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The density matrix for a many-electron system has been
examined. A formalism has been arrived at which facilitates its
evaluation in terms of a basis corresponding to a discrete spectrum
of eigenvalues. This allows a representation to be employed
associated with a suitably chosen approximation to the Hamil-
tonian. Thereby, reasonably accurate estimates of the properties
of many-electron systems may be anticipated for low orders of
approximation.

In developing the formalism, attention was focused upon a
means for approximating the quantity exp{zn), where H is the
many-particle Hamiltonian and z is a complex number. It was
found possible to represent this quantity exactly as an inFinite
product of exponential factors, each of which depends upon a
portion of the Hamiltonian alone. The relation of this result to
statistical mechanical applications is indicated. An approximation
procedure is described in terms of which various finite products of
exponential factors approach the desired quantity in the limit of

indefinitely increasing numbers of factors; this limit is approached
in a manner that permits any given approximation to contain all
the terms of the previous approximation.

The first order of approximation was employed to approximate
the many-particle density matrix. The resulting theory was
applied to the helium-like systems: He, Li+, Be++. The energies
of the ground '5 state of helium and the three lowest states of Li+
and Be++ were calculated, The agreement with experimental term
values is reasonably satisfactory, the discrepancy between calcu-
lations and experiments not exceeding one percent. The triplet-
singlet splitting for Li+ was in the order observed; the magnitude
calculated was about one-half that observed.

The relation between the present theory and the Thomas-
Fermi theory is discussed. It is pointed out that the former. is
the analog of the latter when the density matrix is expressed in
other than eigenfunctions of momentum. The quasi-classical
character of the approximation is discussed.

l. INTRODUCTION
' 'N a previous paper, ' the density matrix for a many-
' ~ electron system was examined with a view toward
extending the statistical theory of Thomas' and Fermi. '
This is also the purpose of the present paper.

To establish its connection with the Thomas-Fermi
theory, the density matrix was evaluated in terms of a
basis of eigenfunctions of momentum. Because the
density matrix is invariant to changes in the basis of
representation, no loss of generality was entailed
thereby. In spite of some of the mathematical conveni-
ence which accompanies the use of a basis which
corresponds to a continuous spectrum of eigenvalues, 4

there is reason to suppose that for most problems of
atomic and molecular structure such a basis is not the
best suited one. Viewed in the sense of perturbation
theory, the basis employed in (I) corresponds to an
unperturbed problem in which the kinetic energy is
diagonal, a rather poor approximation for atomic and
molecular systems even if interelectronic repulsions are
neglected. Accordingly, one of the present aims is to
extend the formulation of (I) so as to facilitate the
evaluation of the density matrix in terms of a basis of
eigenfunctions of an arbitrary Hamiltonian. The
attending Qexibility introduced thereby allows one to
anticipate that with a suitably chosen representation

* Supported, in part, by the 0%ce of Naval Research.' S. Golden, Phys. Rev. 105, 604 (1957), hereinafter referred to
as (I).' L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).' F.. Fermi, Z. Physik 4S, 73 (1928); see P. Gombas, Die
Statistische Theoric des Atoms nnd Ihre Ankoendnngen (Springer-
Verlag, Vienna, 1949) for extensive references to the original
Thomas-Fermi theory and subsequent modiFications; see also,
N. H. March, Adkances in Physics (Taylor and Francis, Ltd. ,
London, 19S7), Vol. 6, p. 1.

4In particular, the summations over the eigenstates can be
replaced by integrals.

(corresponding to a suitably chosen approximation to
the Hamiltonian) reasonably accurate estimates of the
properties of many-electron systems may be attained
with no undue eGort.

In Sec. 2 a formalism is presented suitable for a basis
corresponding to a discrete spectrum of eigenvalues. A
formally exact representation of exp(sH) is given, in
terms of a decomposition of H, where s is a complex
number and H is the many-particle Hamiltonian. This
representation is utilized in Sec. 3 to arrive at an
approximation for the many-particle density matrix.
Expressions for the characteristic energy values of such
a system are considered in Sec. 4. The theory is applied
to helium-like atoms in Sec. 5, the results obtained
being summarized in Sec. 6. Section 7 is devoted to a
discussion of the method utilized, especially its relation
to the original Thomas-Fermi theory.

