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Recent precision measurements of the hyperhne splitting in the 1Sand 2S states in hydrogen would make
possible the observation of n' corrections. A calculation of these corrections would be difFicult because of
the many processes that can contribute to this order and because of the uncertainty of the nuclear structure
effects that can contribute in this numerical order. For these reasons only the ratio of the hyperfine structure
in the 2S state to that in the 1S state is calculated here. It is shown that the formation of the ratio eliminates
the contribution of most of the n' corrections and totally eliminates the nuclear structure effects. The coef-
ficient, ft —A, of the n' terms in the ratio is calculated as (ft —A) =5.28. This compares with the experi-
mental value, (8—A),„v=3.4&0.8.

I. INTRODUCTION In Secs. II and III the finite mass of the proton and
its distributed nature will be neglected. These effects
will be treated in Sec. IU, where their contribution to
the ratio will be discussed.

it ALCULATIONS of the corrections to the Fermi~ formula' for the hyperfine structure (hfs) in S
states of hydrogen have been done' 4 to relative order
n, n(Zn), nit/3f, and (Zn). ' Recent precision measure-
ments' of hfs would make possible the observation of
deviations of order n' from these calculated values in
the 15 and 2S states of hydrogen. The calculation of
the radiative corrections to hfs to order o.' is a pro-
hibitively dificult task because of the many electro-
dynamic processes that can occur in this order and the
nuclear structure effects that would contribute in the
same order of magnitude. However, since the radiative
corrections are basically a high-energy, short-range
effect, it will be shown (Sec. III) that the bulk of these
processes exhibit dependence upon the state of the
hydrogen atom only through an over-all scale factor of
the square of the wave function evaluated at the origin.
Furthermore it will be shown (Sec. IV) that the effect
of the distributed nature of the proton will have the
same state dependence in this order. These facts make
the calculation of the ratio of hfs in the 25 to that in the
15 state a reasonable task.

In evaluating this ratio the contributions may be
divided into two classes. In the first, the relativistic
properties of the electron are important and the electron
may be treated as free in its intermediate states. In the
second, the relativistic eGects do not contribute but the
properties of the electron in a Coulomb field become
important in the intermediate states.

II. FORMULATION OP THE PROBLEM

When one neglects the finite mass of the proton and
its distributed nature, the hfs in the first two S states
of hydrogen can be written

3 (' n
av, =Z, ].+-(Zn)'

I
1+ azn—' bn'+A—n' I, (1a)

)2 E 2ir

17 ( n
Avsa=Zs 1/ —(Zn)'

I 1+—azn' —bn'+Bns Ii (1b)
8 & 2 j'

where the first bracket in each of these arises from the
Breit4 relativistic correction to the wave function. Here

&-=—l(e/2a)(n s) IN-'(0) I' (2)

is the Fermi' energy where Ilb„s(0)I' is the square of
the Schrodinger wave function for the mS state evalu-
ated at the origin and a and b are numerical constants
independent of the state. ' The ratio of the hfs in the 25
state to that in the 15 state to order o.' can be written

t1vs, 1 /17 3 il=- 1+I ——— I(Zn)'+(8 —A)n' .
Avi, 8 & 8 2)

(3)

The factor —', arises from the ratio of the wave functions
occurring in the Fermi energy. The major portion o* Supported in part by the U. S. Signal Corps while the author

was at Columbia University, and by the U. $. Atomic Energy this paper will be devoted to the calculation of the
Commission. difference, (8 A). —

' E. Fermi, Z. Physik 60, 320 (1930).
'N. M. Kroll and F. Pollock, Phys. Rev. 84, 594 (1951);and III. 0.' TERMS

Karplus, Klein, and Schwinger, Phys. Rev. 84, 597 (1951) for
the n and a(Za) corrections. Here n is the fine structure constant Radiative corrections of order ns can arise in three
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Hfs OF 1S AND 2S STATES OF H

wave function of the origin. Hence they are state inde-
pendent' in the sense that they do not contribute to
the difference, (8 A—). The rr'(Zn) corrections arise
from the distributed nature of the fourth-order electro-
dynamic radiative corrections. These will depend upon
the first and higher order spatial derivatives of the
wave functions evaluated at the origin. Each deriv-
ative will introduce a power of Zo, so that only the
first derivative can contribute. However, using the
Schrodinger equation with an external Coulomb field,
the derivative of the wave function at the origin is
easily shown to be proportional to the wave function
at the origin, P„"(0)=—sZcnP '(0), so that n'(Zn) con-
tributions will not contribute to the difference, (8—A).
This argument has been substantiated by an explicit
calculation of some of the n'(Zn) terms. The n(Zn)'
terms will contribute and must be evaluated explicitly.
Kroll and Pollock' 8 have developed renormalized
expressions for the energy shift of an electron due to the
electrodynamic field to first order in o., and all orders
in Zo.. Their results will be used here. It should be
pointed out that renormalization is not necessary in
this problem' since the high-energy, short-range eGects
will cancel out in the difference, (8 A); however—, the
renormalization facilitates the splitting of relativistic
and nonrelativistic eGects, the importance of which will
become evident below.

