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Time-Reversal Invariance and Beta-Gamma Angular Correlation*t
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The angular correlation functions between beta and gamma rays from oriented nuclei (with or without
observing circular polarization) are given for use in testing the invariance of the beta interactions under
time-reversal. If the beta interactions are noninvariant under time-reversal, the angular correlation func-
tions have asymmetries, W(0 &&e)HW(0 0, —y) and W(08vpP) WW(08, —

&o, P), where the axis of the
nuclear orientation is chosen as the s-axis, and the beta and gamma rays are assumed to be emitted in the
directions with polar angles 0, 4 —=zero, and 8, q, respectively. I' indicates the circular polarization of the
gamma rays, and P =+1 (—1) for left (right) circular polarization. These asymmetries are of the order of
(p/W) Im(CT*Gs'+Cr'*Cs —CA*Cv' CA'*Cv).

The angular correlation functions between beta and gamma rays from unoriented nuclei (with or without
observing circular polarization) are also considered. However, they do not give us a clear-cut experiment to
test the invariance of the beta interactions under time-reversal.

Another method to test time-reversal invariance is to measure the difference between the values of
Re(C;*C;) and

~
C; ) [ C; l, etc. This is discussed briefly.

L INTRODUCTION

S INCE the first announcements of nonconservation
of parity, I', and violation of invariance under

charge conjugation, C, in weak interactions, ' ' further
experiments4 ' based on different methods have con-
firmed these findings. However, the validity of in-
variance of weak interactions under time-reversal, T,
has not yet been established.

As is well known, invariance with respect to time-
reversal imposes the restriction that the ten coupling
constants C; and C (s=S,V,T,A, I') must be real

(apart from a trivial common phase factor which can
be normalized to unity). Therefore, we can test the
invariance under time-reversal: on the one hand, by
measuring the values of the imaginary parts of the
products of the coupling constants, C;&'&*C;&'& (iW j)
(&'& means with or without prime), or C;*Ct' (i=j andi' ); or on the other hand, by measuring the difference

between values of Re(C;&"*C;&'&) and ~C& "~ ~C;
'

~

(iWj), orof Re(C;*C ) and [C;) ~C/~ (i=j andi')
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For the latter case, Re(C;&'&*C;&'&)= (C;&'&[ ~ [C;&'&(,

etc. , if the beta interactions are invariant under time-
reversal and Re(C;&'&*C;"&)(~C;"&

)
~C;&'& ~, etc., if the

beta interactions are noninvariant under time-reversal.
Two experiments for determining such quantities are
the beta-ray angular distributions from oriented nuclei
and electron (positron)-recoil experiments in J-+J
transitions considered together with beta-ray spectra. '

By exhaustive studies of angular distributions, angu-
lar correlations, and polarizations of emitted beta
particles in beta decay' " and in muon decay""

' According to the great successes of the explanation for the
data on the beta decays of Co~/ Na" ' and Y90,' and of w —p, —e
decay' by the two-component neutrino theory PT. D. Lee and
C. N. Yang, Phys. Rev. 105, 1671 (195/); L. Landau, Nuclear
Phys. 3, 127 (1957); A. Salam, Nuovo cimento 5, 299 (1957)g,
it seems to be natural to put C;= —C . On the other hand, there
is no clear-cut explanation of the data for the beta-ray angular
distribution from oriented nuclei of Co".'' Some of the possible
explanations for the Co 8 data are:

(1) Assuming invariance under time reversal: (a) Cv & =CA& &

=0 and ~M'oT '/~3EF~'&500, which contradicts the result,
~3&/aT~'/~3/F&' 50, obtained by gamma-ray anisotropy from
aligned Co" nuclei PD. Griping and J. C. Wheatly, Phys. Rev.
104, 389 (1956)j. (b) Cs '&=CA&'&=0 and the Fermi-type inter-
action is not scalar but vector. This argument cannot agree with
the data of the electron (positron) recoil experiments on the
neutron LJ. M. Robson, Phys. Rev. 100, 933 (1955)j and on Ne«&

PJ.S. Allen et al. , Phys. Rev. 97, 109 (1955);M. Good et al. , Phys.
Rev. 105, 213 (1957);D. R. Hamilton et al. , Phys. Rev. 105, 673
(1957)j, and the beta spectrum of RaE LM. Yamada, Progr.'