2. DISCRETE FORMALISM

For the sake of brevity a familiarity with the results
of (I) will be assumed. Then the present section relates
in part to the determination of an expression for a
function of the E-particle Hamiltonian,

" f'"'(0)
f(H) —= Z H" (2 &)

a=0 ~!
in terms of which powers of an approximation to the
Hamiltonian appear always on the right side of the
expression. For an arbitrary power of the Hamiltonian,
one has

8"=(Hs+V)"=Hs"+ Q He" ' kVHss

j+k~n—2

+ Q HP ' k' sVHstVHe'+ +V", (2.2)
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where Hp= T+Vp, T being the kinetic energy operator
for the system and Vs+V being the" total potential
energy. In contrast to Eq. (2.2), one seeks to express
Lanalogously to Eq. (2.7) of (I)j

where Q;, s&» and R;, s&» are vector functions of position
and momentum operators alone, respectively, of the
jth particle. The prime indicates that the summation
over i extends over all necessary values.

The procedure employed in (I) may be utilized here
and gives rise to a recursion relation among the Q R's.
Omitting the details and deQning

N

Qs Rs=—Z E' Q' «t» R' s'» (2.4)

H"—= Z ZZ'Z
s~ I-I * i=o (I—is, —))!$!

X Vs s-LQ-. (».R, (»H l (2 3)

Clearly,

ezH ezv/2x(s/2)ezHO/2ezv/2x(s/2)ezHO/2 (2 12)

e~ =I e~vi"g(z/e)e'H' "j"
If x(s/ss) were a scalar function (which it is not) it
would be simple to demonstrate that, because Qs Re=1
and Qi Ri 0, ——

to give a formally exact representation of Eq. (2.'7) in
terms of Ho and V alone. Because

eezH —ezaezH —ez Vy (S)esH&ez Vy (S)ezHQ

=e'*vX(2s) es*H' (2.10)

so that

y(s) eev-/sx (s/2) ezH&/sezv/sx (s/2) e zHs/2 —
(2 1 1 )

one obtains

one obtains

(&l
lim x(-)

Eel
(2.13)

&Q, .R.=LE., Q, , R,)+L~„V&Q.-, R,
+-', ([&o,V), VjQs s Rs s (25)

Presumably, this also will be the case for z de6ned by
Eq. (2.8) and suggests that

f(H)4-= & f'"(&-'+V)Qs Rs&-. (2.6)

which diBers from Eq. (2.16) of (I) in that Hs replaces
7 (with a suitable modification in V). Since the present
paper will have no need for the various Qs Rs's, explicit
values will not be given. ' In terms of the Qs Rs's, with
Zy„=k 'y, Eq. (2.1) leads to

ezH lim Pgzv/nezHOJngln
f

which may be verified directly. Consider

lnfeczveezHp j
lim I int e'vise*Hsisf =!im
~00 ~0 x

(2.14)

Expanding the logarithm in a series, one has to examine
For polynomials, or when f(H) is adequately repre-

sented by a few terms of the series, Eq. (2.6) is rela-
tively easy to apply. However, when such is not the
case the procedure becomes cumbersome. To obviate
this dHFiculty consider'

I

exp' —ez(Hp+v) ezvx(s)ezHO

( 1)~ (1 exevexaHs)ws

lim P

where, clearly,

Application of 1'Hopital's rule to each term leads to a
(2.7) vanishing quantity for its)1. Evaluation of the re-

maining term yields

x(s)= Z s'Qs Rs. (2 g)
lim ss lnLe*vi

"e'H' "g=s(Hs+ V)
n-+le

(2.15)

A convenient way of determining the Q& R& is provided

by

=&!Qs Rs
Bs z o

(2.9)

Now, inasmuch as Qs Ro=1 and Qi Ri ——0 it is possible

~ It may be noted, however, that terms up to and including
k =2 are identical with those of (I); for k =3, Eq. (2.5) gives the
additional term (ks/6m)vU VUO, the gradient being the 31V-
dimensional quantity defined in (I).

6 The exponential function assumes a singular role because of
its utility in both statistical thermodynamic theory and in
applications of the present kind. This has been pointed out and
utilized, recently by A. W. Skenz and R. C. O' Rourke, Revs.
Modern Phys. 27, 381 (1955).

