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algebraic (commutation) properties needed to give a
representation of rotations.

The spin factor is, by Eqs. (A6) and (AS),

1+-,'5yfl( io—.)+ ttt( io—„)+rt( ~tr—,)j, (A9)

where l, m, n are the components of the unit vector n.
The square of the quantity in square brackets is —1.
As is well known, iteration of the operator (A9) by

raising it to the power y/(by), with 5y ~0, gives for
rotation through the angle y the operator

cos (y/2)+ sin(y/2)
X[1(—ia,)+ttt(—ia„)+n(—ia,)j. (A10)

With the isomorphism (A5), this gives the quaternion
operator of Eq. (5).
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A measurement of the energy losses of monoenergetic neutrons scattered from liquid He II would permit
a determination of the energy-eersns-momentum relation for the elementary excitations (phonons and
rotons) in the liquid. A major part of the scattering at a 6xed angle arises from production or annihilation of a
single excitation and appears as sharp lines in the energy spectrum. From the position of these lines the
energy-versus-momentum relation of the excitations can be inferred. Other processes, such as production
or annihilation of multiple excitations, contribute a continuous background, and occur at a negligible rate
ii the incident neutrons are slow (X&4A) and the helium cold (T&2'K). The total cross-section data can
be accounted for by production of single excitations; the theoretical cross section, computed from a wave
function previously proposed to represent excitations, agrees with experiment over the entire energy range,
within 30%. Line widths in the discrete spectrum are negligible at 1'K because of the long lifetime of
phonons and rotons.

I. INTRODUCTION

HE possibility of a direct experimental determina-
tion of the energy-versls-momentum relation for

phonons in a solid was pointed out by Placzek and
Van Hove. ' They proposed to study the energy distribu-
tion of very slow neutrons scattered. inelastically and
coherently from the solid; if the incident neutron beam
is monochromatic and if the scattering process involves
only the production or annihilation of a single phonon,
energy and momentum conservation imply that the
neutrons emerging at a given angle can have only
certain discrete energies. The energy-momentum rela-
tion for the phonons can be inferred from the angular
variation of this discrete spectrum. Other processes,
such as multiple phonon production or annihilation,
contribute a continuous background above which the

.discrete spectrum is still observable.
The purpose of the present paper is to suggest that

the same technique be used to determine directly the
energy-et. rsls-momentum curve for the excitations in
liquid helium, and to predict some details of the
experiment. A direct measurement of this curve would
be of considerable interest, since the shape of the curve
has already been predicted in some detail by indirect

*Richard C. Tolman Fellow.
' G. Placsek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

%e have recently learned that some of the ideas in the present
paper have been discussed by V. V, Tolmachev, Repts. Acad.
Sci. U.S.S.R. 101, No. 6 (1955).

methods. Landau' argued on theoretical grounds that
the energy E(k) of an excitation momentum hk should
rise linearly with slope kc for small k(c= speed of sound
=240 m/sec), pass through a maximum, drop to a
local minimum at some value ko, and rise again when
k&ko. For small k, the excitations are called phonons
and may be thought of as quantized sound waves;
the excitations with k ko are called rotons, and seem
to be the quantum-mechanical analog of smoke rings."
At low temperatures, only the linear portion of the curve
and the portion near the minimum are excited; if the
curve is represented near the minimum by E(k) =5
+ttt'(k —ko)'/2tt, the specific heat and second. sound.
data can be 6tted best with the values'

6/tt=9. 6'K, ko=2 302 ', tt=0.40 tttH. ,

and almost as well with the values'

&/tc=9 6'K, ko=.1.95 A—', tt=0.77 ntH. .

A Landau-type curve has recently been obtained
from 6rst principles by the substitution of a trial
function into a variational principle for the energy. '4
The resulting curve is an upper limit to the true
spectrum, and gives 6/tt= 11.5'K, ko ——1.SS A ', tt 0.20

s L. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941);ll, 91 (1947).
s R. P. Feynman, Phys. Rev. 94, 262 (1954).
4 R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).' deKlerk, Hudson, and Pellam, Phys. Rev. 93, 28 (1954),
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Fzo. I. A Landau-
type energy-verses-mo-
mentum curve, with
6=9.6'K, p=1.06 mH„
kp=1.85 A '.

@AH,. In the rough computations of this paper we shall
use the curve of Fig. 1, which has A/a=9. 6'K, ks=1.85
A ', p =1.06 mH, . These values represent a compromise
between theory and experiment, and also fit the
speci6c heat data. Most of our numbers have only a
qualitative significance, since the shape of the energy
curve between the phonon and roton regions is highly
uncertain.

II. GENERAL THEORY

Suppose the liquid is initially in state j, and we
bombard it with neutrons of mass m and momentum
hk;; the cross section for a process in which the liquid
is left in one of a group of final states F, and the neutron
emerges with a momentum in some region G of k space,
is given by the Born approximation as

2$

of energy at low energies, and is related to the total
cross section 0' of a bound He nucleus by 0'=4n.e'.
McReynolds found 0'=1.1&0.15 barns.

In elastic scattering, the final state of the liquid is
the same as the initial state. ' In the matrix element for
elastic scattering, the integral of PP over all coordinates
but one is equal to 1/V (V=volume of the liquid)
except at points very close to the- surface. Only the
region near the surface contributes to the volume
integral of exp(iq r), and hence the only elastic scatter-
ing from the liquid is diffraction from the surface. "
In a crystal, the integral of PP over all coordinates but
one gives a function which is strongly peaked at the
lattice points; hence for certain directions of q the
matrix element Vf;(q) becomes proportional to X,
and elastic scattering occurs. Therefore, although
neutrons are scattered elastically from solids, virtually
no elastic scattering should occur from the liquid.

III. SCATTERING AT ZERO TEMPERATURE

If the liquid is at zero temperature, then the initial
state is the ground state Ps, and the neutron must lose
energy in the scattering. The simplest process which
can occur is the creation of a single excitation of
momentum h(k, —ky) in the liquid (if we impose
periodic boundary conditions on the liquid, the station-
ary states may be taken as momentum eigenstates).
Energy conservation requires

where the sum and the integral extend over the regions
Ii and 6, respectively. The matrix elements V are given
by

Xexp(iq r;)P;(rt, r~)drt .dr~,

where f, and Py are the wave functions for the liquid
in states j and f. The scattering length a is independent

904

If we 6x k; and the angle 8 between k; and k~, then if
k;)0.68 A ' (X;(9.25 A) there is a unique kr for each
8. When k; is just less than 0.68A ', (2) becomes
insoluble for 0&90'. As k; decreases further, the region
of solubility of (2) is a cone of decreasing aperture
about the forward direction. For each direction 8 in
the cone there are two solutions for kf. Finally, when
k;(0.38 A—', (2) becomes insoluble at any angle.
The qualitative behavior of the solutions of (2) is
shown in Fig. 2, but not too much signihcance should
be attached to the numbers, which are based on the
uncertain curve of Fig. 1.

