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where y= 2.5777 is Euler's constant.
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The integrals involving I and v that are required are
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A formulation of Schrodinger perturbation theory is developed that gives a unified treatment of non-
degenerate and degenerate cases, is unique, and has a nonzero radius of convergence under very general
conditions. Two alternative procedures are given for finding perturbed eigenvectors, one of which is simpler
for the nondegenerate case or for small finite degeneracy, the other simpler for infinite or large finite
degeneracy. The low-order terms in the perturbation expansions of quantities used in applications are given.
The perturbation theory formulated in this paper has the following advantages over the conventional
Schrodinger and Brillouin-Wigner perturbation theories: (i) When the convergence criterion is satisfied,
bounds on the error made in replacing an appropriate infinite perturbation series by its first e terms can be
obtained. (ii) For the case of degeneracy, the conventional Schrodinger perturbation theory can break
down under conditions to which the convergence of the perturbation theory developed in this paper are
insensitive. (iii) There is no implicit dependence on the eigenvalue, such as appears in the Brillouin-Wigner
perturbation theory. (iv) For the case of degeneracy, statistical information about the distribution
of certain eigenvalues can be obtained without finding the individual eigenvalues. (v) The theory is
applicable to a wider class of problems than the conventional Schrodinger and Brillouin-Wigner perturbation
theories.

I. INTRODUCTION

'HE conventional Schrodinger perturbation theory
is concerned with finding the eigenvectors and

eigenvalues in a Hilbert space of a Hermitean operator
of the form Hp+eV as a power series in the real param-
eter ~.' We want to go into this theory in some detail to
point out the relation between it and the theory de-
veloped in this paper. The advantages of the latter will
be pointed out as we go along. To avoid difhculties of a
purely mathematical nature, we will assume that the

' E. Schrodinger, Ann. Physik 80, 437 (1926).

Hermitean operator Hp possesses a complete ortho-
normal set of eigenvectors $p, $i, , $„, ~ ~ with
eigenvalues Ep, E&, , E„, , respectively. We Qx
our attention on the eigenvalue Ep, and require that,
if E„NEp, then in fact

I
E„—Epl )8)0 for some fixed

8. In other words, Ep is an isolated point in the spectrum
of Hp.

Let P be the projection operator onto the closed linear
manifold MEp of all solutions fp of the equation
Hpfp=EplPp. Then Pg„=g„ for E„=Ep, and Pg =0 for
E„WEp, and thus HpPJ„=EpP)„=E„P)„=PHpg„, so



CONVERGENT SCHRODINGER PERTURBATION THEORY

that, since the $„'s form a complete set,

HoP=PHo=EoP.

We define the operator (1—P)/(Ho —Eo) as follows:

(E„—Eo) 'P„ for E WEo,

Ho —Eo 0 for Ert, =Eo.

Note that

where s is a complex number, and that

1

Ho-Eo

Although 1/(Ho —Eo) is a singular operator, (1—P)/
(Ho —Eo) is not.

%e proceed as follows: In the eigenvector equation
(Ho+oV)Q=Elt we let E=Eo+oA and lt =A(go+pi),
where PiPo=go, Pgi=0, and 3 is a normalization
constant. Note that we are requiring that 8—&So as
~—+0. The eigenvector equation can then be split into
two component equations as follows:

PVPfo+PVfi=Ago, (i)

LHo —Eo+o(1—P)V(l —P) —oA)gi= —e(1—P)V&o. (ii)

Consider the case in which the zeroth order eigenvalue
Eo is nondegenerate, i.e., E„/Eo for e /0. By a suitable
choice of the normalization constant A, we can choose
go= go. Tllen PVP&o= (go,V&o)&o, and PVfi= (Po~Vf i)fo.
Equation (i) then reduces to

(&o,V&o)+ (Po,Y&i) =A.

Substituting (iii) into (ii) we get

(Ho —Eo)gi = ot (Po,V)o)fi (1—P)V(1—P)—fi
+(& Vlt )4 —(1—P)Vko] (' )

Equations (iii) and (iv) are equivalent to (i) and (ii)
or to (ii) and (iii). The perturbation theory we will

develop in this paper reduces to Eqs. (iii) and (iv)
when Eo is nondegenerate. More specifically, Eqs. (14),
(42), and (46) reduce to (iii), while Eq. (11) reduces to
(iv). Substituting a power series expansion for Pi into
(iv) leads to a recursion relation for the coeKcients in
the power series which is a specialization of Eq. (34) for
nondegenerate Ep.

The conclusion we must come to for nondegenerate
Eg is that, as far as obtaining the coefFicients of the
power series of f and E are concerned, the methods of
this paper, as exmplified by Eqs. (iii) and (iv), are
about equivalent to direct substitution into Eqs. (ii)

(1—P) = (1—P) (1—P)
Ho —Eo Ho —Eo Ho —Eo

=lim(1 —P)
&~p Ho —Eo s

(1—P) LHo —Eo+s(l —P)V(1—P) —eA]
—'

1—PQo 1—P= Z (-&)" (V-A)
n=Q -HQ Ep Hp —Ep

and noting that we can choose its ——$o, we get

6= 2 (—&)"+'
n=o

-n 1 P
(V—A) V e+'Po. (v)

Ho Eo-Ho —Eo

1—P

Substitution of (v) into (iii) gives

A=(~,V~.)+ Z (-1)"
n=o

-s 1 p1—P
~

~Ib (V—A) V&o
~

e"+'. (vi)
Ho —Eo Ho —Eo

If we substitute a power series expansion for A into
(vi), we can obtain a recursion relation for the coef-
ficients in the power series. Substitution of this power
series for h. into (v) will give a power series for Pi.
However, because of the complicated implicit de-
pendence of Eqs. (v) and (vi) on A, the procedure
outlined above will be a much more complicated one
for obtaining the coefficients in the power series for f
and E than direct substitution into either Eqs. (ii) and
(iii) or Eqs. (iii) and (iv). Since the coeflicients will be
the same by any method, Eqs. (v) and (vi) are not the
best starting points for the nondegenerate Schrodinger
perturbation theory. The reason we consider (v) and (vi)

s L. Brillouin, J. phys. radium 3, 373 (1932); E. P. Wigner,
Math. u. naturw. Ans ungar. Akad. .Wiss. 50, 475 (1935).' Of course, if we want to express E0 as a perturbation expansion
in terms of E, just the converse is true. However, we are con-
sidering problems in which E0 is given and E is to be found.

and (iii), as far as simplicity in computing P and E to a
given order are concerned. Of course, both methods
lead to the same coefficients. However, the perturbation
theory we will develop will be proven to be convergent
under very general conditions, from which it follows
that the conventional nondegenerate Schrodinger per-
turbation theory is convergent under these conditions.
Furthermore, when the convergence criterion is satis-
fied, we can obtain bounds on the error which is made
when P or E is replaced by its Nth order perturbation
approximation. Such bounds are very useful in the
physical problems to which Schrodinger perturbation
theory are applied. The remarks of the last two sen-
tences apply equally well to the case of degenerate Ep,
for the perturbation theory developed in this paper.