~sH ~zVezII 0 (2.16)

70ne may note that the representation of Eq. (2.14) is not
unique. For instance, it is su%cient to employ other products of
exponentials in II0 and V of which the sum of the exponents is
sH/ts. The ordering is also not unique. Furthermore, decompo-
sitions of H other than the one considered may be employed. See
note added in proof.

and verifies Eq. (2.14).'
The form of Eq. (2.14) suggests that the exponential

in H may be approximated by some finite power of the
product of exponentials indicated there. Associating
the "order" of an approximation with the power of
exponentials employed, one can obtain

First order:
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Second order:
SzH ' (Szv/sezHp/2)2

szvezHo+szv/2[&zHp/2 szv/2 jszHofo
)

Fourth order:

(2.17)

SzH ' (Szv/4ezKp/4)4

(Szv /2S zHO/2+ S zV/4$&zHOI4 Szv/4 jezHO/4) 2

/ezV/2ezHp/2)2 L Sz V/4I Sz Kp 4/ezV/4)gzHp/4ezV/2SzHp/2

+SzV/oezHp/2ezV/4$&zHp/4 ezV/4$&zHp/4
7

+Szv/4/LSzHOI4 ezV/4 lezHO/4ezVI4l SzHOI4 SzV/4lezHO/4
l 7

(2.18)

From the method of construction employed, it is
evident that the approximation corresponding to order
2v+' will contain all terms of order 2v (p integral). The
remaining terms each contain commutator s which
vanish when Ho and V commute and also appear to
have a less sensitive dependence upon s than similar
quantities which appear in approximations of lower
order. Presumably, these factors should foster the
convergence of a sequence of approximations of the
sort indicated, but the convergence characteristics have
not been examined and will not be discussed. In fact,
the present paper will be concerned mainly with the
6rst order of approximation.

It will be noted that no attempt has been made to
symmetrize the product of exponentials. Because of
the lack of uniqueness of the representation Eq. (2.14),
no diS.culty arises in doing so. For the purposes of the
present paper, only the trace of Eq. (2.14) needs to be
considered, so that such symmetrization is superQuous.
When the Hamiltonian is decomposed into more than
two noncommuting parts, attention will have to be
given to this matter. '

3. QUASI-CLASSICAL APPROXIMATION TO
THE DENSITY MATRIX

The density matrix recently has received considerable
attention. ' As a consequence, its properties are rela-
tively familiar.

For present purposes, the density matrix (represen-
tative) for a many-particle system will be taken as"

where P„(x) is a member of the complete, orthonormal
set of eigenfunctions of the Hamiltonian of the many-
particle system and x stands for the entire set of
configurational and spin coordinates; M is an integer
not related to the number of particles. It is convenient
to write

p(x', x) = Q lf „*(x')8()~sr—H)P„(x), (3.2)

where

8() ss —H)f„=zl/„, ) ss) E„,
Xsr=E„,

=0, )~&8„,
Hf„=E„P„.

(3.3)

Then, with Ess()z2s(E/ts+2 Eqs. (3.1) and (3.2) become
identical. "However, Eq. (3.2) is invariant to the basis
of representation and has, therefore, greater utility
than Eq. (3.1).The role of the 8 operator, clearly, is to
select out of an arbitrary function that portion corre-
sponding to a linear combination of the zJ/. 's, corre-
sponding to E„&E~+~.The normalization condition,

dxp(x, x) =M, (3.4)

emphasizes this role. It also serves to fix the value of
Ass (within limits if necessary).

Now, if one has an expression for p(x', x) with M=1,
one is able to determine all the properties of the many-
particle state for which e=i. If one has another
expression for p(x', x) with M = 2, the difference between
this density matrix and that just considered permits
one to determine all the properties of the many-
particle state for which n=2. This procedure may be
extended, clearly, so that the problem at hand is to
determine the p's for all integral values of M. Lacking
the eigenfunctions of the many-particle Hamiltonian,
it is clear that approximations must be employed. The
approximation considered here will be concerned with
the 0 operator.

A convenient representation for 8 is'

p(x', x) = P f *(x')P.(x),
n=1

(3 1)
(3.5)

o See, for example, R. Kuho, J. Chem. Phys. 20, 7/0 (1952).
The erst term of Kubo's expansion and the one given here,
correspond to one another but differences in the higher order
terms are to be noted. The essential difference is that higher
order terms in Kubo's expansion involve exponentials of various
sums of the partial Hamiltonians into which the total Hamiltonian
is decomposed, while only exponentials of the individual partial
Hamiltonians are involved in the present procedure.' See especially, P. O. Lowdin, Phys. Rev. 97, 1474-1520 (1955);
Advances zn P/zyszcs (Taylor and Francis, Ltd. , London, 1956),
Vol. 5, p. 1; J. E. Mayer, Phys. Rev. 100, 1579 (1955); R. Mc-
Weeny, Proc. Roy. Soc. (London) 235, 496 (1956); R. H. Tred-
gold, Phys. Rev. 105, 1421 (1957); U. Fano, Revs. Modern
Phys. 29, 74 (1957).I As used here, the term "density matrix" will refer to expres-
sions of the form (3.1) in contrast to the term "statistical matrix"

in which (P refers to the principal part of the integral,
y&0 and s is a complex variable. Introducing, now, an
approximation considered in the previous section for
the exponential of the Hamiltonian one obtains a

for which each term of Eq. (3.1) contains a statistical weight
factor W . It should be emphasized that the density matrices
used here correspond to a summation of the usual many-particle
density matrix over various many-particle states.