The solutions of (2) should appear as lines in the

180' 0'
.387.6 t .8 t l.O l.2 '1.6 A '

.5 .68 .9

FIG. 2. Kinematics of production of single excitations. The
curves give the wave number kf of the exit neutron, as a function
of k; and t)l; kg is the distance from the origin. On each curve k;
is constant and has the value given on the 8=0 axis. Note that
kr=k; when 8=0 (and k;)0.68 A ').

' G. Placzek, Phys. Rev. 86, 377 (1952).
~ For the justification of the use of the Born approximation in

this problem see E. Fermi, Ricerca sci. 7, 13 (1936); G. Breit,
Phys. Rev. 71, 215 (1947).

s A. W. McReynolds, Phys. Rev. 84, 969 (1951).
9 This is true if the liquid is confined in a fixed box. If the box

is free to recoil, then for elastic scattering the final state is the
same as the initial state except for a translational motion of the
whole with momentum A(k;—kf) and infinitesimal energy
k'(h; —hr)2/2Emn, . The wave function for the final state is then
iPr=iP; exp(iX '(ir; irr) Zr;j—The rem. aining arguments are
still valid, with each r; being measured from the center of mass
rather than from an origin determined by the location of the box.

'p By "elastic scattering" we mean scattering processes in which
the incident and exit neutrons have the same energy, and further-
more the state of the liquid is unchanged. If we relax the latter
requirement, then at finite temperature some neutrons can
scatter without energy loss by colliding with excitations in the
liquid. However, neutrons which are scattered by collisions with
excitations emerge with a continuous distribution of energies
(i.e., the number in any energy range dZ is proportional to dZ),
and there will not be any "group" of elastically scattered neutrons.
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energy spectrum of the neutrons emerging at a given
angle. The energy-versus-momentum curve for the
excitations can be obtained from Eq. (2) by measuring
ky as a function of angle for fixed k;, or by looking at a
6xed exit angle and )varying k;. Processes involving
multiple excitations+contribute a continuous back-
ground. When k;(0.38 A ', the right side of (2) is
bigger than the left for any ky,. furthermore, since E(k)
is the energy of the lowest state of the liquid having
momentum hk, production of multiple excitations
will also be impossible when k;(0.38 A '. Hence, when
the liquid is at zero temperature, neutrons with k, &0.38
A ' (X)16.5 A) should pass through with no scattering.
This conclusion seems consistent with the data of
Sommers, Bash, and Goldstein" on the transmission
of neutrons by He.

The strengths of the lines are given by (1).We take
the region G of k space as k'DkdQ, where Ak includes
the line under study. Momentum conservation man-
ifests itself in the vanishing of U~p(k —k,) unless the
state f has the momentum h(k,—k). Integration of
(1) over G gives

dg. g kf
dQ= a2—

dQ k;

i Uyp(ky —k;) i'dQ

me(ik, —l;i) (1+—
i

1——cos8
ik' i'—k

i
( k

(3)

S(k)= )~exp(ik r)p(r)dr

as the cross section for scattering into dQ with the
production of one excitation of momentum k(k;—ky)
(and final neutron momentum hky). In reference 3
the function

ipse
——d '*tripp exp(ik r,)

is proposed to represent a single excitation of momentum
hk. This function is exact for very small k, and gives an
energy spectrum qualitatively similar to Landau's,
but with 6 twice too large. Normalization requires
8=1VS(k), where S(k) is the Fourier transform of the
zero-temperature radial distribution function p(r),

LO

Pro. 3. Matrix elements
for production of single ex-
citations, computed from
the wave functions of ref-
erence 4.

):0.5

2.0

we infer that the most likely way for a neutron to lose
a given amount of momentum is through the production
of a single excitation.

Substituting the matrix elements of Fig. 3 into Kq.
(3), we obtain the curves of Fig. 4, giving the angular
variation of line strength for difFerent values of k;.
The curves are given in units of a, which is the difFeren-
tial cross section per unit solid angle for scattering
from a bound helium nucleus. When k;&0.68 A—',
dot/dQ vanishes at 8=0 because the matrix element
Vf0 approaches zero when the momentum transf er is
small. When k;&0.68 A ', there are two curves for
each k;, corresponding to the two lines which are
observed at each angle within the cone of solubility of
(2). At the edges of this cone, do i/dQ becomes infinite
because the denominator of (3) vanishes. The total
cross section, however, is 6nite.

If we neglect the possibility of producing multiple
excitations, the total cross section at zero temperature
is obtained by integrating (3) over angles. The resulting
cross sections are compared in Fig. 5 with the total
cross sections measured" at 1.25'K (the temperature
efFect, which is negligible, is discussed in the next
section). The agreement of theory and. experiment
within 30% is quite satisfactory in view of our in-
complete knowledge of the wave function Py and the
curve E(k). When k, is large, Eq. (1) can be shown to
lead to the total cross section (16/25)4pru'X, which is
just the cross section for free helium nuclei scattering
incoherently. The theoretical curve has been extra-

The resulting matrix element is

(5) I.O—
)t) = l0.5A

);=5.2A

Actually, (5) is an over-estimate, as one can see from
the exact sum rule

Zrl vfp(q) I'=Lv(a) U*(q) joo=&S(V) (6)

If (5) were exact, then (6) would imply that production
of multiple excitations is impossible. A more accurate
wave function for an excitation is given in reference 4,
and leads to the matrix elements given in Fig. 3. In
the roton region, these matrix elements are only ten
to fifteen percent smaller than those given by (5), and
"Sommers, Dash, and Goldstein, Phys. Rev. 97, 855 (1955)..

28A

85A

50' 60' 90 l20 l50 l80'

Fgo. 4. Angular distribution of neutrons which have been
scattered by the process of producing a single excitation, at zero
t;emperature.
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Fro. S. The broken
line is the total cross
section computed here.
Circles are computed
points. The solid line
represents the measure-
ments of Sommers et al.
at 1.25'K.