For reference we list here the definitions of the func-
tions that are used in the calculation. The electron
propagators satisfy the equations of motion, "

(svps+~)&s'(ps pi) =
) sn~'(ps —ps)Sr '(ps pi)d'ps

2i
+ ~(p-p), (4a)

(2s.)'

~ '(p p)( p+ )= ~ '(p p)'
2i

+ &(p —p ), (4b)
(2s.)'

where the fourth component of the momentum vectors
is the energy of the e5 state. The wave functions, "

' Terms that depend upon the state only through a factor of
the square of the wave function at the origin will be said to be
state-independent.' In evaluating the n(Zn)' terms the notation and deanitions of
Kroll and Pollock, henceforth referred to as K.P., will be followed
as closely as possible. It should be pointed out that certain errors
in K.P. Eqs. (29) and (33) have been corrected. These mistakes
do not affect the result of K.P. but will affect the results of this
paper.' The author wishes to thank Dr. G. Webrettiz for pointing out
this fact to him.

"Units A=c=1 will be used throughout. Four-vectors will be
denoted by ordinary type while their space parts will be denoted
in boldface, pk=p k —p0k0.' Momentum-space Dirac-Coulomb wave functions will be
denoted by @, p. The coordinate space wave functions are f, f.
A superscript 0 will denote the corresponding nonrelativistic
Schrodinger wave function.

@(ps), p(p&), satisfy the homogeneous equations. The
external field is

Zu )Vol e t'y. (pXq))
2s' E q'2 (2s.)' E q'

where p is the nuclear magnetic moment operator. The
free propagator Ss (p) satisfies Eq. (4) with the poten-
tial term missing.

A. Polarization Energy

K. P., Eq. (21),give for the renormalized polarization
energy,

21"(I—V'/3) (ps —pi)'az„=—(Z~)'n
'

dV @(p,) «'+ (ps —pi) (&—I")

f
&«~~'(ps —pi)4 (pi)d'P i~'Ps —(2~)' 4 (ps)

X '~&~ "(p p)0 (p )—d'P "'P (6)

Examination of 6A& with the aid of Furry's theorem'~
shows that the first surviving part of 6A& is proportional
to 0., and three powers of A'. lf one of the A'is a mag-
netic potential and the other two are Coulomb, the
contribution is of the correct order in n. However, the
wave functions limit the contributions to the integral to
regions of momenta of the order of Zn~ so that the
momenta in Ri& may be dropped relative to sc. The
remaining momentum integrals can be performed. They
converge and give a result proportional to ~f„o(0)~'

which does not contribute to the difference, ts (8 A). —.

In the Iirst term of Eq. (6) we are interested in extract-
ing the hfs (terms proportional to o p) so that either
the magnetic field occurs explicitly or it is implicitly
contained in a modification of the wave function. The
two cases will be designated by subscripts a and b,
respectively.

For AE„ the wave functions are solutions of the
Dirac equation with a Coulomb potential. These may
be approximated (Appendix A) to the order of accuracy
required by

@(p)
~

~~o(p)
1

4e p/2s:)

where qP(p) is a solution of the Schrodinger equation
with a Coulomb potential. " Upon using the wave
function and averaging over directions in the momentum

"W. Furry, Phys. Rev. 51, 125 (1937)."This may be stated in another way by noting that 8A"(r) is a
short-range potential the integral of which over all space con-
verges.

'4 This approximation neglects terms of relative order
(Zn)' In(Zn) which are too small by a factor Zn In(Zn).
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integral, it is found that

en jt'o". p) t
'

BEv. ————
I I ~

dv 2v'(1 ——',v')
2% 43K) 0

J
r e.'(y2)(p2 pl)'0-'(yi)

X d'pid'p2. (8)
4K2+ (p p )2(1—v2)

where the form of each will be listed as it is dealt with.