Before proceeding to the case of degenerate zeroth-
order eigenvalue Eo, we give an alternative procedure
for developing the nondegenerate Schrodinger per-
turbation theory. This procedure employs the methods
used in the Brillouin-Wigner perturbation theory 2

Multiplying (ii) by
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at all, is that they are readily generalized for the case of
degenerate Ep, whereas we shall see that direct sub-
stitution of power series for P and A in (i) and (ii) can
break down under conditions to which the convergence
of both the theory developed in this paper and the
theory based on generalizations of (v) and (vi) are
insensitive.

We now turn to the case in which the zeroth-order
eigenvalue Ep is degenerate. Equations (iii) and (iv)
are still valid if we substitute Pp fol' (p, but they provide
no means for determining Pp. The perturbation theory
to be developed in this paper provides generalizations
of Eqs. (iii) and (iv) from which Po, fi and E can be
determined. Furthermore, we will now show that the
method of direct substitution of power series for P and
A in (i) and (ii) can break down under conditions to
which the convergence of the theory developed in this
paper are insensitive. We take as an example the case
in which E1=Ep, but E AEp for e&2. Then the linear
manifold 3Izp is spanned by the orthonormal vectors
$p and $i. These vectors can be chosen such that
(Pi,vpp) =0, and we so choose them. We shall assume
that ()i,vgi) A (Pp, v&p). By applying the methods given
in Sec. VI, we obtain the following expression for the
perturbed energy levels E+:

2E+= 2Eo+ «(a+b) —«'(c+d)+ «'(f+g)
+O(«4) W «[(a b)' —2«(a—b) (c—d)—
+«~{(c—d)'+2(a —b) (f—g)+4w*w)

+o(«') j', (»i)

where w is complex, a, b, c, d, f, g are real, and they are
given by

a=(b,vb), b=(4,vb),

1—P y f 1—P
c=) g, v Vgi (, d=I go, V V&o (,

Hp —Eo ) E Ho —Ep

By neglecting terms of order «' in (vii), we make an
error whose size depends on the rapidity of convergence
of the perturbation theory developed in this paper. The
more rapid the convergence, the smaller the error.
However, this error is insensitive to small changes in
($] V/I) —(Po,v&p), when (gi,v&i)+ (ko, v&o) and all
matrix elements of V except (tp, vgp) and (ti,vgi) are
held fixed. On the other hand, if we attempt to expand
E"or E in a power series in e, the expansion will break
down for small enough but nonzero values of (gi,vpi)—(Pp,vgp), for values of « for which the expansions used
in (vii) are rapidly convergent, Specifically

E+=Eo+ «a —«'c+ «'[f+w'w/(a b) ]+—0 («') )

E—=Eo+ «b —«'d+ «'[g w*w—/(a b) j—+0(«4)

Note that m is independent of the matrix elements
(Pi,vpi) and ((o,vpo), so that the term w*w/(a —b) will,
in general, cause trouble when a—b is small enough.

In general, when Ep is degenerate to any finite order
37, the method of direct substitution of power series for
P and A into (i) and (ii) will have poor convergence
properties relative to that of the perturbation theory
developed in this paper whenever a pair of eigenvalues
of PVP within the linear manifold Mzp are close to
each other in value, yet are unequal. The difhculties
will generally affect both the g"s and A's corresponding
to closely spaced eigenvalues. Similar remarks hold for
the case of infinite degeneracy.

An alternative to direct substitution of power series
for P and A in (i) and (ii) is to use the methods of the
Brillouin-Wigner perturbation theory to obtain equa-
tions analogous to (v) and (vi). Multiplying (ii) by

(1—P) [Hp —Ep+ «(1—P)V(1—P) —«A]-'

QO 1—P n j P= Q (—1)" (V—A) «"
n=p Hp Ep Hp —Ep

1—P 1—P
1) 1 1) 1

Ho —Eo Ho —Eo )
1—P

we get

y —P ( 1)»+i
n=p

-n ] P
(V—A) V

II0 Ep

( 1—P

H, —E,

1—P
~

Po, V Vgo I,
(Hp —Ep)' )

I &„v Vk, I,
(Ho —Eo)'-

1—P 1—P
g=~ p., v v v~ l-(&,v&.)

Ho —Eo Ho —Eo

Substituting (viii) into (i), we get

H'(A, «)fo ——Agp,

.«"+'Pp. (viii)

1—P
X VP« "+'. (ix)

Hp —Ep

]—p
H'(A, «) =—PVP+ 2 (—1)"+'Pv (v —A)

n=p . II0—&0

where

»

(Ho —Ep)' Hp —Ep.

Equations (viii) and (ix) provide a means of finding p
and A for cases in which expansion of these quantities
in power series in e is not a valid procedure. In this sense
it competes with the methods developed in this paper.
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However, we already saw in the case of nondegenerate
Eo that development of the Schrodinger perturbation
theory via the Brillouin-Wigner perturbation theory is
a much more complicated procedure than using the
methods developed in this paper. Let us now examine
the relative merits of these two methods for the case of
degenerate Eo. Before attempting to answer this
question, we should consider the following: by appro-
priate formal manipulations, it is possible to transform
the Brillouin-Wigner perturbation theory into the per-
turbation theory of this paper, and conversely. How-
ever, the spirit of the Brillouin-Wigner perturbation
theory is to keep the operator expressions involved as
simple as possible at the expense of an implicit de-
pendence on the unknown eigenvalue A. On the other
hand, the spirit of the perturbation theory developed
in this paper is to avoid any implicit dependence on the
eigenvalue at the expense of more complicated operators
than appear in the Brillouin-Wigner perturbation theory.
What we want to compare are the relative efFiciencies
of these two approaches to perturbation theory.

