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It is shown that for nuclei in which the ground state wave function is symmetric in the space coordinates
of all the nucleons, such as O', H', He', He4, the integrated bremsstrahlung-weighted cross section for
electric dipole absorption is simply related to the mean-square radius of the nucleus, independent of the
existence of correlations between the motions of the nucleons. This relationship was first derived by Levinger
and Bethe on the assumption of absence of correlation, and was found to be at variance with known experi-
mental results in heavy nuclei. Experimentally, the relationship is well verified by data on H~ and He4.
The relationship of the integrated bremsstrahlung-weighted cross section to certain nuclear parameters
in the case of Li' is briefly discussed.

ET the electric dipole absorption cross section,
~ neglecting retardation, of a nucleus for photons

of energy E, averaged over all orientations of the
nucleus, be denoted by o(E). The integrated brems-
strahlung-weighted cross section 0.b is then dered by

t "o(E)
dE.

In a now classic paper, Levinger and Bethe' showed
that under certain assumptions, Ob is related to the
mean-square-radius 1.' of the nucleus in its ground
state. The assumption involved was essentially a lack
of correlation between the motion of individual nucleons
in the nucleus (statistical model). A comparison of the
formula which they obtained s
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(where 1V, Z, and A are, respectively, the neutron
number, atomic number, and mass number of the
nucleus), with available experimental data showed that
the above assumption is not justi6ed in heavy nuclei,
These authors suggested that better agreement with
experiment would follow if one assumes a crude 0,-
particle model of the nucleus and takes 8,' in Eq. (I)
to represent the mean-square-radius of the n-particle
units.

Recently, Rustgi, and Levinger' have studied the
photoeGect in the lightest nuclei H', H', He', and He',
and among other matters have investigated the cross
section o.b. The entire analysis has been based primarily
on wave functions for these nuclei obtained by vari-
ational techniques. In the case of He4, where recent
experimental data allow the determination of an experi-

*Work supported by the U. S. Atomic Energy Commission.' J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).
~In the original formula of Bethe and Levinger, which was

correct only to terms of order 1/A, the factor A replaced the
factor A —i.

s M. L. Rustgi and J. S. Levinger, Bull. Am. Phys. Soc. Ser.
II, 2, 62 (1957); M. L. Rustgi, doctoral dissertation, Louisiana
State University (unpublished); M. L. Rustgi and J. S.Levinger,
Phys. Rev. 106, 530 (1957).

mental value for O-b, they find that this is nearly twice
as large as the theoretical values obtained from the
wave functions. They attribute the difFiculty to the
fact that the wave functions give too small a mean
square radius for He4, as is also indicated by the fact
that the mean square radius of He4 as measured by
scattering of fast electrons is also in disagreement
with the theoretical values. On the other hand, they
note that if the observed 0 b is used to calculate a mean
square radius from Eq. (I), this value is in agreement
with the experimental value measured by electron
scattering.

The present author has noted that the validity of
Eq. (I) for these four nuclei does not depend at all on
the presence or absence of correlations in the motion of
the nucleons in these nuclei but follows from the single
assumption that the ground-state wave function is
symmetric in the space coordinates of the nucleons

(2) involved. Such symmetry can exist even in the presence
of intense correlations in the nucleonic motion.

We are thus faced with the question as to the extent
that this assumption of space symmetry is justi6ed.
In the case of H', this assumption is rigorously correct
on the basis of parity considerations. It would also be
rigorously correct for H', He', and He4 if the forces
between nucleons are of an attractive Wigner and
Majorana character only, and nearly correct if forces
of this character strongly dominate the coupling scheme
in these nuclei (Wigner supermultiplet approximation).
Even in the presence of some Bartlett, Heisenberg,
and tensor forces, variational calculations have indi-
cated that the dominant term in the ground state of
these nuclei is still the completely symmetric S state
with relatively small admixtures of D, I', and asym-
metric S states. This last statement, in itself, is not
sufficient to justify Eq. (I) since even if the percentages
of asymmetric states are small (of the order of a few
percent), their amplitudes may still be quite large and
there can be contributions from cross-terms between
symmetric and asymmetric states. However, a fortunate
circumstance intervenes: After the symmetric 8 state,
the most important terms which appear to be present
in the ground states are D terms, and cross terms be-
tween 5 and D terms do not enter into the derivation
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of (2). The only cross-terms which could be important
are those between the dominant symmetric S state and
another asymmetric S state. The amplitudes of the'
latter seem to be very small.

Our conclusion is therefore that Eq. (2) should be
quite accurate for these nuclei, and its failure to be
verified would raise serious doubts concerning our
present picture of the ground-state wave functions for
these nuclei.

To derive Eq. (2) on our stated assumptions, we
begin with some general considerations. Let r„(p=1,
2, ~ Z) be the position vectors of the protons, r„
(rs=1, 2, N) be. the position vectors of the neutrons
in a nucleus of mass number A=Z+N. We let R
represent the center of mass of the nucleus, Rp the
center of mass of the protons in the nucleus, and RN
the center of mass of the neutrons in the nucleus. The
electric dipole moment of the nucleus, relative to its
center of mass, is then
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Now, if the ground-state wave function is further

Now employing the familiar expression for o(E) and assumed to be completely symmetric in the space

the closure relation in the usual way, ' one obtains coordinates of a11 nucleons, one has'

np nN n) ppp pNN ppN p

where the angular brackets mean the expectation value
in the ground state of the nucleus. We have further that
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Sy the exclusion principle, the wave function. is anti-
symmetric under exchange of space and spin coordinates
of any pair of like nucleons. Since R»' does not involve
the spin operators, it readily follows that (r„') has the
same value np for all protons, (r„') has the same value
nN for all neutrons, (r„r„)has the same value Ppp for
all distinct pairs of protons, (r„r„)has the same value
PNN for all distinct pairs of neutrons, and (r„r„)has
the same value PPN for all proton-neutron pairs. Hence

1 1 Z—1 E—1
(+pN ) np+ nN+ Ppp+ PNN 2PpN.
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We can derive similar expressions for the mean square
radius (R2 of the nucleus, and for the mean square

A'A
(RpN') = (n —p) = m'
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It should be remarked that the complete spatial
symmetry of the wave function is a sufhcient but not a
necessary condition for the validity of (4).