A = 2v'n y(p2)ieyA'(p2 —q) I 2a(1 —4x')

yiyqx(8x 1—)+ imp, xjivTA'(q p—i)y(pi)
z'A'(q, p2)

Xd'pid'p2d'qdx) (14)

"~'(q,p) =-I q*+p(1-*))'
= ~-' —I.qx+y(1 —*)j', (13)e.'(p)

AEv, E„—— d'p p'
~ o(0)

(9)
where e„is the energy of the e5 state and the range of
x is 0 to 1.In evaluating A, it is split into a and b parts
as for hE„.For A„two terms arise since either potential
may be magnetic. Using Eq. (7) and performing
manipulations of the Dirac algebra to extract the hfs,
we 6nd

The integral in Eq. (9) is logarithmically divergent at
the upper end but the divergence is state independent
so that when the difference, (8 A), is fo—rmed the
result converges. "The integral is evaluated in Appendix
B, Eq. (B-2). The contribution to the difference is

The momenta in the denominator may be neglected where
relative to a', and with the use of Eq. (2) this becomes

(8—A),.=1/(10v). (10)

To obtain DER&, the potential appearing explicitly is
taken as Coulomb and one of the wave functions is
modi6ed by the magnetic field. One such term appears
for each of the wave functions and these are identical.
The modihcation of the wave function due to the action
of the magnetic potential once can be obtained as
p~~f SrieyA~& It is tem. pting to expand the prop-
agator in a Born approximation series in the Coulomb
field. However, the contribution from successive terms
in the series are of the same order of magnitude so that
all terms of the series contribute. Thus the magnetic
wave function must be obtained more exactly. Upon
using the magnetic wave functions from Appendix C
and transforming back to coordinate space, it is found
that

Zn'e t-' (1——',v') ~ d'r
Qgpg ~—,I dp2$2

1—V2 & r

XP„(r)P„~(r)expI —2~r(1 —v') '*7. (11)

The small components of the wave functions do not
contribute to the Z'n' term and the leading term in the
expansion of the integral in powers of Za is found to be
state-independent. The contribution to the result is

Z 'e 4'(y, )4'(p, )
A.= (-;n p)

(2&) ~ (p2 «)'(pi —q)"'~'(q, p2)

X f —x(8*—1)L2(q—y,)'+4q y, —2p, '

-q (y +y )3-4x'(p —y )'—(2«-y —y )

L(1—4x') (pi+ p2) —xp2$) d'pid'p2d'q dx. (16)

In terms which do not contain q2 in the numerator, let
~2'—+~2 and perform the q integral using

d'q(1, q) v' ( p&+ p2)
(17)

(q —pi)'(q —p2)' I p2 —pi I
&

Then

Zn' t' Ap
E-„~ 0-'(y2) 0-'(yi)d'pid'p2

16~ " IP„'(0)I'

2 (Znei
In p 0-'(0)

3 ( (2v.)')

t
p„'(p) p 2x(8x—1)

X
~ I

— — Id'Pd'q, (18)
~I (p q)2 4E 2 Lqx+p(1 —x)$2)

(8 A)vt, —
I

——2——ln2 I.
15v. E2 )

where Dp= y2 —pi. Upon carrying out the q integral in
(12) the second term and taking the real part, it is found that

B. Fluctuation Energy: Free Intermediate States

By using methods similar to that in K. P., after
renormalization the Quctuation energy can be written as

DEr =A+8+C+D+E+F+I D+Q, (13)
'~ The integral is of course convergent before the approximations

of dropping y relative to a are made. Convergence factors with a
cut-off sc have been replaced by 1. The difference, (I3—A), is not
affected by this method in the order of interest.

d g
=—v'/xp if p&e„

Re I

(q—p)'Lc„'—(qx+y(1 —x))'j=0 if p(e .
(19)

But e„is of the order of ~, in which region p (p) is
state-independent so that the second term does not
contribute to the difference, (8—A). The first term is
divergent but gives a convergent result in the same way
as AEv, . Using Eq. (B-3), the contribution to the dif-
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ference is

(8—A) ~,=—(ln2 ——',).
2'

(20)

In evaluating Ab, the contributions from the small
components of the wave functions are too small, and
again ~'A.'—+~'. Upon transforming back to coordinate
space, it is found that

20 (Zsns)
«P(r)~'(r).3(ir/ (21)

The second term of Eq. (13) is

Because of the singularity in N(r) around r=0 arising
from the singular behavior of the magnetic potential at
r=0, this integral diverges; however, the divergence is
state-independent so that the contribution to the dif-
ference is finite. Upon using Eq. (C-7), the result is

10
(8—A) ~b ————(-,'—ln2).

