (—Ps+prnPZ)Q s ',
(3)
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FIG. 1. The stopping power of electrons in water vs energy.
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This form of C~ is due to Goudsmit and Saunderson. '
A proof, which is essentially a slight improvement on
Bethe's" proof, is given in Appendix A. Integrals
leading to the remaining terms in (3) are discussed by
SP.

In (3), rt remains to be specified. This depends
intimately on the model used for the electronic structure
around the nucleus, and the resulting eGect on shielding
the nucleus in small-angle collisions. The simplest model
is to take a, the screening radius, equal to the Thomas-
Fermi radius, namely, 0.885apZ & where ap is the first
Bohr radius in the hydrogen atom. Commonly p is
taken from the Moliere calculations" based on a
Thomas-Fermi potential. However, for low-Z media,
Moliere's results seem to give smaller screening angles
than observed. ' For the hydrogen atom, " a=as/2
while for oxygen a is of the same order of magnitude.
For water, therefore, one can take a=hap/2, where b

can be obtained by comparing (6) with experimental
data (if available). In our calculations we have set
a=up/2 for both H and O.

To evaluate a function Xpf(Z, rt) for a compound
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Fro. 2. The range of electrons in water vs energy.

(such as Si for water) we use the rule:

Npf(Z, rt) =Q; JI/;f(Z;, rt;),

where Xp is the number of molecules/g of the compound,
E; is the number of atoms of type i per gram of com-
pound, and Z, and q; are the values of Z and q for this
type of atom.

III. ENERGY-RANGE RELATIONS

Since the electron energy is dissipated by collision
and radiation, we write for the stopping power[.

dT/dr = (dT/dr)„ii+ (dT/dr) „e (5)

In calculating the collision loss, we made use of the
extensive data given by Sternheimer" "which includes
the correction for the "density effect, " For water, this
eGect should be included for electron energies, roughly,
above 1 Mev.

The radiation loss is included for electron energies
above 5 Mev. The method of calculation is described
by Heitler. 4'4

Once dT/dr is calculated, a simple numerical integral
will give the range. The results are presented graphi-
cally. Figure 1 shows the stopping power, dT/dr, rtersls
kinetic energy T on a semilogarithmic scale. In Fig. 2,
the residual range is plotted against T. It is almost a
straight line except for small energies where it is nearly
parabolic. In Fig. 3, the stopping power is plotted
against residual range.

IV. ANALYTIC APPROXIMATIONS

The results of the last section will now be applied to
express Si(T) of Eq. (3) explicitly in terms of residual
range, r or t. First we express q in terms of T, and we

g In this paper, as in SP, T is the kinetic energy in mc units,
r the residual range in g/cm, and t is the fraction r/rp, where rp is
the initial residual range or simply range. In addition we intro-
duce in Sec. IV v =t+a, where a is an adjustable parameter, and
use it much as SP uses t."R.M. Sternheimer, Phys. Rev. 88, 851 (1952).

"After the completion of this work, a more recent and slightly
modified set of parameters for the density effect has been given
by R. M, Sternheimer, Phys. Rev. 103, 511 (1956).

"Reference 4, pp. 252—253.
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where r= t+n, and integrate over r to obtain

(p+1)Ii~&+diIi~" '=go(1+n) i '

+1(2l+1) i—
f (I+1)I,~, „,~i+lI, , ~,i'+i}, (10)

where
~1+a

Ii„(r)r&dr =Ii„&.
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FIG. 3. The stopping power of electrons in water vs range.

obtain

g=K/ao=nLT(T+2)$ '* n(T+1) ' for large T. (6)

Using (6) in (3), we observe that the dependence of
5& on T is essentially inverse square multiplied by a
slowly varying logarithmic function of T. For low

energies, below 1 mc', we mentioned that r is parabolic
in T, while for high energies it is linear in T. This
simple argument suggests that Si might reduce to di/t
for low energies and to di/(to+ ft+g) for high energies
(where f and g are constants independent of t while d~

depends on t). Indeed, SP finds that for energies up to
a few Mev

Si(t) =ndi/Lt(t+n)i, (7)

and that for low energies 0. is so large that

S,(t) =d,/t.

Spencer's calculations are based on these two approxi-
mations. The second approximation leads to a simple
theory and allows the calculation of a large number of
spatial moments of the energy dissipation, while the
first leads to a rather complex theory and limits the
calculations to a few moments. In fact, for energies
above a few Mev, o. is so small that the theory does not
work at all in practice. The situation is still worse for
energies of the order of 20 Mev such as we are con-
sidering. This points to a need for a third approximation
valid and useful for our range of energies.