IV. EFFECTS OF FINITE TEMPERATURE

If the liquid is at a finite temperature, some phonons
and rotons are always present, and the neutrons can
gain energy by annihilating excitations. The energy
spectrum of the neutrons emerging at a given angle will
contain a line representing annihilation of single
excitations as well as a line or lines arising from their
production. At temperatures below the X point, the
production process is far more important than annihila-
tion if the wavelength of the incident neutrons is less
than 10 A. Since phonons and rotons obey Bose
statistics, the rate of annihilation of excitations of
momentum kk is proportional to the number rs(k) of

'~It is not entirely obvious that the total cross section is
lowered by lowering the probability of producing single excitations,
since the sum rule (6) implies that the probability oi producing
multiple excitations must be correspondingly increased. However,
the density-of-states factor resulting from the delta function in
Eq. (2) produces a decrease in the total cross section when
probability is transferred from final& t;o multiple excitatipnp.

polated to this value. As ) decreases, the theoretical
curve rises faster than the experimental one; the reason
is probably that the matrix elements of Fig. 3 are too
large when the momentum transfer is in the roton region.
To see this more clearly, we note that there is an exact
sum rule,

Z~ I I'v(k) I'(Ei—Es) =Ã*(k) (&—Es) l'(k) 3«
=Eh'k'/2m, (7)

which, in conjunction with Eq. (6), says that the
"average" energy loss associated with momentum
transfer k is k'k'/2mS(k). For small k, this "average"
energy loss is the same as E(k); hence the idea that
multiple excitations are produced with negligible
probability is correct. However, when k=1.85 A ', one
6nds that the "average" energy loss is 19.5'K, which is
twice the size of E(k). If the matrix elements of Fig. 3
are correct, then the sum rule (6) implies that there
is only a 13%%uz probability of producing multiple
excitations when the momentum transfer is 1.85 A—'.
Such a small probability of multiple excitation seems
hardly consistent with a mean energy loss corresponding
to the production of two rotons. %e conclude that the
correct matrix elements for single roton production are
almost certainly smaller that those given in Fig. 3."

such excitations already present, while the rate of
production is proportional to e(k)+1. At temperature
T, we have n(k) =fexpLE(k)/IrTj —1} '; for rotons
at 2', E(k)/sT~5, and we see that the "spontaneous
production" factor 1 is much greater than N(k).
Figure 2 shows that if the incident neutron wavelength
is less than 10A (k;&0.6 A '), most of the excitations
produced have wave numbers greater than 0.4 A '
and consequently energies large compared to 2'K.
Furthermore, Fig. 3 shows that the matrix elements
for the production of low-energy phonons are small.
Thus we see that in the range T ~2 K, X 10 A,
spontaneous production is much more important than
"induced production" and annihilation, and the lack
of temperature dependence of the total cross section is
understood.

For incident neutrons of wavelength greater than
10 A, it is kinematically impossible to produce any

except very low-energy phonons (and no excitations at
all can be produced when X)16.5 A). Hence the
annihilation process is the most important one at long
neutron wavelengths, and the total cross section in
this region is strongly temperature-dependent. Ul-
timately, at very long incident neutron wavelengths,
the kinematics becomes that of zero-energy incident
neutrons. Figure 2 shows that a zero-energy incident
neutron can annihilate only phonons with wave number
k=0.68 A ' and energy 11'K."The total cross section
ultimately depends on the temperature as exp( —11/T),
and on the incident velocity as 1/s [arising from the
factor 1/k, in Zq. (1)j.

V. RESOLUTION AND LINE WIDTH

In order to obtain even a moderately accurate
measurement of the roton energy 6, the velocities of
the incident and exit neutrons must be known very
accurately. Figure 2 shows that the slowest neutron
which can produce a minimum energy roton has a wave
number k 1.04 A ' (energy=25'); the exit neutron
in this case has k~0.81 A—' (energy=15'). To measure
6 with an accuracy of one degree, the neutron energies
must be accurate to 0.7'; for the incident neutrons, we
need Q,/X=BE/2E=0. 7/50=0. 014. Thus, to measure
d with ten percent accuracy, the velocity spread of the
incident neutron beam must be limited to about one
percent. Nothing is gained by studying neutrons which
have annihilated a roton; the slowest incident neutron
which can annihilate a roton has k 0.81 A ', and we
need hX/)%, =0.7/30=0.023. The slight improvement in
the resolution situation is far more than onset by the
low rate of annihilation, as compared with production
(see Sec. IV). The resolution situation is best when
we observe neutrons scattered through 180'. If we study

'3This is not entirely correct, since annihilation of multiple
excitations is possible, though unlikely at low temperatures.
The total momentum of the excitations annihilated must be at
least 0.68 A ' and the total energy at least 11'K.At low tempera-
tures and velocities, thecrosssectionstillvariesass ' exp(-11/T),
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the 90' scattering, the slowest allowed incident neutron
has k~1.5 A ' and we need Q,/X~0.007.

If one looks at the energy distribution of the neutrons
emerging at a particular angle, how broad is the line
corresponding to those neutrons which have created a
roton? We have studied this question in some detail;
in the Appendix we compute the detailed line shape
which would result if we make certain assumptions
about the interaction between phonons and rotons.
The assumptions prove to be unrealistic, but the method
of computation is of some interest. The result which we
obtain for the line width is what one would expect
from the uncertainty principle; the width is k/r,
where v is the lifetime of the roton until it collides with
something. In our model, roton-roton interactions are
neglected; hence the lifetime we compute is that for
roton-phonon collisions. This lifetime is very long, and
the resulting width is less than 10' "K (to be compared
with a roton energy i) =9.6'K) when the helium is at a
temper'ature of 1'K. Landau and Khalatnikov" have
computed the lifetimes for phonon-phonon, phonon-
roton, and roton-roton collisions. They 6nd that at
temperatures of 1' and higher, the roton-roton lifetime
is much shorter than the roton-phonon lifetime.
When T=i', the width of a roton line is 0.006'K,
which is still very small compared with the roton
energy, but large compared with 10 "K. The width
is proportional to T' exp( —6/~T), which represents
the temperature dependence of the number of rotons
present; when T=2'K, the width is about 1'.Similarly,
oqe can compute the width of a line arising from the
production of phonons by neutrons; when T=1'K,
the lifetimes of a phonon for scattering by a roton or by
another phonon are comparable, both giving rise to
widths of about 10 "K. We conclude that for all
practical purposes the lines in the neutron spectrum
will be true delta functions if the helium temperature is
near 1'K.