Theoret. Phys. (Japan) 9, 268 (1953)7.
(2) Possible violation of time-reversal invariance: For this

case, we can explain very many ways. For example, Cz&') =Cz&')
=0 and the phase difference of Cz&') and Cz&') is nearly equal to
v/2 or 3v/2; or CA&'& =0 and the scalar, vector, and tensor inter-
actions are out of phase. (The meaning of "out of phase" is that
the phase difference is not equal to 0 or m-. ) The data of the elec-
tron (positron) recoil experiments and ft values on r&' and Ne'e
allow us to assume that 0& () Cv('+ ( Cv')')/() Cs('+ )

Cs'(s) & 1
even in the case of Cg&" =0. A more detailed discussion has been
given by the present authors LSoryusiron Kenkyu 14, 489 (1957)j.

The situation is almost the same for Co~'.
e M. Morita and R. S. Morita (unpublished). See Eq. (1) in

Ambler, Hayward, Hoppes, Hudson, and Wu, reference 2. It has
also been given by many other authors.I Jackson, Treiman, and Wyld, Phys. Rev. 106, 517 (1957);

16



T I M E —REVERSAL I NVARI ANCE 1317

several tests of invariance under time-reversal have
been already proposed, all of which involve the direct
observation of the imaginary part of the product,
C;*C;, etc. Some of them are based on the p or Z de-
pendence of the asymmetry effects in the relevant
phenomena. However, as the p or Z dependence is
usually of the order of rrZ/p (where n is the fine struc-
ture constant) times smaller than the main asymmetry
term, it is rather difBcult to perform these experiments
with sufhcient accuracy.

Some other experiments are based on cross terms
such as (p/W) Im(C& C&i'&) which also niay be very
small or zero, because

~

Cv&'&
~

and
~
C& t'&

~

may be
much smaller than

~

Cs"'
)

and
~
Cr 1'&

~

."Furthermore,
when the angular distribution (or correlation) has
(p/W) Im(CT*C&"'), etc. , as a main term of asym-
metry, it has also (nZ/W) Re(C&*C&i"), etc., as a
Coulomb correction. "Therefore, the lack of (or very
small) asymmetry in these experiments does not give
us any definite information on the invariance of beta
interactions under time-reversal. Conversely, if some
phenomenon has a term like (p/W) Im(Cr*Cs&'&) as
an asymmetry term, it has (nZ/W) Re(C&*Csi") as a
Coulomb correction, which may be very small com-
pared with the main term. The asymmetry in this
phenomenon may be large. Consequently, this phe-
nomenon may reveal the invariance or noninvariance of
beta interactions under time-reversal.

One such experiment was proposed by Jackson et al."
This is the electron (positron) recoil experiment in
polarized nuclei, which has (p/W) Im(Cr*Cs+CT'*Cs'
—C~*Cv—C~'*Cv') in its J (p.Xp.) term The m. ost
suitable beta emitter for this investigation would be
the neutron. However, the counting rate is expected
to be rather limited for the polarized neutron flux
currently available from reactors.

Here we shall discuss another possible method to test
time-reversal invariance. This is to measure the angular
correlation between the beta and gamma rays in the
successive decays of oriented nuclei. The angular cor-
relation function has an asymmetry which is of the form
J (pX k) (J k)" with m= 1 and 3. Here J is the orienta-
tion axis of the nucleus; p and k are the directions of
the momenta of the emitted electron and the gamma
rays. If one assumes the Coulomb correction to be very
small, this asymmetry can be expected only if the beta

107, 326 (1957). B. T. Feld, Phys. Rev. (to be published); T.
Kotani (unpublished).