Upon tabulating Si, So/Si, and So/Si for 1&T&50,
we have found that S2 and S3 bear a constant ratio to
S& to an accuracy of one percent. It was possible to
represent Si as di/(t+n)' to an accuracy of a few

percent. We conclude that

The system (10) is the fundamental recursion system
which we shall often use. It can be looked upon as a
partial difference equation of the first order in e and
second order in t and p. This is in contrast to systems
(19) and (25) of SP which are of first order in p.

The energy dissipation distribution, J(x), is given by

I+a

J(x) = ~ Io(r,x) (dT/dr)dr,

where dT/dr can be approximated by

d T/dr =A or'+A i+A or

(A, =0.72ro'*, A i= 2.34ro, Ao=0.626ro )

(12)

to an accuracy of a few percent for ranges greater than

4 cm. For ranges below 1 millimeter the approximation
is not good because r~n as t—+0 and a finite value for
dT/dr results when it should, in fact, become infinite.
This difficulty could be avoided by adding a delta
function to the right-hand side of (12) of proper strength
and located, say, at t=0.1/ro. However, we shall see
later that this is unnecessary and the difhculty is
removed in a natural way without altering the form of
Eq. (12).

Using (12) in (11)and taking the eth spatial moment
of J(x), we obtain

Jn=AoIon'+A iIon'+AoIo~ '. (13)

1+a

Ii„(r)= dr'F, „(r') exp fd (1/ir' —1/r) }, (14)

V. CALCULATION OF THE MOMENTS

The moments of interest are to be evaluated in
increasing order of e as suggested by (10). Having
evaluated the right-hand side of the system (10), we
still have to determine one I~„~ in order to know I~„&+"
where k is an integer. This is achieved only by quadra-
tures. From Eq. (18) of SP and our approximation (9),
we obtain

Si=di/(t+n)', (9) TABLE I. Scattering parameters.

which forms the basis of our calculations. In Table I,
we give the first three parameters, d~, together with 0.

for three different energies. In this table d2 ——2.878M& 32 j
and d, =5.5368di while n happens to be 0.27/ro. 4o

We substitute (9) in (1), then multiply by r~'

0.04615
0.03506
0.02869

0.1847
0.1404
0.1149

0.5319
0.4041
0.3306

1,02289
0.7771
0.6359
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F~ (r)=n(21+1) i{(l+1)I~+i, i(r)+/Ig i.„ i(r)} To calculate Jo we have to know Iop for p=O, &o.
+& &( 1 ) From (10), it follows that

Multiply (14) by r" and integrate over r, then invert
the order of integration to obtain the equation,

dr'F, „(r') exp(d(/r')

(p+1)Ioo' ——2Iii~+', (22)

and the problem reduces to calculating I~@ for integral
and half-integral value of p. For convenience we select
p= —1 and ——', . Using (16), we derive:

X drt~ exp( d(/r). (15)

~1+a
drF»(r) exp(di/r)E(di/r), (23)

Integrate the inner integral in (15) once by parts. A
recursion system results which is identical to (10) if
the lower limit is stretched to zero, i.e., where

drFii(r) exp(di/r) erfc(di/r)i, (24)

pl+a
I~ ~= 87

"o
(16)

This explains why we do not have to modify (12).

First Moment

The zeroth moment is simply the total energy loss T.
To evaluate Ji, we need to know Ioii' for p=O, &o.
From (10) and (16) we have:

(p+ 1)Ioi"=Iio"+',

Iio~'=exp{di(1+n) '} drr&+' exp( —d,/r). (18)

Ioi '———,'{(1+n)-'*—2di(1+n)l
+2m'd&&exp[d&(1+n) '] erfc[di/(1+n))'}, (19)

2
Io,l=—{2(1+n)&—d&Ioi *'},

15
(20)

Ioio =-', {(1+n)' di(1+n—)
+dP exp[di/(1+n)]E[di(1+n) ')}, (21)

where

erfcx—= 1—erfx—=2x ' exp( —x')dx,

E(x)= —Ei (—x) —= —(dx/x) exp( —x).

The moments given by (19)—(21) are combined accord-
ing to (13) and Ji is thus obtained.

The integral (18) is elementary. It reduces to the error
function for half-integral values of p and to the expo-
nential integral for integral values of p. The result of
these calculations is:

F»(r) =—', {2 exp[d2{ (1+n) ' —1/r })+1}.
These integrals are evaluated as discussed in Appendix
B. The system (10) is then used to give Iooo and Io&+l

from which J2 is obtained.
All the calculations were carried out on a desk

calculator. No moments higher than the second have
been attempted because of their increasing complexity.