To calculate the cross section for roton-roton colli-
sions, Landau and Khalatnikov assume a delta-function
interaction between rotons, the strength of the interac-
tion being chosen to Gt viscosity data. In the appendix
we show that such a delta-function potential, with a
strength close to that of Landau and Khalatnikov,
arises from the possibility that roton I can emit a
phonon which is subsequently absorbed by roton II.
The result is only suggestive rather than conclusive,
however, since we are also led to a velocity-dependent
interaction between rotons, comparable in strength with
the delta function.

APPEN'DIX

The problem of the breadth and shape of the lines
in the neutron spectrum caused us some confusion, the
details of which are not worth recounting. Finally, we
constructed a "model" Hamiltonian for helium,
including a phonon-roton interaction, for which the
line shape can be computed very accurately. Analysis
of this Hamiltonian not only resolved our private
confusion, but also showed what the line shape is in
the case of real helium. The important features of the
answer can be obtained from perturbation theory,
provided certain linear terms are interpreted as the
beginning of exponentials. We regard the more accurate
computation as suKciently interesting to be presented
here. It is analogous to the Weisskopf-Wigner method
in the theory of optical spectra.

Suppose, for simplicity, that excitations with k&k,
are phonons, with energy E(k) =hck, and excitations
with k) k, are rotons with energy Z(k) =6+5'(k —ko)'/
2p. If there were no interaction between phonons and
rotons, the Hamiltonian for the liquid would be
H=gai, *ai,E(k), where aq* and al, are the usual
creation and destruction operators for excitations of
momentum kk; the operator aq*aq has integral eigen-
values e~, which represent the number of excitations
present with momentum hk. The matter density at
r is given by

p(r) —pa= (pok/2Vc)» P k»
a&ac

XLal, exp (ik r)+ ai,*exp( —ik r)7.

We are interested only in the average behavior of the
matter density over a region of finite size (the size of
the roton) and have therefore omitted wavelengths
smaller than 2z/k, in the representation of p(r).
We assume that if a roton of momentum kkys at r,
its energy is E(k)+ (Bh/Bp) Lp(r) —p07. Atkins and
Edwards" have measured BI»/Bp and find Bd,/Bp
=—0.576/p. The actual interaction between phonons
and rotons involves further coupling terms, which will
be discussed later.

It is convenient to use a mixed representation in
which phonons are treated with creation and destruction
operators, and rotons are represented as particles with
coordinates and momenta. If the number of rotons
present is m, the Hamiltonian is

m

II= Q ai,*ai,kck+ Q E(k;)+ (p(gi/2Vc)» P
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'4 L. Landau and I. M. Khalatnikov, J. Kxptl. Theoret. Phys.
U.S.S.R. 19, 637, 709 (1949).

X P k»Lai, exp(ik r~)+a&*exp( —ik r;)7. (1')
&&&c

The interaction term in (1') creates and destroys single
phonons, since the operators a& and a&* appear linearly.

5 K. R. Atkins and M. H. Edwards, Phys. Rev. 97, 1429
(1955).
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(a) (b)

ing no rotons of momentum q, then

vlj)=z exp(sq r') I j)
=I &~(v)/V]'exp(iq r) I j) (3')

FIG, 6. Diagrams representing the phonon-roton interaction in
the Hamiltonian (i ). The solid line is a roton, the broken line a
phonon. Time increases from left to right. Diagram (a) represents
emission of a phonon, and (b) represents absorption.

Rotons only change their momenta, however, since
the interaction merely multiplies the roton wave
function by a plane wave. If we represent rotons by
solid lines and phonons by dotted lines, the two terms
in the phonon-roton interaction can be represented by
the diagrams of Fig. 6.

If the number of neutrons per second emerging in
solid angle dQ with an energy loss in the range (E,
E+dE) is 22(E)dEdQ, the Fourier transform of 22(E)
is given by Eq. (1) as

f(ri) = exp( —ir)E)22(E)dE

(2a'kg
I ksdkg exp[ —ir) (Eg—E;)]

E 222)&
lt' 2tg

XIV„(k-k,)Is&I k-k, + (E,-E,) I.')
Since the energy needed to produce a roton is small
compared with the.energy of the incident neutrons, the
term (Er E;) in the—argument of the delta function
can be ignored with negligible error. This approximation
gets better as the incident neutrons get faster. "
Similarly, since the direction of k is fixed and its length
is very close to k;, we can replace k—k; by a constant
vector q, where lql =2k, sin(0/2). Furthermore, the
liquid may be in di6'erent initial states j with probabil-
ity exp( —PE;)/P exp( —PE;), where P=1/IrT. Thus
we obtain

f(rf) = (askk, /222) [P ezp( —PE;)]-' Q

Xexp{ [pE'+2'9(Ef »)]) I
—Vf (v) I'

= (ashk;/222) [Tr exp( —PH)] '

XTr[V exp( —ir)H) V* exp( PH+it)—H)] (2').
In Eq. (4) we have suggested that the wave function

for a single roton of momentum q is the ground-state
wave function multiplied by P exp(iq r;) Since. the
wave function for an oscillator in its erst excited state is
just the ground-state wave function multiplied by the
normal coordinate of the oscillator, it would follow
that P exp(iq. r;) is the normal coordinate for rotons
of momentum q. In particular, if

I j) is a state contain-

"We are only computing the shape of 22(Z) for energies near
the roton energy. Fast neutrons tend also to produce multiple
excitations, with large energy losses, but we are not studying that
part of the spectrum.

and for the final states f
H =H p+E(k)+RA/Bp(ppk/2Vc)' P k&

k&kc

=H p+Ht.
X [ak exp(ik r)+ak* exp( —ik r)] (5')

In determining the traces of (2') we can use any states
as a basis. For the initial states we use eigenstates of
Hs, denoted by Inkt22k2. . .); as base vectors for the
states with a roton present we use products of an
eigenstate of Hs and a position eigenfunction (delta
function) for the roton, denoted by Ix; 22kt22k2 ).
Since we deal only with initial states with no rotons,