"The procedure followed here is that of reference 6. It is
tacitly assumed that the eigenfunctions are ordered in terms of
increasing values of E~: E„~&E„ if n&n'.
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convenient approximation for 8. Let (P„) be a set of
complete, orthonormal eigenfunctions of Ho. Then,
using Eq. (2.16), one further obtains

=8(Xsr—V—E„')P, (3.6)

where 0 is now scalar operator. To this 6rst order of

approximation,

p&" (x',x) = Q P„*(x')8(X —V(x) —E„')P„(x). (3.7)
n=1

This equation is the "quasi-classical" approximation
referred to in the section heading and will be discussed
in Sec. 7. It will serve as the basis for the computations
considered in Sec. 5.

One obtains, using Eq. (2.17), the second-order
approximation

00 ( V(x)+ V(x")+E„'+E„')
p

' (x',x) = + 4„*(x')8(X~—V(x) —E ')4„(x)+ Q Z 4 *(x')4' (x) P (x") 81 X~—
n=1 n=l tn=l 2 )

V(x)+ V(x")+2E.'i—81 Xsr- ! &-(x") .
E. 2

In using the equations of this section, one may require
that the basis of representation satisfies certain re-
strictions (e.g., Fermi-Dirac or Bose-Einstein statistics)
with no alteration in their form.

interest is attached to the characteristic energy values
of a system. Accordingly, approximate expressions for
these quantities will be given in this section.

It is evident that

4. ENERGY (E)= P E„=Tr(Hp), (4 1)
While an approximate expression for the density

matrix permits one to estimate the quantum-mechanical
expectation value of any observable, considerable

n=1

where E„are the eigenvalues of H. Using Eq. (3.8) and
the Hermitian property of H, one obtains

V(x)+ V(y)+E„'+E ')
2

I ( — — ')I &+2( I ( — — ')I )
n=l n~1

+!Z (E-'+E-') ~-(*)~-(y) 81 ~—
E.

V(x)+ V(y)+ 2E.'~
I 4-(x)4 (y)

2

V(x)+U(y)+E '+E ')
+l Z 4-(*)4.(y) (V(*)+V(y)} 81 l

00
I r

m, n=l

—81 l%.~—

!

V(x)+V(y)+2E ')
4.(x)4-(y) (4 2)

(E)=Tr
dz

(p I Hero~ —HI,

2XZ Q $00 Z

=A,~M —Tr
j. I

~'" dZ
P.

I

ez(X~-~ l,

I'

the 6rst two series corresponding to the 6rst-order
approximation (E)&. It may be noted that the last two
series of Eq. (4.2) have a structure similar to that of
exchange integrals in the many-particle conhguration
space.

The calculation of (E) is facilitated if M is known as
a function of Xsr. For, from Eq. (4.1) and (3.5), one
obtains

when one carries out an integration by parts. DiGer-
entiating with respect to X~, one 6nally obtains

8(E)/N, sr XsrBM/N. sr. —— (4.3)

This equation reveals the role of ) ~ to be that of a
"chemical potential" (per state). Since (E)=0 for
M=O, one obtains the equation

(E)= ~ MM. (44)

When M has discontinuities (as a function of Xsr), Eq.
(4.4) may be utilized in the sense of a Steiltjes integral. "

u The form of Eq (4.4) suggests . that the procedure employed
here may readily be adapted for constructing approximations for
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(E'&= P Z.'= Tr(H' p).
n=1

(4.5)

Following the procedure leading to Eq. (4.4), one
obtains

pM
(E'&=

) X'dM. (4.6)

Considering, then, only the 6rst order of approximation,
one readily obtains

(&'& = Z L(&.')'&~. l~() —v-&.') le.&
n=1

+28 '(y
l
ve(xsr —v 8')l@—

&

+Q.lv'0() -v-E:)I~.&3 (47)

5. APPLICATION TO HELIUM-LIKE
ATOMS AND IONS

The usefulness of the approximations which have
been discussed in the previous sections depends, first,
upon their yielding relatively precise results in the very
first order of approximation and, second, upon a rapid
convergence (but small influence) of the higher order
terms. The latter, which would require an analytical
investigation of the quantities in Eqs. (2.16)-(2.18)
and others, poses a formidable mathematical task and
will not be attempted. The former can be tested
empirically for various systems, but, the calculations
reported here will be conhned to certain two-electron
systems which are isoelectronic with the helium atom.