3'

space and extracting the hfs, it is found that

rre (rr p$c,.=——
I I LIP(r) I'+ 2 I~(r) I'7~(r)

4~& x )&
1

(28)
37rr'

(8 A) ci, —(1/4zr)——(1—ln2), (29)

C» is evaluated in a straightforward way. After trans-
forrning to coordinate space, it is found that

C)b= —6ZCPE

dr

Each of the terms in Eq. (28) is divergent because of
the r ' singularity in the magnetic potential. This could
be avoided by postulating a distribution for the proton
magnetic moment. However, this is not necessary since
the divergence occurs at small r where the wave func-
tions are state-independent so that the contribution to
the difference is finite.

8 = —2zr rr "g(p,) I
zeyA (p2 —q2)zeyA (qs —qi)

~J

d pid psd /id gzdx
XzeVA (qi —yi) ]4 (yi)

x2A2(qi, q2)

I.P'(r)e-'(r)+~-'(r)~'(r) j (3o)
2 I4'(0) I'

Here the small components contribute but only in the
(23) nonrelativistic form. The integral in Eq. (30) is diver-

gent, but again the contribution to the result is finite

(8—A)s=0. (24)

The third term in Eq. (13) contains the radiative cor-
rection to the magnetic moment of the electron. It can
be written"

Because of the explicit appearance of three potentials
this term is immediately of the order required. To get.
its contribution, set Pi= Ps

——0 and e„=x in the square
bracket. The term is then proportional to Iip s(0)

I

' and
contains no additional state dependence. If the remain-
ing q integrals converge, there is then no contribution
to the difference. The integrals converge so that

(8—A) cib= (1/22I) I (1'7/4)+4 ln2$. (31)

The fourth term in Eq. (13) is

@(P2)zeVA(P2 Pi)4(yi)

X (—2+5@—4x2)dsPidsP2dx. (32)
I~.
"A'

This is proportional to the binding energy, ~(Zn)2.
The denominator is simpli6ed by z A. —+& and the
evaluation is straightforward. The result is

4 (P2) (P2—Pi).c.sA. (P2—Pi)4 (Pi)

( 1 1—h.2)
x I

—+ Idsp, dsps d* (25).( xs x2A2

(8 A)D.=S/(1 )6,
—2r

(8—A) Db
———9/(4zr).

The fifth term in Eq. (13),

(33)

(34)

8= 42r iY $(P2)zeVA(P2 pl)pl' P2$(pl)

(—2+Sx—4xsy
xI I d'p, d'psdx, (35)

s2A.2(26)(8—A) c2 =—1/(82r),

(8—A) csb= 0. (27)
present. s no difhculty. Its contribution is

The first and second terms in the bracket are treated
separately as Cj and C2, respectively. C2 presents no
complications. It is handled similarly to A. The result is

For Ci the exact Dirac wave functions, Eqs. (A-1),
(A-2) must be used. After transforming to coordinate

"The spin matrix is defined as 0„,= ,'2Ty„,y„j——
(8—A)s =0,

(8 A) zb —(5—/32r) (—,——', —ln2).

(36)

(37)
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The sixth term in Eq. (13) is

The evaluation of the contribution introduces no new
problems. After extracting the hfs it is found that

F —0 (39)

and Fb is a multiple of Ab. Its contribution is

(8 A) ro —(3/or) ——(-', —ln2) . (40)

The last two terms of Eq. (13) are

Po~ ( Po~ P~~
L = —8~ ~~e(yo)

k' —2kpo Ek' —2kpo k' —2kpg~

L2xiyq+44 (1—2x))
F= —6n'n y(yo)ieyA (yo —

41)
44' —X(q'+142)

XieyA (q —yq)g(yq)d Pqd'Pod qdx. (38)

k are called R. The presence of two powers of k in the
numerator emphasizes the contribution from the
relativistic region in the intermediate state so that it
may be expected that the eGect of the Coulomb field
in the propagator will be unimportant up to the order
of Zo. needed. In order to substantiate this conjecture
the propagator, Sp', is expanded in successive Born
approximations and the contributions are examined.
The term of 5p' linear in A, contributes a term in R
containing three potentials explicitly. Setting y»= p2=0
and e„=~in all but the wave functions, it is found that
the remaining integrals converge. Thus the contribution
is proportional to

~
f„o(0)

~

' and of order of n'. Hence the
contribution to the difference is zero. It is therefore
possible to replace Sg' by SJ in R, and drop X' since
there is no infrared divergence in R.