J(x) (1—x) & exp{—2/(1 —x)}, (26)

of which (25) is a special case.
We shall assume J'(x) =0 for x(0 since the scattering

is highly in the forward direction for these energies.
The boundary condition is

J(0)=dT/dt, t=1 (27)

The distribution is constructed by using the simple
function, g(x), given by

g(x) =J(0) (1—x) & exp{a'[1—(1—x) ')}. (28)

The function g(x) satisfies the boundary condition (27)
and behaves asymptotically as J(x) in (26). The
parameters y and a' are varied so that the first two
moments of g(x), namely, go and gi, agree with Jo and
J&, respectively. The second moment J2 is compared
with g2 to check on the accuracy of this particular form
of representation. It was found that y is close to —~.
On taking J(0) to be unity, we obtain

J(x)=g(x) = (1—x)
—'* exp{a'[1—(1—x) ')}. (29)

VI. DISTRIBUTION

In constructing the distribution J(x), we include
the boundary condition and the asymptotic trend, in
addition to the first three moments we have just
calculated.

According to Sp, the asymptotic trend is given by

J(x) (1—x)
**exp{—2/(1 —x)}. (25)

However, we shall here assume this trend to have the
conjectured empirical form,
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which determines the shape of the curve; that can
only be determined by fitting moments.

VII. RESULTS
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Fro. 4. (a) The function g(x) for diiferent values of a'. (b) The
function J(x) for 16.4 Mev. The measurements of Skaggs are
shown in circles.

The moments of g(x) are elementary. The first three
are

gp= 2(1—as' exp(a') erfca),
gi= gp(1+ pa') —s,
g.=g.L1+-."+(4»5)"r-(1+»)-(4~15)".
The moments g„satisfy the recursion system,

o=~g.-l—(2ti+ s+a') g.+ (ti+ s)g~l.

For large e,

g„-(e/n) I exp(a' —2 alt)s.

(3o)

(31)

(32)

Now we discuss the behavior of g(x) in the interval,
()(x(1.In Fig. 4(a), g(x) is plotted for a'=0, —,'„-',,
and 1 to illustrate all the possible shapes which g(x)
can assume within the range of interest; g(x) assumes
a peak at @=1—2u'. For small a, the peak is sharp
and lies close to x= 1.As a increases, the peak broadens,
decreases in height, and moves to the left. For a'&-,'
the peak does not appear in the range of interest and

g (x) decreases monotonically as illustrated by the curve
8 =1.

From this discussion, it is evident that by selecting
the form (28) as a possible representation of J(x), we
have not made any restrictions on the shape of the
approximating function. We have not demanded from
g(x) to be always of a transition character (unimodal),
i.e., rising to a peak and then dropping oK It is g
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Our calculations gave a'=0.22, 0.24, and 0.26 for the
energies 12.2, 16.4, and 20.4 Mev, respectively. The
energy-dissipation curves for all these energies are
unimodal with a broad peak. Figure 4(b) shows g(x)
for 16.4 Mev as calculated from this theory. The
measurements of Skaggs' are shown in circles for com-
parison. The agreement is satisfactory when we con-
sider the semiempirical nature of these calculations and
the experimental diS.culties encountered in the meas-
urements. In Skaggs' arrangement, the beam is only
uniform to within 10%and travels a distance equivalent
to about 0.6 cm of water before it enters the water
phantom. We have corrected for this fact by extrapo-
lating Skaggs' curve to the left by 0.6 cm.

It is of interest to know the depth at which the
maximum energy dissipation occurs and also the ratio
of this maximum to the initial value, J(0). In Fig. 5
we present the available data on the position of this
peak and its ratio to J(0). The points shown fall in
three categories: (a) the results of this theory for 12.2,
.16.4, and 20.4 Mev, (b) the dose-depth measurements
of Skaggs for 12.2, 14.3, and 16.4 Mev, (c) the measure-
ments of Trump" and his colleagues for low energies
up to 1.5 Mev (can be calculated as in SP).

In concluding, we point out that this theory can be
applied for electron energies of the order of ~'~ to 4 of
the critical energy for the medium considered. Water
has been selected for illustration.

The limitations of this theory are similar to that of
SP for "intermediate energies" Lbased on approxi-
mation (7)], in that one can calculate in practice only
a few moments of the distribution.
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Integrate (8.2) by parts twice to obtaindiscussions and much advice. Dr. L. V. Spencer and
Mrs. Nelms of the National Bureau of Standards have
supplied us with a useful table on stopping power and
residual range for which we wish to thank them. The
author is grateful to Cornell University for the fellow- 52

ships he was awarded. -(c+1)E[(c+1)y]
APPENDIX A. THE GOUDSMIT-SAUNDERSON

(GS) PORMULA

From the de6nition given by GS' and Bethe's"
scheme (Eq. 81), C& is given by

dx(1 —x)
—'[1—p( (x)j.