We first consider the case of finite degeneracy. In
labeling our complete set of orthonormal eigenvectors
of Ho, („,we count the basis vectors with E„=Eofirst.
Thus E„=EO for E—1&e&0, and E„NEO for e&N,
where E is the order of the degeneracy of Eo.

In considering the relative merits of Eq. (ix) of the
Brillouin-Wigner theory and Eq. (42) or (46) of the
theory developed in this paper, we observe that the
operator H'(A, e) of (ix) has a simpler perturbation ex-
pansion than either of the corresponding operators of
(42) and (46), provided A is a known real constant. The
fact that A is not known counterbalances this initial
advantage of the Brillouin-Wigner perturbation theory
in the following way: once the operator appearing on
the left-hand side of Eq. (42) or (46) has been deter-
mined to a given order in c, determining the 37 eigen-
vectors and eigenvalues of (42) or (46) is just a standard
eigenvector-eigenvalue problem in an E-dimensional
linear vector space. In particular, the eigenvalues are
given by the roots of the standard secular equation.
Equation (ix) is more difficult to solve in that, instead
of the standard secular equation, we have the equation

det(H', ,—A8;;}=0, H';; = (P;,H'(A, e)(;)—
for E—1&i, j&0.

Because the H'; s have an implicit dependence on A,
the above equation is a more difficult one to solve for
A than is the standard secular equation, if we wish to
be accurate in E=(ED+eh) to a given order in e

beyond the third order. In general, if we wish to be
accurate to an order r, r&4, the above equation will be
a polynomial equation of degree X" '. The X real roots
of smallest absolute value will be the eigenvalues we
seek, if e is small enough. Assuming this to be the case,
when one of these eigenvalues is substituted into Eq.
(ix), this equation can be solved for the corresponding

eigenvector or eigenvectors just as in the standard
eigenvector-eigenvalue problem.

From the considerations of the preceding paragraph,
we see that neither the Brillouin-Wigner perturbation
theory nor the perturbation theory of this paper is
clearly superior to the other for solving the eigenvector-
eigenvalue problem. The situation is further complicated
by the fact that the methods outlined in the previous
paragraph are often replaced by more specialized pro-
cedures, but the qualitative features remain the same.
It seems reasonable to assume that, for some eigen-
vector-eigenvalue problems, the methods developed in
this paper will be more efFicient, when carried out to
some order in e. Only experience can determine what the
conditions are for this to be true.

We now consider some respects in which the pertur-
bation theory developed in this paper is clearly superior
to both the conventional Schrodinger perturbation
theory and the Brillouin-Wigner perturbation theory.
Suppose we want to compute the average eigenvalue
of the perturbed eigenvectors, using either of the latter
theories. What we would have to do is find the g eigen-
values Ai, A2, . , Ay and compute AA„——7 ' Pi A~.
The average eigenvalue is then given by Eo+eAA, .
Using the perturbation theory developed in this paper,
we need only compute the trace of PVP+PV(l —P)KP
and divide by E to obtain A.A„. We do not have to find
the individual eigenvalues. In general

(A") A.=& ' Zi" (A-)"
=Tr(LPUP+PV(1 —P)KPj"), r=1, 2,

It is clear that it is much easier, for reasonable values
of r, to compute (A")A„ to a given order in e by using the
trace formula, than it is to compute (A') A„by obtaining
each of the E eigenvalues A„, to the same order in ~,
and computing 1V 'PP(A„)". In other words, the
theory developed in this paper permits us to obtain
some statistical information about the distribution of
certain eigenvalues, with little effort compared to the
work required to obtain this information by solving the
appropriate eigenvalue problem.

Let us turn now to the case of infinite degeneracy.
Many of the points discussed in connection with finite
degeneracy are applicable to the case of infinite de-
generacy, with perhaps some modifications or restric-
tions. We will not discuss such points here. When the
zeroth-order eigenvalue Eo is infinitely degenerate, we
may not be particularly interested in solving the eigen-
vector-eigenvalue problem, but rather in eliminating
from Ho+eV the coupling between states in the closed
linear manifold MEO and states outside MEO. This we
we accomplish by means of a unitary transformation,
and, in particular, we can use the unitary operator S
defined in (7). In the latter case we obtain the Her-
mitean operator @ of Eqs. (9) and (16).The operator
P@P of Eq. (14) then represents the effect within Mzo
of HO+&V in the complete Hilbert space. An example
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of a case in which P@P is of direct interest arises in
connection with the nonrelativistic limit of the Dirac
equation for an electron in a time-independent electro-
magnetic field. We start with the Dirac Hamiltonian
operator

mc'(I}+ (mc)-' Z' ~;Lp' —(e/c) ~'(x, y,z)1
+ (e/mc')4 (x,y, z) },

where nz is the electron mass, e the electron charge,
c the velocity of light, g, n, n„, e. are Dirac matrices,
x, y, z coordinate operators, p„p„, y„ the momentum
operators, and @(x,y,s), A;(x,y,z) the electromagnetic
potentials at positition (x,y, s). We set Ho = g, e= (mc) '
and V=P;n;(p;—(e/c)A;(x, y, z)}+(e/c) p(x, y,z) . Since
I}s=1, Hp has eigenvalues &1; we choose Eo——1. Then
we easily obtain the following:

P=-:(I+&), I-P=-:(1-~),

=-(—:)""(1—I}),
(Ho —&o)' - Ho —&o

PUP=(e/2c)(1+)) @(x,y,z),

(1—P)V(1—P) = (e/2c) (1—$) @(x,y, z),

PU(1—P) =-', (1+g)g; e;{p;—(%)A;(x,y,z) },
(1—P)VP=', (1—g)P e {p—(e/c)A;(x, y,z)}.

When the above formulas are substituted into Eq. (54),
mcsP@P will represent the equivalent nonrelativistic
Hamiltonian operator for the electron, plus the higher
order correction terms proportional to (mc) ' and
(mc) ', among states for which g has the eigenvalue
plus one.

It is worth noting that, in practice, if the Hermitean
operator Ho has a continuous spectrum, the physical
problem can be modified in a trivial manner, e.g., by
box normalization in quantum mechanics, so as to give
Hp a purely discrete spectrum. Then Ho will possess a
complete orthonormal set of eigenvectors $p

, as we have been assuming. Furthermore, the
modifications that have to be made for the case of a
finite dimensional Hilbert space, in results obtained on
the assumption that $p, $r, . . ., $„, formed an
infinite set, are obvious.

