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Stopping Power of a Medium for Heavy, Charged Particles
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It is shown that the orbital motion of electrons in the molecules of a medium is important for the stopping
power of slow charged particles. This is due to the strong dependence of the momentum transfer in a Coulomb
field on the relative velocity. Equations for determining the absolute stopping power of an arbitrary medium
are derived on the basis of classical mechanics for the entire nonrelativistic energy range. For the high-energy
range this equation corresponds to Bethe's formula, and for low energies, to the Fermi-Teller formula. It is
concluded, from this equation and from the experimental data, that electron capture is not important in the
slowing down of protons. It starts being important for n particles and is decisive for particles of higher
charge. The stopping power of H, H2, and A for protons and of H2 for n particles is calculated. Good agree-
ment with the experimental data is obtained.

I. INTRODUCTION

'HE theoretical formulation of the ionization loss
of slow heavy particles is a very difFicult problem.

Theories of the stopping power for charged particles
have been worked out by Bohr, ' Bethe, ' and others.
These theories give quite good agreement with experi-
ment at high energies, but in the low-energy region they
break down completely. The capture and the loss of
electrons was interpreted by Rutherford' and Kapitza'
as the main reason for this lack of agreement. These
explanations were only qualitative. There were some
semiempirical attempts to estimate this e8ect, ' but no
good quantitative theory has yet been presented. ' In
1949 Warshaw' pointed out that the discrepancy be-
tween the calculated and the observed curves for
beryllium cannot be explained by the electron capture
effect.

It therefore seems reasonable to analyze all the pre-
viously neglected factors which might influence the

~ N. Bohr, Phil. Mag. 25, 10 (1913);30, 581 (1913).' H. A. Bethe, Ann. Physik 5, 325 (1930).
3 E. Rutherford, Phil. Mag. 47, 277 {1924).' P. Kapitza, Proc. Roy. Soc. (London) 106, 602 (1924).' K. L. Kaiia, Indian J. Phys. 38, 479 (1955).
'A. Dalgarno and G. W. Griffing, Proc. Roy. Soc. (London)

A232, 423 (1955).
7 S. D. Warshaw, Phys. Rev. 76, 1759 (1949).

process of stopping charged particles. Since the cross
section for the momentum transfer in a Coulomb field
decreases with the fourth power of the relative velocity,
the orbital velocity of electrons in the atom should be
most, important at low energies (where the existing
theory breaks down). In taking this effect into account,
we shall derive the equations for the stopping power of
the medium on the basis of classical mechanics. The
validity of the classical arguments is shown by Bell'
who worked out a similar problem —the capture and
loss of electrons by fission fragments.

II. THEORY

Consider the slowing down of a particle of charge q&,
mass m&, and velocity v& with respect to an assembly
of other particles of charge q&, mass rn&, and velocity v&

(the velocity distribution being isotropic, with E(e&)d~&

denoting the number of particles/cc having velocity e&

to etc+ de~) .This problem was solved by Chandrasekhar'
for bodies interacting through gravitation. Because of
the same radial dependence of both fields (Coulomb
and gravitational), Chandrasekhar's equation may
readily be rewritten for electrically charged particles:

8 G. I. Bell, Phys. Rev. 90, 549 (1953).' S. Chandrasekhar, Astrophys. J. 93, 285 (1941).
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In the last expression we have introduced the symbols,
(dEg/dx) = 4v-(q~qg)'

r= glvs(1 vg/vs) =—d(1 —X),

s=g*v~ (1+v~/vs) =d (1+X)

b = (m~ m~)—/(mg+m~),

where d=g-'*va and X=v~/va. Equation (3) represents
the energy loss of particle A per unit path length as a
result of scattering by particles 8 of velocity v&. On

carrying out the integration over the energy distribu-
tion of particles 8, one obtains the total stopping power
of the medium:

X +(vB)Gp(vv) ~(vB)]dvB. (6)'
40

Equation (6) contains implicitly the undetermined
maximum impact parameter D,„. In general, this
impact parameter is a function of v&, s&, ns&, m&, q&, qa
as well as the external 6elds. In each problem this
parameter must be determined separately.

For the special case of the slowing down of heavy
particles by electrons, m~)&m~=tn, p=m, b=4, qg=e,
q~

——Z~e. Substituting these into Eq. (6), we have

4n.e4 r

(dEg/dx) = — Zg' ~ Ã(v.)G! d(v.);X(v.)]dv„
~&A 0

(7)
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D . =Z~e'/U~ ——2Zge'/U;, (9)

where U; is the ionization energy of the ground state.

In a more exact theory we would have to determine the maxi-
mum impact parameter more precisely.