It follows from (A.2) that

C)+C( g=P 1—
I—e

dx(p('(x)+ p$, '(x) ) (1—x)
—'. (A.3)

Inserting in (A.3) the recursion formula,

p/(x)+ p~-~'(x) = l(1—x) 'f pt-~(x) —p~(x) )

and using (A.1), we obtain the recursion system,

P, I', ,= 1/l—, l&1—
where

Z, =C,/(1(1+ 1)).
This immediately yields the GS formula,

l

Cg l(l+1)——-', Cg —pi ' .
i=2

(A.4)

(A.5)

Qy a simple integration, C~= 2 lng ' —1 for the Yukawa
potential.

APPENDIX B. INTEGRALS OF THE
SECOND MOMENT

In (23) let

d,/r =y; d~/n=y2, d~(1+~) '=yi,
d2 d~=cd~ (c=1—.8789 Table I, Sec. IV),

and it follows that

I„—'=-', d~(2A exp[d2(1++) ']+8), (8.1)

Bethe performs a partial integration to obtain

Ci = —',{l (l+1)—1 I'i ( 1—))—
1—e

+ dx(1 —x)-'P/(x). (A.2)

~= —y 'E(y) expy+y '

+ dyy 'E(y) expy. (8.5)
'gl

From Table I of Sec. IV, we see that y& is of the
order of ~'~ and y2 is about 4. The integrands in (8.4)
and (8.5) vary rapidly near the lower limit and are
unsuitable, in this form, for numerical quadrature. We
split the range of integration into two parts at y=1.
Calling the integrals in (8.4) and (8.5) 2' and 8',
we have

A'=
) +) dyy 'E(y) exp( ——

cy), (8.6)

~l pS2

+ dyy E(y) e"py (8 7)

The last integrals on the right of (8.6) and (8.7)
are simple to handle numerically. As for the first
integrals, the rapid variation near the lower limit is
removed by the artifice of adding and subtracting the
leading terms in the expansions of the exponential and
the exponential integral functions. The added terms are
integrated terms and the subtracted terms are retained
under the integral sign to smooth the integrand. Thus

dyy 'E(y) exp( —cy)
J yl

dyy '(E(y) e p( —cy) —(—~—»y)(1 —cy+-:cY)}
~el

+ —y lny+cyy —«yc'y' ——', (lny)'

—
cJ dyy 'E(y—) exp( —cy). (8.4)

7jl

8 can be reduced similarly, but it is better to set c= —1
in (8.4) to obtain 8, since 8 is equal to A for c= —1.
Thus,

where

dyy 2E(y) exp( —cy),
~yl

(8 2)

1

+cy (lny —1)—~~c'y'(lny ——',), (8.8)
Wl

4 Ql

dyy 'E(y) expy.

where y= Euler constant=0. 577216, and —y —lny

(8 3) are the leading terms in the expansion of E(y) . The
integral in (8.8) is now simple to evaluate numerically
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to four figures by Simpson's or Weddle's rule using
intervals of width 0.1 for example.

Setting c=—1 in (8.8), we reduce the first integral
in 8' to a suitable form. Once A' and 8' are evaluated,
it is an easy matter to collect terms and compute A

and 8 from which I~~ ' follows.

In (24), let

Ei(x) = dxx ' expx.

The integral of (8.12) is now simple to evaluate
numerically; that of (8.13) will be expressed as a power
series.

Sy definition,

di/r=x', (di/Q. ) =x2, di (1+n) *=xi)

d2 —dy= cd lp

and we obtain

erfx=2~ ' dx exp( —x').

Integrate (8.14) once by parts to obtain

(8.14)

I» '=
3 (~di) l exp[dg(1++) —']C+3 (mdi) lD, (8.9)

where
fig X2

C= dxx ' erfcx exp( —cx'),

erfx=2s. '*i xexp( —x')+ 2dxx'exp( —x') ~.

Repeating this process of partial integrations, we derive
the formula

p
+2

D=, de erfcs expx . (8.»)

(2x2) n

erfx=2m 'exp( —x')x P (8 15)
=o3 5 7 (2n+1)

Substituting (8.15) in (8.13) and integrating term by

C and D are now reduced by applying two partial
integrations. The result is:

f% +2

dxx ' erfx exp(x')

C= —-', x ' exp( —cx') erfcx+x 'x ** exp[ —(c+1)x'j

+ (c+1)i erf[(c+1)-:x)+-',cE (cx')

= 2'-i
00 (2x').

(8.16)
~=03 5 7 (2m+1)(20+1)J»

p&2

+ dxx—' exp( —cx') erfx,

D= ——',x—' exp(x') erfc(x)+x 'vr '+-,' Ki(x')

x2

de expg el fx&

(8.12)

(8.13)

This series is convergent for all finite values of x. The
error committed by summing a reasonable finite number
of terms is of the order of the first term neglected (as
can be seen by ratio tests for example). For x=0.6 the
sum of five terms divers from that of the series by about
10 ". For @=2, the sum of about twenty terms is
needed to give the same accuracy.

Once C and D are evaluated, as sketched above,
they are combined according to (8.9) to give I» l.