[Tr exp( —PH)] '= g [1—exp( —Pkck)].
Ic&kc

For the other trace we obtain

Tr[V exp( irlH) V* exp(—PH+ir)H—)5

~x&y(22kl22k2' '.
I
V

I y; 22k122k2' ' ')

X(y ~»~ks "Iexp[—in(H. +Ht)]lx;~»~k2 ' ')
X (x 22k122ks' ' '

I
V I22k122ks' ' ')
XeXp[( P+iri) P—22kkCk]. (6')

k&kc

The wave function exp(iq. r)
I j) represents whatever

was present in the initial state j, plus a roton of momen-
tum q; r is the position coordinate of.the roton. If

I j)
already contains rotons of momentum q, then
P exp (iq r;) both creates and destroys rotons.
Actually, g exp(iq r;) is not the exact normal co-
ordinate for a roton, and consequently this factor
can also create and destroy multiple excitations. In
keeping with the spirit of this computation, we deal
with a fictitious model in which direct production of
multiple excitations by neutrons does not occur.
This does not mean that no multiple excitations are
produced; a neutron can produce a single virtual roton,
which then breaks up into a real roton and a real
phonon through the interaction term in II.

As a further simplification, we deal with a case
slightly different from thermodynamic equilibrium.
In the initial states j we allow an arbitrary number of
phonons to be present, with the usual thermodynamic
distribution; however, we consider only initial states
in which no rotons are present. This picture is accurate
at low temperatures. Consequently, for the initial
states j the Hamiltonian is

Hs= P ak*akhck,
&&Ac
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6 = m exp —i
Jt,

s(t)dt I)
(m) (ts)

=exp(iseult' —ient") (ns! rs!) tel l l
lr!

" &r) (r)
&& (—iB*) "(—iB)" "G()p, (9 )

where

3= I g(t) exp( —iet)dt,
t'

f
G(()=expl — ' dtdsg(t)g*(s)c-"('-' l.

t"&t&s&t'

The trace is now easily obtained. We find

Q expl (—P+it"—it') ee)G„„

G Q c—t)en ( gg4) s
s&r&o r!L(I—r)!]'

=G()s(1—e ()') ' exp) —BB*/(es'—1)j. (10')

From (5') we have g(t) = (Bh/Bp) (p()h/2V, )lkle'k '.
Replacing the sum over oscillators by V(2z) 'J'dk,

"See, for instance, R. P. Feynman, Phys. Rev. 84, 108 (1951),
Eq. (38). The present case is a trivial generalization of the result
given there.

From (3') it follows that

(«i«s "IVIy; «i«s ")=LiI!5(!7)/V]'exp(i(I y),

(x «i«s"
I
V*l«t«s ")=LII!~(q)/V3'exp( —i(I.x)

A great simplification is e6ected if we neglect the
dependence of E(k) on k, i.e., let E(k) =h. We now
make this approximation and shall later consider the
eGects of restoring the dependence. Since H does not
involve the momentum of the roton, if the wave function
is initially a position eigenfunction of the roton it will

remain a position eigenfunction. Consequently,

(y; «1'«2 'l 'expL —i)1(&s+K)jlx; «1«s' ' ')
=()(x—y) (x; «i«s' ' '

l

expL —i)1(Ps+Hi) j l x; «i«s ). (7')

The second factor on the right is simply a diagonal
element of the Green's function (represented in
occupation-number space) for a collection of oscil-
lators forced by the function H&. The matrix elements
6 „ for a forced oscillator are easily worked out, by
operator calculus" or other methods. If the Hamiltonian
for a forced oscillator is

Z= a~ae+g(t) a+g*(t)a*, (g')

and lrw) and ltd) are eigenstates of the unforced
oscillator with energies nate and ee, respectively, then

we find Lletting n= (Bt) /Bp) (p()k/c) lj

f(ri) = (a'!sk;/r)s)XS(q) exp( ih—rt)

ACke

&&exp — do) irto—)'
(2z )'())tc) '&

()

4o) sin'(o)ri/2) '

—o)(e
'

&—1)+ ~ (11')

The various terms in the exponent of (11') are easily
understood by applying perturbation theory to (5'),
treating n as small. The coeKcient of —ig is simply
the energy 6 of a roton, plus a correction arising from
the fact that the roton can emit and reabsorb, or
absorb and re-emit, phonons. The rate of emission and
reabsorption of phonons of momentum Ak is propor-
tional to ask+1, while the rate of absorption and re-emis-
sion is proportional to mi„with an energy denominator
of equal magnitude but opposite sign. Hence, the
energy correction is independent of the number of
phonons present, and does not depend on the tempera-
ture. The numerical value of the self-energy is ()E/5
=—0.04 k,', with k, measured in reciprocal angstroms.
The cuto6 k, should correspond to a wavelength equal
to the roton size, i.e., several interatomic spacings;
we estimate k~0.5 A '.

The remaining terms in the exponent represent the
possibility of production of multiple excitations
l Fig. 7(b)j, or production of a roton which then
absorbs a phonon LFig. 7(c)). In all diagrams the
neutron (double line) interacts with the liquid only
once, and produces a roton. The roton may then emit
or absorb an arbitrary number of phonons, each
roton-phonon interaction contributing a facfor
to the amplitude and n' to the probability. The only
processes with rates proportional toa'are those shownin
Figs. 7(b) and 7(c). In 7(b) the neutron suffers an
energy loss 6+o), while in 7(c) the energy loss is
6—oI. The rate of 7(b) is proportional to m(o))+1,
while 7 (c) is proportional to e(o)). Hence at low tempera-
tures the line shape is strongly asymmetric. If the
exponent of (11') is expanded into complex exponentials,
the coeflicient of exp( io)rf) is —the rate of 7(b) as
computed in perturbation theory, and the coefficient
of exp(i(d)7) is the rate of 7(c). The remaining term,
which is independent of g, represents a change in the
rate of single roton production 7(a) arising from the

(c)
Fro. 7. Interaction of neutron (double line) with helium. In

(a) the neutron produces a real roton. In (b) the neutron produces
a virtual roton which decays into a real roton pIus a phonon of
frequency co. In (c) the virtual roton absorbs a phonon and
becomes a real roton.
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n{E) n(E) k k,

FIG. 9. Diagrams representing phonon-roton scattering.

FIG. 8. Shape of a line in the neutron spectrum resulting from
roton production, computed from (11'). In the actual case, the
delta-functions (represented by arrows) are slightly smeared out,
but the rest of the shape is as shown.

distortion of the single-roton wave function by virtual
phonons.