"M. Morita, Progr. Theoret. Phys. (Japan) 10, 364 (1953);
M. Morita and R. S. Morita, Phys. Rev. 107, $39 (1957).

"Alder, Stech, and Winther, Phys. Rev. 107, 728 (1957)."T.Kotani (unpublished).
"' T. Kinoshita and A. Sirlin, Phys. Rev. 106, 1110 (1957);

107, 523 (1957)."The beta-ray angular distribution from polarized Co" nuclei,
and the measurements of electron polarization from unpolarized
Co~, s Nasm, ' and Y90,' showed that 0&

~
Cz ~'/~ Cr ~'&0.1, even if

the coupling constants are complex numbers. There has. been no
such indication for Fermi type prior to this.

'6 See various formulas given by several authors.

FIG. i. Geometry for
beta-gamma angular cor-
relation from oriented
nuclei. The orientation
axis J of the nuclei is
chosen as the z-axis. The
beta and gamma rays
are assumed to be
emitted in the directions
y and k, with polar axes
0, 4=—zero, and 8,
respectively.

interactions are not invariant under time-reversal, and
it has the order of magnitude (p/W) Im(C~*Cs'
+Cr'*Ca Cg*Cv' —C~'*Cv)—(see Sec. II).Both aligned
and polarized nuclei may be used for this experiment.

When J and k are perpendicular, this asymmetry
vanishes. In this case, however, if time-reversal in-
variance is violated in the beta decay, the beta-gamma
angular correlation function can still exhibit a similar
asymmetry, which is related to PJ (pXk), by observ-
ing the circular polarization I' of the gamma ray and
using polarized nuclei. This asymmetry changes its
sign for opposite signs of the circular polarization of
the gamma ray, P=&1, and its order of magnitude
is also (p/W) Im(Cp*Cs'+Cr'*Cs —CgeCv' —C~'*Cv)
(see Sec. III). In Sec. IV, various angular correlations
in the successive decays of oriented or unoriented
nuclei are related to each other. Some final remarks are
given in Sec. V.

In Appendix I, the angular correlation functions
between beta and gamma rays from oriented nuclei
(with or without circular polariza, tion) are given. For
comparison, the angular correlation functions between
beta and gamma rays from unoriented nuclei (with or
without circular polarization) are also given in Ap-
pendix II.

II. BETA-GAMMA ANGULAR CORRELATION
FROM ORIENTED NUCLEI'

We shall use the following definitions of orientation
hereaf ter.

(1) a„=relative population of the initial magnetic sub-
state.

(2) Unoriented nuclei: a =a (constant), for all m.
(3) Oriented nuclei:

Aligned nuclei: a =a, a W a for
~
m ( &

~

m'
[ .

Polarized nuclei: a 4a ~ for m/ nz'.

The orientation axis of the nuclei is chosen as the
s-axis. The beta and gamma rays are assumed to be
emitted in the directions with polar axes 0, 4 =0, and
e, q, respectively (see Fig. 1).

The angular correlation function between beta and
gamma rays in the successive decay of the oriented

'7 After this work was completed, the authors have heard that
the same problem has also been calculated by R. B. Curtis and
R. R. Lewis LPhys. Rev. (to be published)g.
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Fro. 2. A special ge-
ometry for beta-circu-
larly polarized gamma
angular correlation from
polarized nuclei. The
polarization axis J of
the nuclei is chosen as
the s axis. The beta and
gamma rays are as-
sumed to be emitted in
the x-y plane. The angle
between the directions,
y and h, of the momenta
of the beta and gamma
rays is p.