The remainder of this paper is organized as follows:
in Sec. II we consider some concepts related to Hilbert
space operators which will be of use later on. In Sec. III
we state all the assumptions necessary to prove the
perturbation theory has a nonzero radius of convergence.
We also give a less restrictive form of Schrodinger per-
turbation theory, which divers from the conventional
form. However, since the two forms do have a lot in
common, we see no point in burdening the reader by
introducing a new terminology to distinguish between
them. This less restrictive form is developed in Sec. IV
into one simple operator equation which is the starting

point for the power series solutions considered in Sec. V.
Section V contains the sufficient conditions for con-
vergence of these power series. In Sec. VI the results of
Secs. IV and V are applied to the eigenvector problem.
In Sec. VII we discuss how the general theory de-
veloped in Secs. III, IV, V, and VI can be used in
applications. Finally, in Sec. VIII we give the low-
order terms in the power series expansions of quantities
used in applications.

II. SOME CONCEPTS RELATED TO HILBERT
SPACE OPERATORS

We wish to consider here the concepts of the norm of
a Hilbert space operator and of a resolution of the
identity. The results that follow will be used implicitly
in the remainder of this paper.

The norm of an operator A, IIAII, is defined as the
supremum or least upper bound of I (Ait, AQ)/Q, g) j'*
for all nonzero vectors f in the Hilbert space. IIAII is
also equal to the supremum of

I (x,Ag) I/L(x, x)(g,f))'*
for all nonzero vectors f and g in the Hilbert space. If
A is Hermitean, then IIAII is equal to the supremum of

I (it,AP) I/Q pP).
4 It follows from the above results that, '

for any operator A, IIAII&0, with IIAII=O if and only
if A=0; IIAtll=llAII; and IIAtAI =IIAII'. If c is any
complex number, then IlcAII= Icl Al. Also, for any
operators A and B, IIA+Bll &

I
A + IBII and IIABII

& IIAII IIBII.
A family of projection operators R(X) of the real

variable ) is called a resolution of the identity if and
only if it has the following properties:

lim E(X)=0, lim R(X) =1, lim E(X)=E(&o),

E(X")& E(V) for X"&X'.

A resolution of the identity E(X) belongs to a, Her-
mitean operator H if and only if'

H= xdE(z).

The following relations exist between any Hermitean
operator and possible resolutions of the identity
belonging to it:

(i) There exists a unique resolution of the identity
belonging to each Hermitean operator of finite norm. '

(ii) There exists none or exactly one resolution of the
identity belonging to a given Hermitean operator of
infinite norm. '

4 J. von Neumann, mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, 1955l, p. 99.
The constant C of theorem 18 is chosen to be IIAII.

~ We use the notation A~ to denote the adjoint or Hermitian
conjugate of an operator A.' Reference 4, pp. 118, 119.

~ Reference 4, pp. 150, 99.
Reference 4, p. 154. We include the maximal property in our

definition of a Hermitean operator.
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If H is Hermitean and there exists a resolution of the
identity E(X)„belonging to it, then this resolution is
unique. If f(x) is a real function of the real variable x,
we can define

1—

Ho —Eo ~ (x Bo—tl& A—
(X—Eo) idE(X)

f(H) —=
) f(P)dE(X),

the right-hand integrals being absolutely convergent.
Then

whenever the right-hand integral exists. If fo(x)
=fi(x)+fo(x), then fo(H) =fi(H)+fo(H). If fo(x)
=fi(x) fo(x), then fp(H)=fi(H) fo(H). Thus we can
manipulate such functions of H as if H were a real
variable. '

The reader may wonder why we introduce the
concept of a resolution of the identity belonging to a
given Hermitean operator, instead of the more familiar
concept of a complete set of eigenvectors. The reason
for this is that we want to use the result on the existence
of a unique resolution of the identity belonging to any
Hermitean operator of 6nite norm. This result is used
to obtain Eq. (7) under more general conditions than
would otherwise be possible.

III. FUNDAMENTAL ASSUMPTIONS

We make the following assumptions:

Hp and V are Hermitean operators in a
Hilbert space; there exists a resolution of the
identity belonging to Hp,' Eo is an isolated
eigenvalue of Hp,' Hp/Epl; and c is a real
parameter. (&)

Let E()i) be a resolution of the identity belonging to
Hp. Then E()) is unique and

H, = t XdE(X).

What we mean by Eo being an isolated eigenvalue of
Hp is that we can find a 8)0 such that dE(X)/dX= 0 for
0& [X—Ep [

&8. Hp NEpl implies that

E(Eo+&)—E(Eo—&) Nl.

Note that we are only requiring that the one eigenvalue
Eo be isolated.

Let P be the projection operator onto the closed
linear manifold 3IIzp of all solutions pp of Holy/p=Epl//p.

Let 6 be the superemum or least upper bound of all
possible 6's of the previous paragraph. Then 0&9 & ,
and

Ho=EoP+ ' &dE(&).
"p -Ro(&a—

We can thus define

1—P
( —Ep)

—
&dE(X),

(Ho —Eo)& ~
p

—z.)) ii—

9 Reference 4, pp. 141—145.

0&
(Hp —Ep)-'* Ho —Eo

=Q—&( oo.

Some further properties are':

Eo*——Ep, PRO, Psl, P~=P, P'=P,
HpP= PHp ——EpP. (3)

In addition, we assume that

IIPVP[l & ~, V
(Hp —Ep)i (Hp —Ep)-:

(4)

PV (~.
(Ho —Eo)'

Note that [[V[[&~ is a sufhcient condition for (4) to
be satisfied, but not a necessary one if [[Hp[[= po.

I et us see what form the assumptions we have made
take for the case in which Hp possesses a complete
orthonormal set of eigenvectors (p, fi, . , (, . with
eigenvalues Eo, E&, ., E„, . , respectively. The
assumptions that Hp and V are Hermitean reduce to
the assumptions that E„is real for all e, and ($,VP„)= ($,V$ )* for all tip and ii, respectively. The assump-
tion of the existence of a resolution of the identity
belonging to Hp is satisfied by the following unique
choice of E(X):

for E &X
E(x)~„=0 for E„&X.

The assumptions that Eo is an isolated eigenvalue of
Hp, and that Hp 4 Eol reduce to the following: If
E„WEp, then

l E„Ep[ )6)0 for some—fixed 5; and,
there exists an E„/Eo, respectively.