Since rz is small, the exponential in (11') can be
accurately replaced by the erst two terms of a power
series. Then N(Z) is just the coeKcient of exp( —iEr)),
and we can plot the line form (Fig. 8). If only the first
two terms of the power series were retained, ri(E) would
cut oG sharply at energies more than Ack, from the line
center; the higher terms in the power series smear out
the cutoff. The one-sidedness of the curve for T=O
arises from the fact that the roton is the lowest excita-
tion of momentum q. Since no annihilation is possible
at zero temperature, the neutron cannot lose any less
energy than that needed to produce a roton.

At high temperatures (pkck, «1) the line becomes
Gaussian with width

1 (M)'ppk. s

o'= ((E—E)')A ——

6m' E c)p) pc'
(12')

It is readily shown that in thermal equilibrium the
matter density Quctuates according to the Gaussian
distribution. The width of the Gaussian at high
temperatures is psk, '/6m'Pc'. Reasoning classically, one
might say that although we do not know the value of
the density at the place where the roton is created,
nevertheless the density has an instantaneous value,
which determines the amount of energy needed to
create the roton. Accordingly, the line shape would be
the same as the shape of the statistical distribution of
the density Quctuations, as is indeed the case at high
temperatures.

The classical argument fails at low temperatures,
especially near the line center. For large values of p,
sin'(o&r)/2) may be replaced by its average value.
The integral J'doi ro exp( —i&oil) approaches zero
because of the oscillation of the exponential, and we
find that f(r)) constX exp) —i (6+8E)r)f. Therefore
n (E) contains a delta function at the center of the line
(the strength of the delta function approaches zero for
large T). To understand this classically, we would have
to say that there is a 6nite chance that the density is
exactly equal to po at the place where the roton is
created; this, of course, is wrong. Since the density
operator does not commute with the Hamiltonian, a
density measurement would change the state of the
system. Consequently, as in the double-slit experiment,

the different possible outcomes can interfere with each
other. Amplitudes, rather than probabilities must be
added. Part of our uncertainty about the density comes
from the fact that we do not know what state the liquid
is in, because the temperature is finite; and part of the
uncertainty is the quantum-mechanical uncertainty
which still exists when the system is in a pure state.
The former is correctly analyzable by classical reason-

ing, and the latter is not. Accordingly, one might say
that a 6nite fraction of the density Quctuations is
congenitally unobservable; this fraction gives rise to
the delta function.

The uncertainty principle says that the width of a
line arising from roton production is inversely propor-
tional to the lifetime of the roton. Since there is nothing
in the Hamiltonian (5') which would allow the roton to
disintegrate, ' the "lifetime" is the time till the roton is
scattered by a phonon. The two diagrams of Fig. 9
contribute to the scattering. If all rotons have the same

energy, then energy conservation requires k&= k2. Then
the energy denominators for the two diagrams are equal
in magnitude and opposite in sign, and the scattering
rate is zero. This result also holds true in higher orders
and is well known in meson theory. Hence the lifetime
of the roton is infinite, and the line width zero.

Ke expect the delta function to spread out if we can
analyze the Hamiltonian (5'), including the momentum
dependence of E(k). The width, presumably, will be
the rate of scattering of rotons by phonons. " %e
thought it worthwhile to extend our analysis to include
this case, since it is not entirely obvious that the roton
has a 6nite lifetime, in the sense required by the
uncertainty principle, simply because it can scatter.
Furthermore, the occurrence of delta functions is not
clearly precluded by the uncertainty principle; a line
form consisting of a delta function super-imposed on
the center of (say) a Gaussian would have a finite

energy spread. Therefore we continue the analysis.
The Lagrangian form of quantum mechanics' is

useful here. In reference 20 the problem of a particle
interacting with an oscillator has been studied. Suppose
the total Hamiltonian is

H =Hp„i+a*as+ g (x,t)a+g*(x,t)a~= Hn„i+H',
'8 A roton cannot emit a real phonon, since the roton is the

lowest state of given momentum.
"Another way to see that the delta function must spread out

is to note that N(q, E) is the Fourier transform in space and time
of the "time-dependent pair distribution function" p(r, t), which
is the probability of 6ndIng an atom at r at time t, if there was an
atom at the origin at t= 0 /see L. Van Hove, Phys. Rev. 95, 249
(1954)g. If I (q,E) contained a delta function for some E, it would
follow that J'p(r, t) exp(iq r)dr does not approach zero for large
t. But p(r, t) clearly becomes independent of r and t for large t,
and the integral must approach zero.

20 R. P. Feynman, Revs. Modern Phys. 20, 367 (1948).
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where x is the particle coordinate, and H„,~ is derivable
from a Lagrangian I.. Then the amplitude for the
oscillator to go from state e at time t' to state m at time
t", while the particle goes from x to y, is given by the
sum over all paths x(t) of the functional

expj i i L[x(t)]dt
~

r)s exp~ —i i P'(t)dt
(

m

E J„ ) & ~1 )
where the sum is taken only over paths such that x(t')
=x and x(t")=y. This sum is denoted by

nx(t).
x(t') x

X(t")=y

For any functional M'[x(t)], we define

(3f&=exp[i&(e)~] "d(y—x) exp[i' (x—y)]

(. t"
K)x(t)M[x(t)] exp~ i L[x(t)]dt ~.

x(0) =x
x(~) =y

The amplitude for a free particle to go- from x to y
in time g is

Ep(x, y,rt) = Sx(t) exp~ i L[x(t)]dt
(. t"

x(0) =x
x(n) =y

= (2n)' ."dk exp{i[k. (y —x) —E(k)rt]},

H' depends on the path x(t) through the forcing function
g. For any particular path, however, the matrix element
is given by (9'). Hence, if we save the sum over paths
and the integration on x and y till the end, the oscillator
sums in (6') can be carried out as before, and we obtain"

(askk;)
f(1))= I I1VS(q)Jt d(y —x) exp[i' (x y)]—

and therefore (1)=1. The operation ( ), may be
regarded as a kind of average. We want to And

exp[—iE(q) r)](exp( —yA) ).
If we define (exp( —yA))=exp( —p1), then (p can be
expanded as a power series in y:

P=VFi+7 Fp+'
where

where

pi=(~), —(ps=i((~') —(»'), e«(16')( ('"
X x)x(t) exp~

'

x(0) ~x
x(q) =y

L[x(t)]dt ( If the integrations on k, t, and s are postponed, then
the kind of integral which must be done in evaluating

Xexp{—»[x(t)]} (13')

2[x(t)]= i
dkk '

i dtds e'"'(*' *')e ' (' ')
J

0&&&t&g

e1
iru(t —s}-

X~ 1+ ~+e''* "
e&"—1)

(14')
e&"—1

"We have replaced q by —1t. This clearly does 11ot affect f(~).