Absolute temperature
ToK
Degree of orientation
(Jz)/J =Zma /JZ~
Anisotropy defined&
in (3'), -a'

0.1 0.05 0.03 0.015 0.01 0.005 0.002

0.127 0.262 0.400 0.615 0.737 0.899 1.000

0.004 0.015 0.037 0.097 0.145 0.226 0.333

a Calculated by Miss Hilda Oberthal. The authors are very grateful to her.
b Note added ie proof.—In experiments, it is much easier to normalize

the anisotropy in (3') by W'(m/2, ~/6, w/2) instead of W(~/2, m/2, ~/2). For
this case, the third line of Table I should be read as 0.004, 0.015, 0.038,
0.215, 0.183, 0.325, 0.550.

TAsr.z I. Calculated anisotropy and degree of orientation for
Coss (CeMgco nitrate, magnetic Geld strength for nuclear
polarization=800 gauss) with the assumptions C;= —C, ~

3f'or(s
8 Mr ~', and Cv= Ca=0, and the definition of (3').'

nuclei, W(0,8, y), for a 2—~~2—&—+0 transition is
derived from (A1) of Appendix I by averaging over the
circular polarization of the gamma ray.

W(0,8, &p) = ', (W(O', 8-, qr, I'=+1)
+W(0,8, y, I'= —1)}. (1)

W(0,8, q) is the E-independent part of (A1), so we do
not rewrite it here.

In (A1), the first half, which contains square terms
IC;I' or IC I'and cross terms C;*C; or C *C (i'),
is the contribution from the correction factor of the
beta spectrum, and it is equal to the gamma-ray angular
distribution (beta particle unobserved) in the successive
beta and gamma decays of oriented nuclei. The last
half, which contains cross terms C;*C,' (i =j and i&j ),
appears in the case of nonconservation of parity, which
has already been demonstrated. '—' The terms which
have different sign for the electron and positron decays
appear in the case of violation of invariance under
charge conjugation. The imaginary parts of the products
of coupling constants appear in the case of noninvari-
ance under time-reversal. As the Coulomb correction
terms may be of the order of rrZ/p ( —,'o) smaller than
the main terms, the interesting asymmetry which
appears in the case of noninvariance under time-re-
versal is

—2 Im (Cr*cs'+Cr'*Cs —C~*cv' —Cg'*Cv)

XMor*Mp(p/W+6) sino" sing sing

X (3Br cos8+2Bs cos'8), (2)

which is related to the terms J (pX k) (J k)" with n=1
and 3, and 82 and 0~ are given in Appendix I. As 81
and 82 have nonzero values in both polarized and
aligned nuclei, these two kinds of oriented nuclei
may be used. 3EGT*MF is real and it may be plus or
minus.

In order to test the invariance of beta interactions
under time-reversal, it is sufhcient to know the difI'er-

ence between' W(0~,8, y) and W(0",8, —y). Such a
difference is possible only in the case of violation of
invariance under time-reversal, if one assumes the
Coulomb correction for Eq. (2), Re(c~*cs'+ ~ )
X (crZ/p), to be very small.

To maxitnize the asymmetry given in Eq. (2), we

put 0= p=z/2. In this case, most of irrelevant asym-
metries in W(0,8, q) vanish.

Let us de6ne an anisotropy as follows:

Anisotropy at 8=

where

W (7r/2, 8,z./2) W(z/—2,8, —z./2)
(3)

W(z-/2, z./2, 7r/2)

numerator = —(4/g6) (p/W)
XIm (Cr*Cs'+ Cr'*C s Cz*cv' —C~ '*Cv)—
XMor Mp sin O~ sin q sin8

X (3Bt cos8+2Bs cos 8))
denominator

=( ICsl'+ ICs'I'+ ICvl'+ ICv'I'} IMpl'A,

+{IC. I + IC.'I + IC. I + IC.'I }IM-I'(~./2).

This anisotropy has a nonzero value if beta interactions
are not invariant under time-reversal. Conversely, if
the beta interactions are invariant under time-reversal,
it vanishes.