The helium atom, as well as isoelectronic atomic
systems, continues to be the subject of many investi-
gations" in spite of the extremely precise results which
have been obtained from variational treatments applied
to this system. "Because of its simplicity, and because
it has all of the essential interactions which need to be
considered in more complex electronic systems, it
comprises a good system for testing the performance of
any theory designed to cope with more complex atomic
and molecular systems.

To apply the erst-order approximation of the previ-
ous sections it is necessary to specify Ho. For simplicity,
although it is not necessarily capable of yielding the
best results, Ho will be taken as the two-electron

the resointion of identity belonging to an Hermitian operator. See
J. V. Neumann, Mathematische Grundlagen der Qgantenmechanik
(Dover Publications, New York, 1943), pp. 56-62."For investigations related to the present one see, for example,
P. O. Lowdin and H. Shul l, Phys. Rev. 101, 1730 (1956);H. Shull
and P. O. Lowdin, J. Chem. Phys. 25, 1035 (1956).

"The classic work is by E. Hylleraas, Z. Physik 54, 347 (1929);
65, 209 (1930); see, also, S. Chandrasekhar and G. Herzberg,
Phys. Rev. 98, 1050 (1955);H. S. Schwartz, Phys. Rev. 103, 110
(1956); L. Wilets and I. J. Cherry, Phys. Rev. 103, 112 (1956);
T. Kinoshita, Phys. Rev. 105, 1490 (1957).

In order to provide an internal check upon the ade-
quacy of the approximations which may be employed,
it is useful to compute the quantity

Bp= H —1/its. (5 2)

The eigenfunctions of this Hamiltonian are certain
linear combinations of hydrogen-like wave functions.
The symmetry restrictions imposed upon the eigen-
functions have been discussed fully' " and will not be
considered here in detail.

For the present purposes, only states of zero angular
momentum, the S-states, will be treated. Then, as is
well known, the separation of spin and configurational
coordinates of the electrons leads to the so-called singlet
states, symmetric with respect to interchange of the
configurational coordinates of the electrons, and to the
so-called triplet states, antisymmetric with respect to
this interchange. Arranging the properly symmetrized
eigenfunctions of Ho which have been utilized here in
order of increasing value of their eigenvalues, one ob-
tains (with suppression of the normalized spin factors):

Eg'= —Z' &r=ft*(&t)f't. (&s)
'

Es, + 5Z /8 @2,+ (fr (&l)$2 (&2)

~f "(")f .( )); (5-3)

1
Zs. ~'———5Z'/9; Qs, ~———(i' t, (r,)f's, (rs)

+f (r)f.(rt)).
The plus sign refers to the singlet states, the minus sign
to the triplet states. Here, in atomic units, the ortho-
normal hydrogen-like wave functions are"

Z312

gr, (r) = exp( —Zr),

Z3IR

f's, (r) = (2—Zr) exp( —-', Zr),
4(2tr) 1

g3I2
f's, (r) = (27—18Zr+2Z'r') exp( —-',Zr).

81(3z)1

These quantities have been employed to evaluate
Eqs. (3.4), (3.7), the 6rst two series of Eq. (4.2), and

"See, for example, L. Pauling and E. B. Wilson, Jr., Intro-
dttction to Qnantnrn Mechanics (McGraw-Hill Book Company,
Inc., New York, 1925), p. 138.

Hamiltonian in which the interelectronic repulsion has
been neglected. Thus, let (in atomic units)

H= —s (Vr'+&s') —Z(1/rg+ 1/rs)+1/rts, (5.1)

where the subscripts 1, 2 refer to the separate electrons;
r~, r2 are distances of the indicated electrons from the
fixed nucleus, and r~2 is the distance between them;
Z is the nuclear charge, measured in terms of the
magnitude of the electronic charge; V~', V2' are La-
placians with respect to the position of the indicated
electrons. Then
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TABLE I. A summary of results. '

System M State +obs —(Z) —(B~)& m(is1s) zv (1s2s) ze (is3s)