The best experimental determinations of the mean
square radius of the charge distribution are those
obtained by high-energy electron scattering. ' However,
care must be exercised in employing these in the
above equation since these experiments have also
shown that the free proton itself has a root-mean-square
radius (R~=0.77X10 "cm, while the above derivation
is correct only for a proton with a point charge. The
electron-neutron interaction experiments also indicate
the existence of a finite second radial moment of the
charge density distribution of a neutron, but this is
sufIiciently small to be neglected in the above calcu-
lation. The formula (4) can be corrected for the finite
size of the proton charge distribution, provided one
assumes that this charge distribution is not appreciably
polarized when the proton is in the close proximity of
other nucleons in the nucleus. In this case, we may

4 For a charge-symmetric (self-conjugate) nucleus, np=nN and
PPP =PNN

s See R. Hofstadter, Revs. Modern Phys. 28, 2N (1956).
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write in place of (4)

4''(e') Z1V
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3 ihc) A —1

where N.,' is now the directly measured mean square
radius of the nucleus involved.

If one applies Eq. (5) to deuterium and inserts the
values obtained from high-energy electron scattering
experiments by Hofstadter and his collaborators
(R,=2.10)&10 " cm, Sp=0.77)&10 " cm, one obtains
0~=3.70 millibarns. From the experimental data on
photodisintegration of the deuteron, Rustgi jfand
Levinger' obtain a value for os (after correction for
photomagnetic contributions to the cross section) of
3.7 millibarns. The agreement is excellent. The situation
in He4 is also satisfactory. The measured value of S,
by electron scattering" is 1.61)(10 " cm, with an
accuracy of probably better than 5%. This yields from
Eq. (5) the value os=2.53 millibarns. Rustgi and
Levinger' obtain for a direct experimental value 2.7
millibarns with an accuracy of 10 jo. The good agree-
ment suggests (1) that the symmetry assumption is
reasonably well fulfilled, and (2) that the charge
distribution measured by high-energy electron scat-
tering is the same charge distribution which gives rise
to electric dipole absorption of radiation at moderate
energies.

The failure of variational wave functions to yield
satisfactory values of either N., or a& for He4 suggests
that the assumptions concerning nuclear forces con-
tained in these calculations may be severely in question.
Whether repulsive cores, many-body forces, or nonlocal
forces are required to rectify the situation is not clear.

' J.A. McIntyre and R. Hofstadter, Phys. Rev. 98, 158 (1955);
J. A. McIntyre, Phys. Rev. 105, 1464 (1956).' Professor Levinger has kindly informed us that he and M. L.
Rustgi have reanalyzed the data of McIntyre by a somewhat
different method. They obtain a value for (R,(H')= 2.14&(10 "
cm in essential agreement with McIntyre. We are indebted to
Professor Levinger for this information and for general comments
on this manuscript.

R. W. MacAllister and R. Hofstadter, Phys. Rev. 102, 851
(1956); R. Blankenbecler and R. Hofstadter, Bull. Am. Phys.
Soc. Ser. II, I, 10 (1956).

Unfortunately, no information is available concerning
H' and He' and it would clearly be of interest to have
determinations of R, and 0~ for these nuclei.

When one goes to nuclei heavier than He4, 0.~ is no
longer related to any simple parameters of the nucleus
and it therefore can yield useful information only. on
the basis of further assumptions concerning the ground-
state wave function which may have little substantial
basis in fact. The case of Li' shows some promise,
however. Some valuable information may be obtained
if one is willing to admit the following assumptions':

(1) Li' has a structure consisting of an alpha particle
and two loosely bound nucleons, the alpha particle
being unpolarized by the orbital nucleons.

(2) One can neglect the Pauli principle in requiring
that the wave function be antisymmetric with respect
to an orbital nucleon and a like nucleon bound in the
alpha particle. In this case one can show that

a' (e')
os(Li') =~s(He')+ —

I
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where (r') is the mean square separation of the orbital
proton and neutron. Under the same assumptioris,
knowledge of the mean square radius of the charge
distribution in Li' (which is available)' would allow
one further to determine a second important parameter
of the wave function, namely (p'), the mean square
separation of the center of mass of the alpha particle
and the center of mass of the two orbital nucleons,
through the formula

6I '(Li') =1'r(p')+T'g(r')+-'(R '(He4)+-'(Rps (7)

Knowledge of the two parameters (rs) and (p') would be
quite valuable in setting up reasonable wave functions
to represent the ground state of Li'. The validity of
the above assumptions is not free from question,
however.

~ These assumptions are equivalent to assuming that the ground-
state wave function is a simple product of a function of the
internal coordinates of the 0, particle by a function of the co-
ordinates of the orbital nucleons relative to the center of mass of
the n particle.