The value of 8, which makes (3) a maximum, cannot
be determined without specifying the nuclear orienta-
tion. In the case of complete orientation, u =0 except
a~ (and a ~) WO, (3) becomes

Anisotropy at 8
= (g/v'6) (p/W)

XIm(Cr*Cs'+Cr'*Cs C~*cv' C~'—*Cv)—
)&3fGT*MF sine cos'0
—: ((ICs I'+

I
Cs' I'+

I
Cv I'+

I
Cv' I') IMp I'

+(ICr Is+ ICr'ls+ IC. le+ IC~'ls) IMo, l }, (4)

where the Fierz terms are set equal to zero in con-
formity with experimental allowed beta spectra. The
anisotropy (4) has its maximum value at 8=a./6,
namely,

Anisotropy at s./6
= (3/2~2 (p/W) Im(cr Cs'+Cr'*Cs
—Cg*cv' —Cz'ecv)Mor*Mp

—:
I denominator of (4)j. (5)

The numerical values of the anisotropy are given,
for example, for Co" (cerium magnesium cobalt nitrate



TI M E —REVERSAL I N UARIAN CE

which was used in the experiments' of Wu et at.) in
Table I, with the assumptions C;= —C, I Mori'
= 8

I Ms
I
', and Cv= C~——0, and the de6nition

Anisotropy at s-/6

W(s/2 s./6, s./2) —W(s-/2, s/6, —s/2)

W (s./2 s./2, s./2)

=n'(p/W) Im(cr*cs'). (3')

III. BETA—CIRCULARLY POLARIZED GAMMA
ANGULAR CORRELATION FROM

ORIENTED NUCLEI

The asymmetry, (2), in W(0,8, p) vanishes at the
following special values of angular variables: 0"=0, s",

8=0, s./2, s, 3s/2; or qr =0, s..As we can see in Eq. (A1)
of Appendix I, where the beta-circularly polarized
gamma angular correlation from oriented nuclei is
given for 2—&—&2—&—+0 transitions in the most general
geometry, we have no good term to test invariance of
beta interactions under time-reversal at 0'=0, s., 8=0,
s., or pe=0, n. At 8=s./2 (or 3s/2), however, the beta-
gamma angular correlation can still have an asymmetry
which appears in the case of violation of invariance
under time-reversal. This can be seen by observing the
circular polarization of the gamma ray and using

polarized nuclei.
For example, we obtain from (A1) of Appendix I

an angular correlation function between beta and cir-
cularly polarized gamma rays for a special geometry
(see Fig. 2):

W(~/2 ~/2 ~ P) = L I
cs I'+

I
cs'I'+

I
«I'+

I
«'I'~2 Re(Cs*cv+Cs'*Cv') (v/W) jlMv I'~ ~

+[Ic.I'+ I c.'I'+ I c.I'+ Ic~'I'w2 Re(c.*c.+c.'*c.') (~/w)] I
Mo. l'(~2/2)

L2 Re(Cr~cs +Cr Cs Cg*cv' ——CA, Cv)&2 Im(c~*cs'+C~' Cs—Cr*Cv' —Cr'*Cv) («/p) j
XMQT MF(p/W+6)PA~ cosy+[—2 Im(Cr*Cs'+Cr *Cs—Cg Cv Cg Cv)

%2 Re(c~ Cs'+C~'*Cs Cr*Cv' —Cr'*Cv) (—«/p) jMoT*MF (p/W+6) Pc~ sing

~[2 Re(Cr*Cr' —C&*C&')a2 Im(cr*c&'+Cr'*C&)(«/p))IMGTI (p/3W)PA3 cosy, (6)

where In the case of complete polarization:

P=+1 for left-circularly polarized gamma rays
= —1 for right-circularly polarized gamma rays,

Anisotropy = (4/g6) (p/W)

XIm(Cr Cs+Cr Cs CA Cv CA *Cv)

XMQ'r MlpP sin@—.'[denominator of (4)j. (8)