The definitions of the operators P and

(1—P)/(Ho —Eo)

reduce to the definitions given in section I. The defi-
nition of (1—P)/(Hp —Ep) & reduces to the following:

= (E„—Eo)-~(. for E„WE,

(Ho —Eo)' =0 for E =ED.

Equations (2) and (3) follows easily from these defi-
nitions, and the operators appearing in Eq. (4) are just
products of operators already de6ned.

In Sec. I we have already noted differences between
the perturbation theory developed in this paper and the
conventional Schrodinger perturbation theory, for the
case of degenerate zeroth order eigenvalue Eo. However,
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the diGerences are not really marked enough to justify
the introduction of a new terminology to distinguish
between them. Instead, we use the descriptive phrase
"Schrodinger perturbation theory in its least restrictive
form" to describe the perturbation problem with which
Secs. IV and V will be concerned, and which is described
below.

Schrodinger perturbation theory in its least re-
strictive form is concerned with the problem of finding
a unitary operator U(p) such that

(1—P) U~(Hp+ pV) UP= PU~(Hp+pV)U(l P) =0,

and such that U(p) and U~(Hp+pV)U possess deriva-
tives with respect to p of all orders at p=0. Questions
as to the convergence of the power series expansions for
U(p) and Ut(Hp+cV) U, and as to the equality of these
operators to their power series expansions, are left
unanswered. Furthermore, we cannot speak of the

Schrodinger perturbation theory because U(p) is not
unique. If T(p) is any unitary operator that commutes
with P, then UT is unitary and

(1—P) (UT) t(Hp+ pV) UTP
= T&(1—P) Ut(Hp+ pV) UPT= 0.

Similarly
P(UT) t(Hp+ pV) UT(1—P) = 0.

But for any vector 1t in the Hilbert space,

0& (P, PKt(l —P)KPP) & Il(l —P)KPII'(P, P).
This implies E(X)=0 for X&0 and E(li) =1 for
X) Il(l —P)KPII', so that

„)){z—»KP)) +
XdE(l ).PKt(1 —P)KP=

J~
We can thus define the operators

t
II{&—»KI'll'+

1/[1+PKt(1—P)KP)l=— (1+X) 'dE (X)

and
~~{X-P)KP~~2+

[1+PE"(1—P)KP]l—= gt (1+X)'dE(X).

Similarly we can define the operators

1/[1+ (1—P)KPKt(l —P)]l

Thus there exists a unique resolution of the identity
E(X) belonging to PKt(l —P)KP, i.e.,

PKt(1 —P)KP= t ME(z).

Thus U(p)T(p) leads to a Schrodinger perturbation
theory if T(p) possesses derivatives with respect to p

of all orders at e=o.
The assumptions contained in (1) and (4), however,

are sufhcient to enable us to exhibit a unitary operator
S(p) for p in some finite region about the origin, such
that (1—P)St(Hp+pV)SP=PSt(Hp+pV)S(1 —P) =0,
and such that S(p) and S~(Hp+ pV) S are equal to power
series in e with nonzero radii of convergence.

[1+(1—P)KPKt (1—P))l.

Thus the operators

1/[1+PK ~ (1—P)KP)', [1+PK t (1—P)KP) l,

1/[1+(1—P)KPKt(1 —P))l, (6)

[1+(1—P)KPK~(l —P))l

exist. We can therefore define the operator S in terms
of (1—P)KP as follows:IV. DEVELOPMENT OF THE THEORY

Consider any operator K such that S=—[1+(1—P)KP]
{1+PKt (1—P)KP}—:

1—P
II(1—P)KPII&".

Then
+[1—PK'(1 —P)]

( )
(7)

{1+(1—P)KPK" (1—P) }iIIPK'(1—P)KPII = IIL(1—P)KP)'(1—P)KPII
= Il(1—P)KPII'& ~. Then

P (1—P)
{1+PKt(l—P)}+ {1—(1—P)KP}

[1+PKt(1—P)KP) l [1+(1—P)KPKt(1 —P)]~

P (1—P){1+(1—P)KP} +{1—PKt(1—P)}[1+PKt(1—P)KP]l [1+(1—P)KPKt(1 —P)]&

SSt={1+(1—P)KP} {I+PKt(1—P))
1+PKt(1—P)KP

(1-P)+{1—PKt(l —P)} {1—(1—P)KP} .
1+(1—P)KPKt(1 —P)

[1+PK&(1—P) —(1—P)KP][SSt—1]=[P{1+PKt(1—P)}+(1—P){1—(1—P)KP}][SSt—1]=0.
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Let P be any vector in the Hilbert space, and let
x= [SSt—l)y. Then

0= ([1+PKt(1—P) —(1—P)KP)x,
X[l+PKt(l —P)—(1—P)KP)x)

= Q, [1+PKt(1—P)KP+(1—P)KPKt(1 —P))y))(x,x)

Thus y=0 for arbitrary P, so that we must have
SSt= 1. Thus S is unitary, i.e.,

which simplifies to

(1—P)g P=
{1+(1—P)KPKt(l —P)}'

X[(Hp—Ep) (1—P)KP —«{(1—P)KPVP
—(1—P)V(1—P)KP+ (1—P)KPV(1—P)KP

1—(1—P)VP}) (10)
{1+PKt(l—P)KP}&

Combining (10) with the relation

St= S-' (8)
P@(1—P) =[(1—P)@P)t,

We now let (1—P)KP, and thus S, be functions of «.

We define the Hermitean operator @(«) as follows:

g («) —=S («)[Ho+«V)S(«).