He 1 1$ 2.9036 2.9349 2.9652 0.83129 0.16871

1S
Li+ 1 &S

1$

7.2797 7.2760 7.3270 0.92772 0.07228
S.ii07 5.1023 5.1715 ~ 0.85542 0.14458
5.0468 5.0718 5.1459 0.02066 0.77036 0.20898

1 &S 13.655 13.624 13.690 0.96398 0.03602
Be++ 1 &S 9.2972 9.2754 9.4404 ~ ~ ~ 0.93469 0.06531

2 &S &9,175b 9.2403 9.4168 0.01169 0.85576 0.13255

a Energy units are in modified atomic units, 2R,hc(p jm), where R, is the
Rydberg constant for a nucleus of charge z and infinite mass; m and p, are,
respectively, the mass and reduced mass of an electron in the system
considered. See Sec. 6 for comments on results.

& Energy value corresponds to 3Po-state; excited 1S-states not observed.

TABLE II. Comparison of energy of excited states and
normalization parameters.

System

He

Li+
1
2
1

Excited state

'S

lg
lg
3S

2.1460

5.0468
4.7337
4.7520

2.2658

5.3271
4.8264
4.8378

'6 See, for example, H. Hellmann, Einfuhring in die Qugnten-
chemee (Edwards Brothers, Inc. , Ann Arbor, 1944), p. 333.

Eq. (4.7). The integrals which arise are evaluated most
conveniently in terms of Hylleraas' coordinates. "They
dier from the usual integrals encountered in problems
of this sort. Because of the presence of the 0 functions,
they do not include the entire configuration space of
the system. Three kinds of integrals arise:

I(ab; cd; y)
-=(~-.(» )t. (")Ie(f/". -&/~) II-.(")l-.(")),

J(ab; cd; y)
-=9-.(")t- (")le(&/".—&/~)/" II-.(")I-.(")), (5 5)

K(ab; cd; y)
=G.(»i)t e(»s) I 0(&/»» —&/v)/»»'I |.(»i)h(»s)).

For simplicity, explicit expressions for these integrals
in terms of Eqs. (5.4) will be given in the Appendix.
The I-integrals were combined in accordance with
Eqs. (5.3). Equation (3.4) was solved numerically for
A,~, %=1,2. The determined values of X~ then were
employed to evaluate the appropriate combination of
J- and E-integrals. Computations were carried out for
He, Li+, and Be++.

The radial probability distribution for the ground
state of helium was determined by computing
Tr(8(r—rs)p}. Since the integrals which arise are
specific to this computation, as well as complicated,
they will not be displayed.

6. RESULTS

The results obtained are summarized in Tables I
and II and in Figs. 1 and 2. All numerical work was
checked to within at least six significant 6gures. (The

coe%cients of the integrals in the Appendix were
checked to eight significant figures. )

The values reported in Table I for the singlet excited
states represent the diGerences between the values for
Sf=2 and 3I=1. The m's correspond to the appro-
priate combination of I-integrals of Eqs. (5.5) and
represent the fractional contribution of the indicated
hydrogen-like states to the indicated state of the system.
Their nonzero values illustrate the removal of "orbital
degeneracy. """The value of (E')& gives some measure
of the adequacy of the approximation employed here.
While the disparities between E,i,„(E),and (E )' are
small, considerable improvement in the theory is
necessary to approach the results of variational treat-
ments. "The observed values are taken from Moore"

It is to be noted that the singlet-triplet order for Li+
(the only one for which data were available) is in
agreement with experiment and the splitting (which
amounts to approximately one percent of the term
values) is within a factor of two of the observed value.

0.90-

HKLIUI4 l S)

L oAio-
lO
Z
lal
Cl

0.4s-
5
Cl
C7 oM-4

Ct
O

ops

AAS

2 s 4
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S

Fzo. 1. Radial probability density for ground state of helium.

In the case of helium the computations for the first
'5 state and second 'S state were attempted with the
integrals on hand but it was impossible to satisfy Eq,
(3.4), additional excited states of the unperturbed
system being required. Similarly, the computations for
the ground state of H could not be carried through.

In Table II the various values of X~ are compared
with the energy values of the sext excited state of the
same symmetry. Inasmuch as the X's are bounded
between successive characteristic energy values they
serve as lower bounds to the energy of the following
excited state. The agreement is reasonably satisfactory.