This function is plotted in Fig. 1 for various values of d.
Since the electrons in a medium are bound in atoms

(molecules), the minimum value of energy that may be
transferred to electrons is the excitation energy of the
first excitation state (Uq). This condition determines
the maximum value of the impact parameter":

Substituting (9) into (2) and taking into account the
fact that U;=E~; ",we obtain

g=4/v, 2 and d=2.

Using Eqs. (7), (8), and the above criterion for de-
termining D, , we may compute the stopping power
of an arbitrary medium. If the momentum distribution
is not known directly, it can be computed from the
radial density D(r) of electrons in the atom (molecule),
which may, in turn, be computed by the Hartree-Pock
method. Equation (7) may also be written in terms of

D(r) as
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Since the momentum distribution for a completely
degenerate electron gas is

observing that v;„e'/h, we obtain
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Fzo. 1. Plot of the universal stopping power function G as a
function of X for different values of d.

III. COMPARISON WITH PREVIOUS THEORIES

If we take the asymptotic value of G[d, )l,] and sub-
stitute it into Eq. (7), we obtain

(a) for v~&&v, (i.e., )l,&&1)

G[d, 'A] = ln(d'X')
and

(14)

(dEg/dx) =—4~e4 (Z, lnI d, I &(v.)dv'
(ve)Av~ ~p

Since J'p"E(v,)dv, =EZ, the number of electrons per
unit volume, and m(v, s)A„/2=I (I is the mean value of
the ionization potential of an atom), we obtain Bethe s

kre4
(dE~/dx) = — Z~'X ~~ D(r)G[2, X(r)]dr, (11)

mes' ~ o

where E is the number of atoms/cc, and X depends on r
in the following way:

) =v~/v, (r) = (Egm/Eg;„"mg)'*

[2E&m/Evo&" (r)m&] l = [2mE&/rri& p(r) e]l. (12)

The potential q (r) is given by

Ze (Z —1)e 1 t" I"D(r')
y(r) =—— —

~ D(r')dr'+ dr'
z

(13)

This equation is identical with that of Fermi and Teller"
except for the factor of 4.

(a) Stopping Power of Hydrogen for Protons

The velocity distribution of electrons in hydrogen is:

for atomic hydrogen, XH(v, ) =En'(v, —vp),
for molecular hydrogen, XH, (v,) =1Vn, 8(v,—vpm),

where X is the electron density and vP (vP') is the
velocity in the ground states of atoms (molecules).
Using these expressions in Eq. (7) we obtain the atomic
stopping cross section in ev-atom ' cm':

1 (dE„)
I

= —2.39X10 "G[2;X(E„)]/E,(ev), (19)$4 dx)

where E„is the proton energy,

Xn ——vv/vP = [E„(kev)/24.8]'
and

(20)

)I,Hs= vv/vpH'= [E„(kev)/28.3]'*. (21)

Computing the values of the function G[2,) ], we ob-
tain the slowing down curves for protons in atomic and
molecular hydrogen (Fig. 2). The theoretical results for
molecular hydrogen are in good agreement with the
experimental data of Reynolds, "Philips, "and Keyl. '4

n E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).
"Reynolds, Dunbar, Wenzel, and Whaling, Phys. Rev. 92, 742

(&953)."J.A. Philips, Phys. Rev. 90, 532 (1953).
&4 P, K, Weyl, Phys. Rev. 91, 289 (1953),

IV. COMPARISON WITH EXPERIMENT

To test the theory, we shall calculate the stopping
power of some gases for protons and o. particles.
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FIG. 2. Comparison of the theoretical calculations of the stopping
power of some gases for protons with experimental data.

V. ROLE OF ELECTRON CAPTURE IN THE
SLOWING-DOWN PROCESS

From Eq. (9), taking into account U, e'/2ap, we
obtain D . =4apZ~. If the effective field is screened

by captured electrons, D, is smaller than 4apZ&.
For protons we have Zg ——1 and D =4ao. If the

dipole character of the hydrogen atom (i.e., weak
screening of the Geld of the nucleus) and its dimensions
(the distance from the nucleus to the electron being

2ap) is taken into account, the amount of energy loss

"D. R. Hartree and W. Hartree, Proc. Phys. Soc. (London) A166,
45O (1938).

(b) Stoyying Power of Argon for Protons

The stopping power of argon is computed with the
help of Eqs. (11), (12), (13) and the radial density of
electrons taken from Hartree and Hartree. "Here we
cannot take the velocity distribution in direct form as
in the case of hydrogen, because in A there are eliptical
orbits, and therefore the velocity of each electron is not
constant. Throughout the energy region, the theoretical
curve is in agreement with the experimental data to an
accuracy of 15% (see Fig. 2). A slight hump is ob-
served both in the experimental data and in the theo-
retical curve at a proton energy of 300—600 kev. This
is due to the increase in the relative contribution of the
J. electrons in the slowing-down process. The contribu-
tion of the particular shells in the process is shown in

Fig. 3. It is seen that 2—3 outer electrons are most im-

portant in the energy range 50 kev. The absolute
values of the stopping power and its dependence on
energy are very sensitive to the shape of D(r) especially
in the external region Le.g. , the stopping power of argon
as computed from D(r) without exchange is too high by
20'Fo)

both for protons and neutral atomic hydrogen is the
same to a first approximation.