Substituting (7) in (9) we get

(1—P)
(1—P)@P=

{1+(1—P)KPKt(1 —P)}:
X[1—(1—P)KP) [Hp+«V)

(1—P)@P=P@(1—P) =0. (&2)

Multiplying (9) on the left with S and using (8), we get

we obtain the following:
A suflicient condition for the relations (1—P)@P

= P@(l—P) =0 to hold is that

(H« —Eo) (1—P)KP = «[(1—P)KPVP
—(1—P)V(.l—P)KP+ (1—P)KPV(l —P)KP

—(1—P)VP). (11)
In Sec. V we will find a solution of (11) as s, power

series in e with a nonzero radius of convergence. For the
present we will assume we have an operator (1—P)K(«)P
satisfying (11)and evaluate@(«). We immediately have

P S = H««VS.
X[1 (1—P)KP)

{1+PKt(l—P)KP}& Combining (7), (12), and (13), we get

PS@P= PSPgtP = P@P=P[Hp+ «V)SP
{1+PKt(1—P)KP}l

lt then follows that

= [E«P+ «PVP+ «PV(l —P)KP)
{1+PKt(l—P)KP}i

P@P=E«P+ «{1+PKt(l—P)KP}**[PUP+ PV(l —P)KP)
{1+PKt(1—P)KP}'*

By similar reasoning

(1—P)SO (1—P) = (1—P)S(1—P)@P= (1—P)@(l—P) = (1—P)[4,+«V)S(1—P){1+(1—P)KPKt(1 —P)}&

= [Ho(1—P)+«(l —P)V(l —P) «(1—P)VPKt(l —P))
{1+(1—P)KPKt(1—P) }&

Thus

p [(1—P)V(1—P)—(1—P)PVKt(l —P)){1+(1—P)KPKt(l —P) }&

Combining (12), (14), and (15), we get

X . (15){1+(1—P}KPKt(1—P}}~

1
@=H«+« t {1+PKt(1—P)KP}l[PVP+PV(1—P)KP)

{1+PKt(1—P)KP}-**
1+{1+(1—P)KPKt(l —P)}-:[(1—P)V(l —P) —(1—P)VPKt(1 —P)) I. (16)

{1+(1—P)KPKt(l —P)}&I
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V. POWER SERIES SOLUTION AND CONVERGENCE

We will now find a solution of (11) of the form

(1—P)KP=
(Ho —Eo) '

1—P1—P
VP&, VPQ (

& (Ho —Eo)» (Ho —Eo)»

is a solution of (11).We will now obtain a sufhcient
condition for this to be the case.

We first note that, for any»! in the Hilbert space,

Equations (2) and (17) imply that

Il(1—P)KPII = PP
(Ho —Eo)'*

so that

1—P -t 1—P

(Hp —Ep) ' (Ho —Ep) '

(Ho —Eo)'*

VP =
(Hp —Ep)»

1—P
VP

(Ho —Ep)»

Thus (17) implies (5). Substitution of (17) into (11)
leads to the following:

A sufficient condition for (11) to be satisfied is for the
operator Q to satisfy the equation

1—P
Q= p RPVP- QP

Hp —Ep (Hp —Ep)» (Hp —Ep)»

= PV
(Hp Ep)»

1—P 1—Pa=—4 '))PVPf)+ V
(Ho —Eo)» (Ho —Eo)»

~ (22)

1—P 1—P
+ RPV QP-

Hp —Eo (Hp —Eo)'*

1—P
VP . (18)

(Ho —Eo)'*

We seek a solution of (18) of the form

b—=6-» PV (23)
(Ho —Eo)»

Applying (22), (23), and some results of Sec. II to (21)
we get

R(p) =P R.p".
n=l

n=l
(20)

By substituting (19) into (18) and equating coefficients
of like powers of e on both sides of the resulting equation
we obtain

Qi=- VP,
(Hp —Ep)»

The condition
~~ Q~~ & oo will be guaranteed if we require

that

n—2

Il~'-ll &~II+.-~II+»-» Z II+oll |l+. ~ill

for n) 2. (24)

We next define a function G(z) of the complex vari-
able s as follows:

G(z) =—(6»/2bz) L1—az—f (1—uz)' —4b'z')»g. (25)

It is easy to show that G(s) has the following properties:

G(z) =zLaG(z)+bh —»G'(z)+h»b). (26)

G(z) is analytic in z for ~z~ &1/(a+2b) and continuous
in z for Izl &1/(u+2b).

We can deGne 3f as follows:

1—P 1—P 1—P
R = Q &PVP — V Q gP

Ho —Eo (Ho Eo)' (H o
—Eo) '*

-o 1—P 1—P
gPV R aB'

&=& Ho —Eo (Ho —Eo)'

M„—=e!-'[d"G(z)/dz"jg p.

It can then be shown that

G(z) =g 3f„" for izi &1/( +2b).

(27)

(28)

Substituting (28) in (26) and equating coefficients of
like powers of s on both sides of the resulting equation,H the expressions for „, given by 21 satisfy 20,

then (19) is a solution of (18), which implies
3f1=~'b,

(1—P)K(p) P= R(o)P
(Ho —Ep)»

M„=aM„g+bA—» Q iVpM o j fore)2. (29)
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(—1)"(2rs)!
(30) (1+A)'= 1+2 A-+i

II All &1,
s p=(rs+ 1)2»+i (I!)sII@„II(M„ for n&1.

Note the similarity in form of (24) and (29). A simple Because of (37) we can use the expansions
induction sufBces to prove that'o

(38)
Using (28) and (30) we get for

I el (1/(a+2b) that - (—1)"(2~)'
—A",

(1+A)'* =o 2"(I!)'

&G(1/I a+2bj) =6'& ~.

Thus (20) is satisfied. We can now state the following:

arith"

A= PKt(1—P)KP and A= (1—P)KPKt(1—P),
for

I el &1/(c+2b).

is a solution of (18) for
I el & 1/(a+2b),

(38) may be used to express S(e) and @(e) as power
(31) series in e, using (7), (16), (34), and (36), which will be

convergent for
I
e

I & 1/(a+2b), i.e.,

S(e)=1+P I!-
I d"S(e)/de), p e

ll~(s)ll&G(lel)&~' «r
I el &1/(&+2b) (32)

Let us define

R Q„P for rr &1.
(Hp Ep) 1

for
I el &1/(a+2b), (39)

@(c)=Ho+ Q I!—'Ld"@(e)/de"), p e"
(33)

for
I el &1/(o+2b). (40)

Ki ——— VP,
Hp Ep—

1—P1—P
K„= K„ iPVP — V(l —P)K„ iP

Hp —Ep Hp —Ep

Then, from (17)-(21), (23), and (30)-(33), we get This completes the proof of the statements made in the
last paragraph of Sec. III.

VL APPLICATION TO THE EIGENVECTOR
PROBLEM

Ke want to apply the results of Secs. IV and V to
the eigenvector problem

(Hp+eV)&=E&. (41)

IIK.II &~-W „ for ~&1.