(86$ (ppk) ( 1
o)=kck.

EBp) ( 2c) ((21r)')

The Hamiltonian 6+ (p —pp)'/2p, comes from the
Lagrangian L=—6+-',p~dx/dt~'+ ~dx/dt~ pp. As typo,
I. becomes very large for all paths except the one with
dx/dt=0 Consequen. tly the main contribution to (13')
comes from paths whose end points x and y are very
close to each other; furthermore, the entire path must
stay close to x and y. If p, is actually inhnite, xt—x,
may be set equal to zero in (14'), and then (13')
reduces to (11'), which we henceforth call f„(rt).
The actual value of p, is large; consequently, only for
large q can the paths stray far enough from the origin
to make f(rt) appreciably different from f„(rt). Hence
the line form is the same as that previously computed,
except near the line center.

d (y x) eAl ~ ( —r)
J

~x( t)eik ~ (x1 x,)e uo(t s—)-—
x(0) =x
x(~) =y

Xezp~ i i L[X(r)]dr I

J~J
(. t"

X)x(r) exp~ i Ldr ~e'~ *1

)
x(t) xe
x(~) -y

X ~ Sx(r) exp~ i Ldr ~e
'"'*'(. t'

X($) =X1
x(t) =xs

X Sx(r)exp~ i ~ Ldr ~es *
J

x(0) =x
x(s) =xg

f
'

d(y xs)d(xs —xi)d(xi —x)e 'p (r—*»— —

x~p(y xs it t)e
—~(1—8)e—1(p—)o (*2-*1)

xE'p(xs, xi, t—s)e 'p'(*' *)Ep(xr,x,s)
=exp{—i[&(e)(n- t)

+(&(q—k)+o)) (t—s)+E(q)s]}.



22 M. COHEN AND R. P. FEYNMAN

(b)

Fin. 10. Diagrams representing the two terms in (A).

This integral clearly describes the emission and re-
absorption of a phonon of momentum hk I Fig. 10(a)j.
The second term in A, corresponding to absorption
and re-emission LFig. 10(b)j, results in the integral

I'= exp f —iLE(q) (rt —t)

+ (E(q+ k) —o)) (t—s)+E(q)sj}.
Similarly, (A') gives rise to terms involving two

phonons. To calculate (A"), one must evaluate integrals
of the form

f
dt, dt„e xp(iP (rt~).

0(&],(4( ~ ~ (& (g

De6ning new variables x~——t~, x2= t2 —t~, ~, x„=t„
—t„~, and introducing the function

1, O(y(p
f(y) =

O, y&~

i (" (e ""—1)
s

we 6nd
00 f QO

f(Qa;) exp(i+P,e~)dh; dh„
0 0

(p'= z ~')

g
—

tsar

j goo

ds
2x Qo "o

Xl . I . (1V')
( p; p;+i(»; —»;) &—

The integral resulting from I has the form J2, with
Pi=0, Ps=E(q) —E(q—k) —o). In general, the P, are
the energy differences between the initial state and
various intermediate states. The time integral of I'
is similarly evaluated, and we Gnd

XexpLig(P;+s)x;)dent .dx.
1 ( (e '&—1) v

IIII
2ni '~ „( s ) '=i &p;ps+i»;&

To make the next to last integral converge, we have
added a small positive imaginary part ie; to each
p;. All the»; will be taken as different, so that all poles
are simple, even if some of the P, are equal. Closing the
contour in the lower half-plane, we have Anally

(e(@if ~()»

Irri" '(-p;+i»;

ln [E(q)—E(q—~)—~]
—,(A)= —7 ~ dka

I 1+
ee —1 & &E(q) —E(q—k) —o) LE(q) —E(q—k) —o)j'&

1 e( W(q) —e(s+&)+~) n

(»')
ee~ —1 & E(q) —E(q+k)+(0 LE(q) —E(q+k)+o)]'&

k,
I

k,/I
I i t

FIG. 11. A diagram which
contributes a term to (A') propor-
tional to g~. This term is canceled
by the square of (10a).

In the limit of infinite roton mass, (18') is the same as
the exponent in (11'). This is to be expected, since if
there is only one possible path, then (exp( —yA))
=exp( —7(A)). The various terms in (18') have the
same significance as in (11'), and agree with the results
of perturbation theory. None of the denominators in
(18') can vanish, since the roton is defined as the
lowest state of momentum q. If we approximate
(exp( —yA)) by exp( —y(A)) in our evaluation of
f(rt), then the delta function in )s(E) still persists.

One naturally thinks of going further with the
series (16') and replacing (exp( —pA)) by expL —(y(A)
+y'ys) j. This procedure is not obviously valid,
however, since we are interested in f(rt) for large rt.

Suppose, for instance, that q 2 is linear in g for large g,

but some subsequent term in the series (16') involves
higher powers of q. Then neglect of the subsequent
terms would make f(rt) entirely incorrect for large rt.
However, by inspection of the diagrams which contribute
to p„, it is quite easy to see that p„ is always linear in
rt for large rt. For instance, the "bubble" in Fig. 10(a)
contributes a term to (A) proportional to ri because it
can occur anywhere on the solid line. Among the
processes contributing to (A') is the one shown in
Fig. 11. Since each of the bubbles can occur (almost)
anywhere on the solid line, Fig. 11 contributes a term
proportional to q',. but since the two bubbles are
independent if the separation between them is large,
the square of (10a) cancels the term in rP. There is a
correction term in (A') proportional to rt because the
two bubbles may overlap. Hence y2 is linear in q,
similar arguments apply to p„. Another way to see
that y is asymptotically linear in q is to observe that
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(b)
k,

2% k 2
\g% )

(d)
Fro. 12. Diagrams contributing attenuation to f()i).

Ps ——E(q) —E(q—ki) —coi,

Ps ——E(q)+Ms —E(q+ks —ki) —coi,

P4 ——E(q)+co)—E(q+ks).

for large )ii and )is, f(ri) obeys the functional equation
f(rii+)is)=constX f()ii)f()i)). We omit the proof.