%hen one integrates over the direction of emission of
the gamma ray, W(0,8,y) becomes the angular dis-

tribution function of beta rays from polarized nuclei

which is given by many authors. ' ""
(1) W(s/2, s./2, y,P) WW(vr/2p/2, —p, P), -

(2) W(~/2p/2 m/2, P) WW(m. /2p/2p. /2, P), -—

and A~, 2, 3 and C~ are given in Appendix I. The upper
(lower) sign refers to the electron (positron). This The value of (g) at y=s./2 is 8/343(=1.5) times larger
angular correlation function is also given for the allowed than that of (5)
beta ray and quadrupole radiation for 2—~—+2—&—+0
transitions. IV. RELATION TO OTHER ANGULAR

This angular correlation function will have the fol- CORRELATIONS

lowing two asymmetries:

with the assumption of noninvariance of beta inter-
actions under time-reversal.

The anisotropy is de6ned by W(0~,8, p) sin8d8dy= W(O~) in 2—~~2. (9)

Anisotropy =W(s/2, s/2, q,P) W(s/2 s./2, —p,—P)

W(s/2, s./2 s./2)

= —(4/v'6) (p/W) Im(cr*ca'+Cr'*Ca

—C~*cv'—C~'*Cv) Mo r*MtPci sin q

—: [denominator of (3)$, (7)

where we also neglect the Coulomb correction. This
anisotropy takes its maximum value at p= &s./2.

Integrating over the direction of emission of the
beta ray and the azimuthal angle p of the gamma ray
and also over the electron energy, W(0,8, p) becomes

the gamma-ray angular distribution function from

oriented nuclei.

dp t sinOdOdC ~LOP(ZW)E'pWdWW(08 q)
4

=W(8) in 2—™+2—&~0, (10)
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which also agrees with the gamma-ray angular dis-
tribution function given by Tolhoek et al."

If one puts a =a in (6), then Ai ——(As/2)= —2As
=4a, and Ci ——0; consequently (6) becomes the beta-
circularly polarized gamma angular correlation in un-
oriented nuclei":

[(6) with a„=a]=W(y,P), (11)
where fp is an angle between p and k.

This is also obtained from (A1) by putting a =a
and 0=0.
[W(Q,g, y,P) with a =a and 0=0]=W(g,P), (12)

where 8 is an angle between p and k.
The general formula for the beta-circularly polarized

gamma angular correlation is given in Appendix II. It
has also been given in reference 12, and (12) can be
derived from Eq. (7) of this reference, where the beta
interaction is assun~ed to be STP.

As we can see immediately from (A3), the beta-
circularly polarized gamma angular correlation in un-

oriented nuclei does not offer a clear-cut experiment to
test invariance of beta interactions under time-reversal,
just as in the case of the'"'angular distribution of beta
rays from polarized nuclei. The terms which appear
due to the violation of invariance under time-reversal
are of the order of (trZ/p) smaller than main asym-
metry terms even in the forbidden beta transitions.

V. CONCLUDING REMARKS

In the successive decays of oriented nuclei, the angu-
lar correlation function between beta and gamma rays
(with or without observing circular polarization) has
strong asymmetries which appear in the case of non-
invariance of beta interactions under time-reversal,
namely, W(O~ 0 p)WW(0~, 0, —p) and W(O 0 &p P)
WW(0, 8, —

fp, P).

When the circular polarization of the gamma rays is
not observed, the most convenient geometry is that in
which the beta particle is emitted perpendicular to the
plane which is formed by J and k. In this case both
aligned and polarized nuclei may be used.

When the circular polarization of the gamma rays is
observed, the most convenient geometry is that with
J, p, and k perpendicular to each other. In this ge-
ometry, only polarized nuclei should be used. The
maximum value of the anisotropy defined by (8) is
almost 1.5 times larger than that described in the pre-
ceding paragraph and defined by (5).