Figure 1 is a plot of the radial probability distribution
for the ground '5 state of helium. It is compared with
the distribution obtained from the 3-parameter vari-

'7 See also Green, Chandler, and Rush, Phys. Rev. 104, 1593
(1956).' C. E. Moore, Atomic Energy Levels, National Bureau of
Standards Circular No. 467 (U. S. Government Printing Once,
Washington, D. C., 1949).
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ational function obtained by Hylleraas. " While the
latter has an exponential term which corresponds to a
screening of the nucleus by one of the electrons, the
result obtained from the present investigation allows
both electrons to "see" the bare nucleus. Nevertheless,
the initial radial distribution compares quite well with
that obtained from a variational treatment. Small
differences in probability density are obtained in this
region and are presented in Fig. 2, where a comparison
is made also with the density obtained from the simple
variational function of Kellner. "The "orbital-splitting"
noted previously is emphasized by the appearance of a
pseudoshell at large distances from the nucleus.

In order to assess the reliability of the radial distri-
butions in Fig. 1, the mean-square-radius was evaluated
by graphical integration. From the values obtained,
the diamagnetic susceptibilities were estimated. "The
Hylleraas density yielded a molar susceptibility of
—1.85)(10 ' cm' mole —', in substantial agreement with
experimental results. The "quasi-classical" densi. ty
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FIG. 2. Probability density for ground state of helium.

yielded a value of —3.30)&10 cm' mole ', clearly in
poor agreement with experiment. The reliability of the
"quasi-classical" density which has been obtained is,
therefore, questionable. Presumably, higher order
approximations are necessary to yield results in closer
agreement with experiment.

7. DISCUSSION

In spite of the reasonableness of the results which
have been obtained, their limitations are emphasized
when one examines the properties of the 8 operator. In
the exact case, the 8 operator is an Hermitian, idem-
potent operator (i.e., projection operator). This prop-
erty is not duplicated by the approximation employed
here. As can be veriled from Eq. (3.6), the approximate
8 is an idempotent operator but is not Hermitian.

zz G. W. Kellner, Z. Physik 44, 91 (1927).
~ See, for example, J. H. Van Vleck, Electric and Magnetic

Sgsceptzbz7ztzes (Oxford University Press, New York, 1948), pp.
206-208.

Presumably, the latter property may be related to the
lower energy values obtained for the ground state of
He and the first excited singlet state of I,i+. Since an
idempotent operator generally consists of the sum of a
projection operator and a nilpotent operator, "it should
be possible to separate out the former quantity as an
improved approximation to 8. The approximation which
has been examined numerically in this paper has been
referred to as a "quasi-classical" approximation. The
reason for this appellation is the following. Consider
that the eBect of the approximation is first to ascribe
an "energy" to the system which is the sum of an
unperturbed energy (corresponding to the energy
possessed by the system in the absence of interelectronic
repulsions) and the interelectronic repulsive energy.
This "energy" is presumed, then, to depend upon the
configuration of the system. The second effect of the

'

approximation, and its most significant one, is to
restrict the system to configurations for which its
ascribed "energy" is less than some specific value. This
value is the Ass of Eq. (3.2). Since Ass is bounded
between successive characteristic energy values of the
system the approximation effectively excludes those
configurations which correspond to "energies" exceeding
that of the next excited state of the system.

Now, this is precisely the sort of physical description
involved in the original Thomas-Fermi theory in which
case the unperturbed energy simply is the kinetic
energy. Then, the "energy" of the system in the
Thomas-Fermi theory is restricted to negative values
(i.e., X=O) which corresponds, in turn, to bound con-
figurations of the system. Because the unperturbed
basis there is an unbound one, the existence of excited
bound states of the system is not in evidence, as in the
approximation considered here. When one recognizes
this diGerence as due to the diGerence in bases, the
"quasi-classical" approximation simply assumes the
role of the Thomas-Fermi theory in a different basis of
representation.

As a result of the imposition of a somewhat classical
behavior upon the quantum mechanics, an important
shortcoming may be noted. Whenever the perturbation
V(x) has zMgatiee poles, 0 is equal to unity. Then, if xs
is the location of such a pole, p'"(x', xs) =b(x' —xs), so
that infinite densities in configuration-space are mani-
fest to this order of approximation. This situation,
clearly, does not arise where V(x) has positive poles.
In such cases, in fact, 8 vanishes and zero densities
occur, corresponding to classical expectations. The
numerical illustrations considered in this paper corre-
spond to the latter case. Applications of this method to
other systems should arrange that the perturbation
avoids the complication mentioned. Thus, in molecular
problems atomic orbitals will usually introduce such a
complication; molecular orbitals which take fully into
account the inQuence of the bare nuclei will not.