+ ~ K" V( P)K"-~'P r N&2' ( ) Suppose we have a vector xp in the closed linear mani-s=i Hp Ep-
fold 3IIzp of all solutions Po of the equation Hofo=Epfp

(35) such that

(PIP)xo=Exo (42)

gn

n=a Then, using (12) and the definition of P, we see that
xo also satisfies the equations

is a solution of (11) for
I el &1/(a+2b). Pxo=xo, exp=Exp, (43)

(Hp+ eV) SPxp ——S@xo——ESPxp,' Since !!gall=Aib=AII&, (30) is true for m=1. Assume (30)
is true for N &I)1. Then, from (30) with 17&e)1, (24) and
(29) we get i.e. Q=SPxp is a solution of (41). Thus, we have

reduced the problem of finding certain eigenvectors of
the Hermitean operator Hp+ eU in the full Hilbert space
to that of finding the eigenvectors of the Hermitean
operator POP in Map, and then operating on the latter
eigenvectors with SP. The eigenvectors we obtain by

ll I'&+, lll&olll1t&lll+bA '&
lll~sll-

II(1—P)K(e)PII &~ '*G(lel) &1 and, using (13), (42) and (43), we get
«r

I «I &1/(o+2b) (37)

This imples that (30) is true for s, =Ar+1. By mathematical
induction, (30) is thus true for all N&1. " !!PKt(1—P)KPll = ll(1—P)KPKt(1 —P) ll

= ll(1—P)KP[P& 1.
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this method are namely those satisfying the relation:

SPStg =p.

PQp= Qp, (47)

and using (7), (12), (13), (14), (46), and (47), we get

Unfortunately, the perturbation expansions of the
operators P@P and SP are more complex than that of
(1—P)KP. If we are willing to find the eigenvectors of
a non-Hermitian operator in 3fzp, then we can find
operators corresponding to P@P and SP which are so
simply related to (1—P)KP, that their perturbation
expansions can be written down by inspection from the
perturbation expansion of (1—P)KP. We proceed as
follows: suppose we have a vector Qp in Mzp such that

«[PVP+PV(1 —P)KP]Qo= (E—Eo)Qo. (46)

(Ho+ «V) [1+(1—P)KP]Qo
= (Ho+ «V) SP[l+PKt(1—P)KP]~Qo
=SP@P[1+PK&(1—P)KP]&Qo
=SP[1+PKt (1—P)KP]l

X{Eo+«[PVP+PV(1 P)KP]jQo
=KSP[1+PKt(1—P)KP]'Q,

=E[1+(1—P)KP]Qo,
that is,

P= [1+(1—P)KP]Qo (48)

is a solution of (41). The relation between (42) and
(46) is as follows: From any Qo we can obtain a zo by
multiplication by [I+PKt(l —P)KP]i; conversely,
from any pp we can obtain an Qp by multiplication by
1/[1+ PKt(1—P)KP]&. «[PVP+PV(1 —P)KP) and
[1+(1—P)RP] are the counterparts of P@P and SP,
respectively, and possess the properties we anticipated.

If
~

«
~

& I/(a+2b), what can we say about the possible
range of E? Utilizing (17), (23), (32), and (46), we get

IE—Eol & «PVP+PV, ~P & IIPVPII+~'*
(Ho —Eo)'*

PV
(Ho —Eo)'-

1—P
& 'iiPVPii+ V +26 l PV

(Ho —Eo) ' (Ho Eo) * (Ho —Eo) *

Thus
~

E—Eo
~
/6 & 1. A stronger result, applicable

under quite general circumstances, but not in all cases,
is the following:

~E—Eo~/g&o for («~&1/(g+2$). (49)

A suflicient condition for (49) to be true is that

1—P

(Ho —Eo)~ (IIo—Eo)'*

VII. DISCUSSION

Although all the results that are necessary in applying
the general theory presented in Secs. III, IV, V, and
VI are contained in these sections, they are presented
in logical order rather than in a way most convenient
for applications. The purpose of the remarks that
follow is to show how the general theory can be used in
applications.

The formal expressions for the coeKcients of e" in the
perturbation expansions of (1—P)KP, S and @ do not
depend on whether or not our convergence criteria are
satisfied, or even on whether the perturbation expan-
sions converge, but only on whether the operator
products that appear in the coeKcients exist. The formal
expressions for these coefhcients are given directly or
can be derived from the following equations: (7), (16),
(34), (36), and (38).

We have developed two alternative procedures for
finding solutions of Eq. (41) which also satisfy (45).

One method involves simpler expressions for the coef-
6cients of c" in the perturbation expansions of the
relevant operators, but involves finding eigenvectors of
a non-Hermitean operator in the closed linear manifold
Mzo of all solutions Po of the equation Hollo

——Ego. The
equations needed for applying this method are (34),
(36), (46) and (48). The other method involves more
complex expressions for the coefFicients of e", but in-
volves finding eigenvectors of a Hermitean operator in
3EEp. The equations needed for applying this method
are (7), (14), (34), (36), (38), (42), and (44). The
former method is simpler when the dimensionality of
3fgp is a small Gnite number, and certainly when 3fEp

is one dimensional, i.e., Ep is nondegenerate. The latter
method is simpler when the dimensionality of Map is
infinite or finite but large; the reason for this is that
the operator in MEp whose eigenvectors we are seeking
is Hermitean, so that we can, for example, write it in
the form Ho'+«V' and apply the methods of this paper
to it, whereas we could not do this with a non-Hermitean
operator.

I et us now consider the sufhcient conditions for
convergence that have been developed. If we only
desire convergence for e small enough but not zero, then
the criteria we are interested in are given in Eqs. (1)
and (4). If we want to use the general theory to prove
convergence for a particular value of e, then we must
have

~ «~ & 1/(a+2b) for the expansion of the operator
(1—P)KP, or

~ «~ & 1/(a+2b) for the expansion of the
operator S or @,where a and b are de6ned in Eq. (23).
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In practice we can always find 6 exactly and can often
find

IIPVPII and PV
(Hp —Ep) &

exactly, but usually can only find bounds on

1—P

(Ho —Eo)'* (Ho —Eo)'

In cases where IIAII cannot be found exactly, the
definition of IIAII as the supremum or least upper bound
of

I (Ap, Ap)/(p, lf)$' for all nonzero vectors p in the
Hilbert space provides a natural and convenient varia-
tional principle for obtaining a good approximation to
IIA II from below. The smaller the value of