For n particles Zg = 2 and D, =8ao. Since the e8ec-
tive radius of the nuclear field of a neutral He atom is
concentrated in the region 1.5uo, we obtain a consider-
able difference between the stopping power of helium
ions and neutral atoms. For nuclei of larger Z~ this
difference will increase quickly and the process of slow-

ing down has to be considered simultaneously with
electron capture. By way of illustration, we shall con-
sider the stopping process of n particles in molecular
hydrogen.

When a monoenergetic beam of n particles penetrates
into gaseous molecular hydrogen, the 0. particles cap-
ture electrons to form neutral atoms and singly charged
helium ions. Denoting by O.H, o, crH, +, and crH, ++ the
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atomic stopping cross section of the respective com-
ponents, and by pH, e, pH, +, and p&.++ the fractional
content of the constituents of the beam, the actual
stopping power is given by

where
&=pir*'&rre'+ pire+&ne++ pne++&He++, (22)

o-neo= —38.2X10—"G[Q 7 X]/E (ev),

one++= —38.2X10 "G[2;X]/E (ev),

(23a)

(23b)

0 H +—0 H 0+9.6X10

X(G[0,7; X]—Gl 2, X])/E (ev). (23c)

In the last expression we take into account the fact that,
for He, D, is 1.5 ap [D, may be determined very
easily from the plot of Ip(r) for the helium atom), and

2

Di stcl. n.ce g~olTI nuc&ecLs in. a,
FIG. 3. The radial density of electrons in an argon atom, and

their relative contribution to the stopping power for protons in the
low- and high-energy ranges.
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the fact that, for He+ in the region 0—1.5 ao, the eGective
charge is 2e; outside this region, the eGective charge is e.

No exact theory of the capture process has yet been
presented. Schiff" has made theoretical studies of the
capture cross section for helium ions traversing gaseous
hydrogen, but there is lack of agreement between the
theoretical curve and the experimental results obtained
by Alleson, Cuevas, and Murphy. '~ Therefore we must
take the fractional contents from empirical data.
Snitzer" and afterwards Stier, Barnett, and Evans"
have measured the ratio He+/He++ and Hea/He~. If
we denote these ratios by r» and r02, respectively, we
obtain

pHea f02/(1+f12+f02) pHa+= f12/(1+f12+f02)

pH, ++——1/(1+f12+f02). (24)

The energy loss (per atom of the medium) of helium
atoms and helium ions was calculated from (23) and the
over-all stopping power was calculated from (22). The
values of r~~ and r02 are experimental and are taken from
the graph in Fig. 4. The absolute value as well as the
shape of the curve is in the good agreement with experi-
mental data (Fig. 5).

'0 H. Schi8, Can. J. Phys. 32, 393 (1954).
"Allison, Cuevas, and Murphy, Phys. Rev. 102, 1041 (1956).' E. Snitzer, Phys. Rev. 89, 1237 (1953}.
"Stier, Harnett, and Evans, Phys. Rev. 96, 973 (1954).

Fio. 5. Theoretical energy loss of helium atoms and helium
ions, and the mean energy loss of a helium beam in molecular
hydrogen.

VI. CONCLUSIONS

The stopping power of a medium depends on the
density and the momentum distribution of electrons in
the atoms of the medium. Those electrons whose veloci-
ties are near the velocity of the slowed-down particle
play the decisive role.

In the low-energy region the valence electrons are the
most effective in the stopping process. Their energy is
strongly dependent on chemical bonds. Bragg's law is
therefore not valid (especially below 100 kev). Changes
in the state of a medium (density, temperature, etc.)
have some inhuence on the stopping power, if they are
accompanied by changes in the configuration of energy
levels or momentum distribution of electrons.

On the basis of this theory we can explain at once,
such "anomalies" as the very low stopping power of
water, and the excessive stopping power of I i and C
when compared to the stopping power of Be.

The mean ionization energy of an atom is a good
characteristic of the stopping power of a medium only
for particles with velocity much greater than the
velocity of electrons in the medium. Otherwise, the
relative contribution of the electrons to the stopping
power varies with the energy, and consequently Bloch's
"constant" also varies with the energy. As a result
various investigators have obtained diferent results for
Bloch's constant.