"S. Golden, Nuovo cimento (to be published).
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A result which may have some important utilization
in statistical thermodynamics is embodied in Eqs. (2.14)
and (2.16)—(2.18). When s—=—1/kT, the quantity
involved is germane to estimating the partition func-
tion. It resembles the results obtained by others s'f but
diGers from these in providing an explicit expansion
procedure solely in terms of exponentials of Ho and V.
(Clearly, other decompositions of the total Hamiltonian
are possible. ) Since, then, only terms in exp( —V/kT)
and exp( —Hs/kT) and fractional powers of these
quantities are involved, and approximations of order
greater than the 6rst involve commutators of these
quantities, good estimates of the partition function at
both small and large temperatures seem likely. This
appears reasonable, since the commutators vanish under

these circumstances (providing V and IIs are measured
from their minimum values). Moreover, as indicated
in Eqs. (2.16)-(2.18), a given order of approximation
to the partition function will automatically contain the
approximations of lower order. One may also show that
the trace of the Bloch equation" (i.e., Bloch's equation
for the partition function) is satisfied for any order of
approximation (even for different decompositions of
the Hamiltonian). Higher moments, which correspond
to higher derivatives of the partition function, only
approximate those obtainable from Bloch's equation.
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The integrals defined by Eqs. (5.4) and (5.5) are listed here:

I(isis; 1s1s;x) = (1+2x+2x'+ 7x'/6+x4/3) e '~

I(is2s; is2s; x) = —(128/81+ 128x/81 —88x /27+ Sx'/9 —2x'/9) e ~+ (209/81+ 418x/81+ 10x'/9) e '

I(1s2s; 2sis; x) =—x'(4/243+ 2x/81+4x'/405 —g'/270) e-»~'.

I(1s3s; is3s; x) = (0.46224976+0.30816650x+0.92358398x'—035937500g'+0.13281250g'—0.019675926x'
+0.0015432099gs) e * + (0 53775024+1.0755005x+0.25463867x') e ".

I(is3s; 3sls; x) = —x'(0.47200521+0.62934028x+0.16203704x'—0.15689300x'+0.020086224x4
—0.00065321053x')e 4*isX10 '

J(isis 1sis; x) =Z(5/8+5x/4+x'+x'/3) e»
J(is2s; is2s; x) = Z(35—6/81 100x—/27+ 10x'/9 2x'/9—)e *+Z (373/81+ 10x/9) e—'~.

J(1s2s; 2sis; x)=Z(16/729+ Sx/243 —2x'/81 —x4/81+ xs/270) e ' ~'.

J(1s3s; 1s3s; x) =Z(0.84869385+1.0759277x—0.48828125x'+0.14843750x'—0.021990741x'
+0.0015432099x')e '*"+Z(0.94818115+0.25463867x)e '~

J(is3s; 3sis; x) =Z(0.57678223+0.76904297x—0.19531250x'—0.71614583x'—0.23148148g'+0.16975309x'
0 0205—76.132x'+0 000653.21053xr) e 4*~sX 10 '

Q(isis isis x) =Z'(2/3+5x/6+x'/3)e-'~

E(is2s; is2s; x) =Z'(124/27 —4x/3+2x /9) e *+(10Z'/9) e '*+(656Z /81) LEi(—x)—Ei(—2x)j.
E(is2s; 2sis; x) =Z (512/10935+ 76x/3645 —26x'/1215 —2x /135+ x4/270) e»1'

E(is3s; is3s; x) =Z'(1.5759277—0.64322917x+0.17100695x'—0.024305556x'+0.0015432099x')e—»'s

+0.25463867Z'e '*—1.6417236Z'LEi( —2x/3) —Ei(—2x)j.
Z(is3s; 3s1s; x)=Z'(1.2946429+0.31017485x—0.73722718x'—0.31801146x'+0.18334803x'

—0.021066040xs+0.00065321053x')e '* 'X 10

~ See, for example, R. P. Feynman, Phys. Rev. S4, 108 (1951). (See also note added in proof. )
f Note added vari proof. The expression of exp(sH) a—s an infinite product seems Erst to have been employed by S. T. Butler and

M. H. Friedman, Phys. Rev. 98, 287 (1955), whose paper was called to the author's attention after the present paper had been
accepted for publication. The present development diQ'ers from that cited in considering the unperturbed Hamiltonian to be
different from the kinetic energy operator.

ss See, for example, K. Husimi, Proc. Phys. -Math. Soc. Japan 22, 264 (1940).