I
e

I (a+2b) (1,
the smaller, approximately, is the upper bound provided
by the general theory to the error in neglecting all
terms in the perturbation expansion of the operator

(1—P)KP, S or O beyond a certain order. We have
not studied these bounds, but they can be derived,
using Eqs. (25), (28), (29), (35), and (36)." This
suggests that, if we have a choice of Hp out of a group
of possibilities, we should choose that Hp which mini-
mizes

I eI (o+Zb).
It is often the case that a good estimate of the eigen-

value E for an eigenvector we are interested in can be
obtained either theoretically or experimentally. If
IE—EpI/6)-,', then we know from Eqs. (49) and (50)
that

I
e

I
)1/(a+2b) under quite general circumstances,

so that we cannot use the general theory to establish
convergence of the perturbation expansion of (I—P)KP,
S or @.For example, if we wish to treat the electron-
electron repulsion in the neutral helium atom as a
perturbation in computing the ground state energy,
then, since

I
E—Ep I /6 = 11/15)—'„we know that

almost certainly
I

e
I
)1/(u+2b).

For additional applications and a more detailed
discussion see Sec. I.

VIII. LOW-ORDER PERTURBATION TERMS

From (34) we obtain the following expressions for Ki, Kp, and Ko ..

1—P
Vp—

1—P
VP, Kp —— V

Ho Eo Ho —Eo Ho Eo
VPVP,

(Hp —Ep)'

1—P 1—P 1—P
V VPVP+ V VPVP+ VPV VP

(Ho —Eo)' Ho —Eo Ho —Eo (Ho —Eo)' (Ho —Eo)' Ho —Eo

1—P 1—P 1—P

1—P 1—P 1—P
VPVPVP — V V VP. (51)

(Hp —Ep)' Ho —Eo Ho —Eo Ho —Eo

1—P l t' 1—P 1—P l f 1—P
E= E+o(e( ,0V& )oe

I (0, V Vgo I+e I to, V V —Vgo I
—

(&p,V&p) '
I Po, V Vgo

Hp —Ep ) & Ho —Eo Hp —E, ) ~ (Ho —Ep)'

( 1—P 1—P y ( 1—P 1—P l ( 1—P
+e ((o,Vgo)' I $o, V —V Vb I+I (o, V V— Vto I +I 4, V Vpo I

(Ho —Eo)' Ho —Eo l ( Ho —Eo (Ho —Eo)o ) ( Hp —Ep j
1—P l( 1—P l ( 1—P l ( 1—P 1—P

Vb I
—(lpVb)'I (p V V&p I-l b V V Vgp I +O(") (52)

(Ho —Eo)s ~ & (Ho —Eo)o ) ( Ho —Eo Ho —Eo Ho —Eo

For the more general case, we get
1—P 1—P

eLPVP+PV(1 —P)KPj= ePVP —e'PV VP+eo PV V Vp pV VpVp
Ho Eo - Hp Ep Hp —Ep (Hp —Ep)o

1—P

1—P 1—P 1—P
+e4 PV V VPVP+PV V VPVP+PV VPV VP

(Ho —Eo)' Ho Eo-Ho —Eo (Ho —Eo) (Ho —Eo)' Ho —Eo

1—P 1—P 1—P

—P 1—P—PV VPVPVP —PV V V VP +O(e'). (53)
(Hp —Ep)' Ho —&0 Ho —&0 Ho —&0

1—P 1—P

N N
» ))(1—P)(K(e)P—Z K o"))&6 &PG((o))—Z 2f' (e("g for example.

n 1 n=l

"This formula is equivalent to the formula obtained by K. F. Niessen, Phys. Rev. 34, 263 (1929).

For the case in which Map is one-dimensional, i.e. Ep is nondegenerate, let ]p be a normal basis vector in Mzp.
Then, substituting (51) in (46), we get"
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The expression for P@P obtained by substituting (51) in (14) and using (38) is

1—P 1—P

1—P1—P 1—P
+o4 — PV V VPVP+PVPV V VP

(Ho —Eo)' Ho —Eo Ho- Eo (Ho- Eo)'

1—P

1 1—P 1—P 1—P+- PV V VPVP+PVPV V VP
2 Hp —Ep (Hp —Ep)' (Hp —Ep)' Ho —Eo

1—P

1 1—P 1—P 1—
+— PV VPV VP+PV VPV VP —— PV VPVPVP

2 (Hp —Eo) Ho —Eo Hp —Ep (Hp —Ep)' 2 (Hp —Ep)'

1—P 1—P

1+P l 1—P 1—P 1—P
+PVPVPV VP t —PV V V VP +0(o'). (54)

(Hp —Eo)' I Ho —Eo Hp —Ep Hp —Ep

The expression for SP obtained by substituting (51) in (7) and using (38) is

1—P 1—P
POP =EoP+ pPVP —o'Pv VP+ p' PV V VP —— PV VPVP+PVPV VP

@p Ep — Hp —Ep Hp —Ep 2 (Hp —Ep)' (Hp —Ep)'

1—P 1—P 1—P
SP=P—p VP+o' V VP-

Ho —Eo Hp —Ep Hp —Ep

1—P 1—
VPVP —-', PV VP

(Ho-Eo)' (Ho-Eo)'

1—P 1—P 1—P 1—P 1—P

1—P 1—P 1—P 1—P 1 1—P 1—P
VPVPVP — V V VP+— VPV VP

(Ho —Eo)' Ho —Eo Ho —Eo Ho —Eo 2 Ho —Eo (Hp —Ep)'

1—P1—P 1—P 1—P1+- PV V
(Ho —Eo)' Ho —Eo

VP+PV V VP
Ho —Eo (Ho —Eo)'

1 —P 1—P—— PV VPVl'+1'VPV VP t +O(o4). (55)
2 (Hp —Ep)' (Hp —Ep)P

V VPVP+ V VPVP+ VPV VP
(Ho —Eo)' Ho —Eo Hp —Ep (Hp-Ep)' (Hp —EQ)' HQ —Ep

For the reader who is unfamiliar with functions of
operators, it should be pointed out that

f i 2 0 ~ ~

(Ho —Eo)" - Ho —Zo.

Thus, Eqs. (51)—(55) are just algebraic combinations
of operators discussed in Sec. I, so that the reader should
be able to write these equations in matrix form when
Hp possesses a complete orthonormal set of eigenvectors

For other cases the reader should
note the next to last paragraph of Sec. I.