All of the explicit formulas given in the present paper
(except Appendix II) are for the special transition
scheme, 2—&~2—&—&0 with allowed beta rays and quad-
rupole gamma rays. The above-described situations are,
however, still valid [except for some algebraic factors
and the energy dependence of the beta rays for forbidden
transitions in W(0~,8, &p) and W(0,0, y,P)] for other
transition schemes including forbidden beta transitions,
for which angular correlation functions can be easily
obtained from equations given in an earlier paper" with
slight modifications. It is advisable to choose nuclei
which are easily oriented and have AJ=O for allowed
beta decay, or hJ= +e for nth-forbidden beta decay,
and MoT and Mv (or the corresponding matrix ele-
ments for the forbidden cases) of the same order of
magnitude.

Further investigation of this subject is now being
made.

The authors would like to express their sincere
thanks to Professor W. W. Havens, Jr., for his hos-
pitality, and to Professor C. S. Wu for v'aluable dis-
cussions and for showing us the data of Co' and Co"
before publication. One of us (M. M.) is indebted to
the Nishina Memorial Foundation for a grant.

APPENDIX I. ANGULAR CORRELATION FUNCTION BETWEEN BETA AND GAMMA RAYS
FROM ORIENTED NUCLEI (WITH OR WITHOUT POLARIZATION)

The angular correlation function between beta and gamma rays from oriented nuclei (with or without circular
polarization) is easily obtained by slight modifications of the calculation in reference 20.

The angular correlation of the allowed beta ray and the quadrupole gamma ray is given below for the
2 —~—+2—&~0 transition. For the geometry, see Fig. 1 in Sec. II.
W(e,g, ~,P) =[)CsI'+

I
cs'I'+

I Cv I'+ Icv'I'~2 Re(Cs*Cv+Cs'*Cv') (~/W)] 1M&l'

)&{(Ai+38i cos'0+Br cos'8)+2P(Ci cosg+Cs cos'8) )+[[Cr('+ (
Cr ('+ [ Cg

( + [ C+
&2 Re(Cr*C~+Cr'*C~') (y/W)) ~

Ma T
~

's {(3A s+38s cos'8 —48s cos'8)+2PCs cosg)

+[2 Re(Cr*Cs'+Cr'*Cs C~*Cv' C~'*Cv—)+2 Im(C—g*Cs'+C~'*Cs —Cr*Cv' —Cr'*Cv) (crZ/p)]
)&Mor*Mv(P/W+6) [coso{(—Cs+3C4 cos'8 —2Cs cos'0)+2P(As cos8+ 284 cos'8)

+sino costp sing{(3C4 cosg —2Cs cos'8)+P( —At+3'Bs cos'8))]+[—2 Im(Cr*Cs'+Cr'*Cs C~*Cv' C~'*Cv)— —
&2 Re(C~*Cs +C~'*Cs Cr*Cv' Cr'*Cv) —(ctZ/p)]M—G'f Mv (p/W+6) sinO sing sing

&( {(38i cosg+28s cos'8)+P (Ci+3Cs cos'8) )&[2 Re(Cr*Cr' —C~*C~')
+2 Im(Cr*Cg'+Cr'*Cg) (ctZ/P)] ~

MoT
~
s(P/3W) [cosO~{(—Ci—3Cs cos'8+4Cs cos'8)+2P(A4 cosg+Bs cos'0) }
+sino cosy sing{ (—3C4 cosg+4Cs cos'8) —P(As+684 cos'8))], (Ai)

"'H. A. Tolhoek; see, for example, Beta and Gamma Ray -SPectroscopy, edited by K. Siegbahn (North-Holland Publishing
Company, Amsterdam, 1955), p. 615. Morita, Ogats, and Sakai, Physics 22, 915 (1956); and also Bull. Kobayasi Inst. Phys.
Research 6, 69 (1956)."See Appendix II or reference 12.

se M. Morita, Progr. Theoret. Phys. (Japan) 15, 445 (1956).
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with the upper (lower) sign for the electron (positron), P=+1 for left-circularly polarized gamma rays, and
P= —1 for right-circularly polarized gamma rays. MGT MF is real and it may be plus or minus.