The only part of y ci)s which interests us is the part
proportional to ri, since the rest is negligible compared
with yp~. Furthermore, pieces of 7'y2 proportional to
ig represent small corrections to the self-energy and
can be omitted. Hence we are interested only in the (c)
piece of cc)s (if any) which is proportional to )i with a
real coefficient. Such a piece would cause attenuation of
f(ri) for large )i, and would imply that the delta function
is gone.

The diagrams of Fig. 12 (and no others in this order)
contribute the kind of terms we are looking for. For
(12a) we have Pi=0, P)=P4=E(q)+cot —E(q+ki),
Ps ——E(q)+cot—E(q+ki —k)) —co), and

e")—1( 1
-Z4(12a) =

~is" (vs+«s set)-&

o(43 )3))—1 ( 1 $ ( I+"
Ps+sea 4 Ps+16]—sos& ( (Ps Ps)

where the dots indicate that uninteresting terms have
been omitted. It is possible for Ps to vanish; in fact the
condition Ps ——0 states that phonon-roton scattering is
energetically possible. Since 1 /( s+i )e =E(1/s) —i)r5(s),
the first term becomes~

For fixed ki and ks we add the contributions of diagrams
(12a)—(12d) to the contributions of the corresponding
diagrams with ki and ks exchanged. Noting that
c)(P))= —c)(—Ps), we find

= —)py')r ' CkidkskikslJ J (es» —1&

1 y 1
XI +1

I

&ec'»—1 & E(q)+M i—E(q+ki)

iq ~ 1q
—,&I —I+' ~(~.) .
Ps' I Ps&

E(q) —co)—E(q—ks)

X&)E(q+ki—k))+co)—E(q) —coij= —)ihR/2,
The principal value term is a correction to the self-
energy and is omitted. Omitting uninteresting terms where R is just the rate of roton-phonon scattering
again, we 6nd for the second term (Fig. 8) as computed in perturbation theory. Finally

we And
cos(P))i) —1+) sin(P)'g) —z! —

I s~~(ps)
Ep, &

f()))~(a'it, k;/tn)ES(ct) exp) —(iD)i+y(A)+ribE/2) j
f„()))exp (—)))sE/2). (19')

The only appreciable change in the line shape N(E)
,c)(~s)+,c)(~s)+ ' ' ' = + '

is the replacement of the delta function byPP PP

The net contribution of (12a) is
11 AZ

!
—

I

2& ( (E—Z')'+issue'/4&
(20')

J'4(12a) =—8(P))+
22

The contribution of (12b) has the same form, with

Ps =E(q) —E(q—k i) —co i, Ps
——E(q)+co)—E(q—k,+k,)—coi. Similarly, (12c) contributes a term (m)i/Pa()4)c) (Ps),

with A|4 ——E(q)+coi —E(q+ki), Ps ——E(q)+cot —E(q+ki
—ks) —co), P)=E(q) —E(q—ks) —co), (12d) contributes

~ We are free to let e1 and e3 approach zero in any order, so
long as we are consistent. We let e3~0 first.

where 6' is the corrected roton energy. The uncertainty
principle is evidently satisfied.

As we remarked earlier, the real interaction between
phonons and rotons is more complicated than the one
we assumed. The line width is determined by the life-
time for roton-roton collisions, rather than roton-phonon
collisions. Landau and Khalatnikov" fitted the viscosity
data by assuming a roton-roton interaction of the form
VQ'5 (i i 1)) with Vo ——0.5X10 ' erg-cm'. The interac-
tion term in (1'), which we call H', allows one roton to
emit a phonon which is absorbed by another roton.
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In computing the equivalent potential, it is permissible
to regard the rotons as distinguishable. If the initial
state is f;=exp/i(ki ri+km rm) j and the final state is
fg=exp{if(ki+k) ri+(km —k) r2)), then the ampli-
tude to go from i to f is

Eg—E;

Roton 2 can emit a phonon k which is then absorbed

by 1, or roton 1 can emit a phonon —k which is then
absorbed by/2. Neglecting the dependence of roton
energy on the momentum, we find Vz= (86/Bp)'(po/e2).
The equivalent potential is QV~e'"'"'= (BA/Bp)'(po/e')
&&5(rim) (actually, the delta function is smeared. out
by the high-momentum cutoff). Using the value of
Atkins and Edwards" for 86/Bp, we find V0=0.66
Xi0 "erg-cm'. The y v coupling between rotons and
phonons (see next paragraph) gives rise to a velocity-
dependent roton-roton interaction which seems com-
parable in strength to the one we have computed.
If the picture of a roton as a moving smoke ring is
correct, then the interaction between rotons would

depend strongly on their relative orientations. Accord-

ingly, even though the delta-function interaction can
be simply explained, we think the actual roton-roton
interaction is more complicated.

The interaction between phonons and rotons has
been discussed by Landau and Khalatnikov, and

involves other terms besides (86/Bp) (p—po). A phonon
induces a velocity Geld v(r) which can be represented in
terms of the u~ and a~*. In the presence of such a Geld,
the energy of a roton of momentum p is E(p)+p v.
Furthermore, there are terms in (p —po)', such as
(8'6/Bp')(p —po)', which are responsible for most of
the phonon-roton scattering. Nevertheless, a line
arising from roton production will still have the shape
pictured in I'ig. 8, provided the delta function is
replaced by a "witch" of the form (20'), where R is the
rate of roton-roton scattering. As the temperature
approaches zero, the rate R approaches zero because no
other excitations are present to scatter the roton.
Furthermore, at 7=0, m(E) is "one sided" because it is
impossible to produce an excitation of momentum q
with less energy than a roton. The curve hits the
axis with Gnite slope because the rate of production
of rotons, plus a phonon of frequency of co, is propor-
tional to co for small ar. At 6nite temperatures, the
background curve intersects the "witch" with 6nite
slope on the right, and zero slope on the left,"because
the rate of phonon production is proportional to
co/1+ (ee"—1) '$ while the annihilation rate is propor-
tional to cu(ee"—1) '. All these statements depend only
on the fact that the coupling is a power series in the
a~ and aj,*, with each creation or destruction operator
accompanied by a factor k'.

~' This is not exactly true. Processes involving several phonons
can give rise to a small finite slope on the left.