Without observing the circular polarization of the gamma ray, all of the terms which are multiplied by P vanish.
A„,8„,and C„indicate the dependence of each term on the nuclear orientation. They are introduced only for

abbreviation and are not completely independerit, but Gve of them are independent. Their explicit forms are given
as follows:

~ 1 a2+ai+ a—1+a—2

A2= 2a2+ai+2ao+a-i+2a —2,

A 2
=—2 up+ ai+a 1 2a-

+4= a2+ai —3ao+a 1+a 2, — —

Bi=—ai+ 2ap —a

B2 —a2+——4ai —6ao+4a 1
—a 2,

Bp———2a2+Sai —6ao+Sa 1—2a 2)

B4 a2 ai a—1+a—2

Bo=a2—2ap+ a

Bp———2a2 —ai+6ao —a 1—2a 2,

Ci a2+ al a—1+a—2

cp=a2 —2ai+2a 1—a

Cp ———2a2—ai+a 1+2u 2
(A2)

C4 ai+ a—1

Co=up —3ai+3a 1—a

with a = relative population of initial magnetic substate.

A„/0 for both oriented and unoriented nuclei.

B„WOfor oriented nuclei,
=0 for unoriented nuclei.

C„/0for polarized nuclei,
=0 for both aligned and unoriented nuclei.

APPENDIX II. ANGULAR CORRELATION FUNCTION BETWEEN BETA AND GAMMA RAYS
FROM UNORIENTED NUCLEI (WITH OR WITHOUT CIRCULAR POLARIZATION)

The angular correlation function between beta rays and circularly polarized gamma rays from unoriented nuclei
can be derived from reference 20 with slight modifications. In M(4) and (30) through (32) of reference 20, 224

should be replaced by 24. Equation (31) and the second line of (32) should be multiplied by pi"+"'+~'+~"+".Then
the beta —circularly polarized gamma angular correlation function is obtained as follows:

W(8,P) =PL( P (—)" 'bl, z, &"&W(jijiLL', 24j)(2ji+1)&}
n J&L'

&( & ( )~'+ "P"+"—'+z'+~"+"(jilliillj2)(jillii'llj2)P (1111'jpji)}7P (cos8) (A3)

(AS)

for which the Legendre polynomials of odd order vanish.
The angular correlation functions between beta rays and circularly polarized gamma rays in the successive

triple cascade transitions of unoriented nuclei will be given later (Phys. Rev. , to be published).

for j—s~ji—'—+j2 transitions. P is the circular polarization as given in Appendix I.8 is equal to 0(+1)for magnetic
(electric) radiation.

The bi, l, &"~'s are given for the allowed beta transition as follows:

bop&'& =I[C.I'+ I
cs'i'+

I Cv I'+
I
Cv'I'~2 Re(cs*Cv+Cs'*Cv') (~/W) 31MF1'

b»"'= —~3L I Cr I'+
I
Cr'I'+

I CA I'+
I
CA' I'+2 Re(Cr*CA+Cr'*CA') (~/W) j ~

Mar I'

boi 1 = $2 Re(Cr*Cs'+Cr'*Cs CA*Cv' CA'*Cv)— —
+2 Im(CA*Cs'+CA'*Cs —Cr*Cv' —Cr'*Cv) (nZ/P) jMQT MF(P/W),

bii&'& =Wv2L2 Re(Cr*Cr' CA*CA') W2 Im—(Cr*CA +Cr CA) (42Z/p) j I MoT I'(P/W). (A4)

Here, the upper (lower) sigh refers to the electron (positron) decay. Mor MF is real.
When the circular polarization of the gamma ray is not observed, the beta-gamma angular correlation function is

W(8)=-22(W(8, P=1)+W(8, P= —1)},