—ieyA (yo —q)y„yk

k' —2k'

and

XieyA (y2 yl)4 (y ) d'p&d'p, (41)
k'+) '

k' —2kpo k' —2kpg

y„ykiepA (yo q)— 'ie7A (41
—

yg) sky„
Sr (q—k)

Q=n(2~)' 4(yo)~. '(q P2ko)

~2ip„—iy„qk
ieyA (41),

k' —2kp

2ip„—idnky„
e„(q,p,k) = ieyA (q)—

k' —2kp

(43)

&2i(p+ q)„—idnky„+ ieyA (41), (44)
k' —2k(p+q)

and X is a fictitious photon mass introduced to control
the infrared divergence in I.n and Q which are sepa-
rately divergent. The combination L&+Q is, however,
finite in the limit X—+0."

The term Q contains the full relativistic propagator
for the electron in the presence of a Coulomb potential.
It will be shown that it may be replaced by either the
free function or a nonrelativistic approximation. Kith
this in mind, Q is arbitrarily divided into three terms
according to how many powers of k in the numerator
come from 8,„'and 6,„.The terms with two powers of

"K.P., Kq. (35).

X~r'(Po —k —
qo, P~—k+q~) 8.(q~,p~, k)4 (y~)

d'k
X d'P&d'P, doq, doqo, (42)

k'+)I.'
where

2i(p q)„—iy„yk—
8„'(q,p, k) = ieyA (q)

k' —2k(p —
q)

sky„ieyA (q —y&) d'k
I(yi)- d'P~d'Pod'q (45)

k' —2k' k'

(8 A) a, =O. — (46)

In Rb the contributions of the small components of the
wave functions are too small and the momenta y», y2,

q each contribute a power of Zn, so that they may be
dropped. Upon transforming back to coordinate space
and eliminating the Dirac matrices, it is found that

2iZ n
Eo

~

~e4r p I P„o(r)e„o(r)dr
) o

t
d4k 4ko

X (k' —2ko') (4&)
k' (ko+2ko~)

After performing the k integration, this becomes

Ro = 18Z'noE drtP (r)N„o(r)/
~
tP„o(0)

~

' (48)J,

R is evaluated by first performing the k integration by
the standard method of combining denominators by
parametric integration and then the hfs is extracted.
It is found that the resultant denominators containing
the momenta and the integration parameters can be
simplified by dropping all momenta compared to ~.
Use is then made of Eq. (17) to reduce the contribution
to a simpler form. The calculation will not be repro-
duced here since the contribution is zero.
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a multiple of A~. The contribution to the difference is the magnetic potential by

1175

(8—A) so ———(3/m-) (-',—ln2) . (49) Sp'(qo —k, qi —k) =Sp'(qo —k, qi —k)

(2w)'
+ SF'(qo —k, 4—k)ie&A (lo—Ii)J

The contribution from 0', and 0,"linear in k is called S.
This arises as two terms owing to the possibility of the
k coming from Q, or 6,'. These are complex conjugates
of each other so twice one is taken as S. This can be
treated in the same way as R and it is again found that
the substitution Sg'~S~ does not change the diGerence
to the order of interest. Then

)&Sp'(li —k, qi k)—d'lid'lo+ ., (55)

ie—yA (y, q—)y„yk
S=4n(2~)' 4 (yo)

k' —2kq

"r~"rkM'r A (yo —q)
Sp(q —k)

k' —2kpo

isvA (a—yi)4 (yi)X
k' —2kq k' —2kp, Sl'(qo k, qi k) =—)Sp'(q—o —k, qi —k) —S(qo, q&, ko)j

+S(qo,qi, ko), (56)d4k

whereP ( n Qo) (1+'Yo) (S(e ai; ko) =
I

1+
2~ I ( 2 2 ( 2~ 0Manipulations similar to those described for R yield

where S&' satisfies Eq. (4) with the external potential
purely Coulomb. The contribution from the first term
of Eq. (55) is called T, from the second, U.

An estimate of the order of the contribution of U to
the difference can be obtained by replacing the bound
propagators by the free ones. Then y& and p2 are set
equal to zero and e„=~everywhere but the wave
functions and the hfs is extracted. The remaining
integrals converge" and are state-independent so that
U does not contribute to the difference.

In T use is made of the following identity

Zn' t' y„'(yo)Ape„'(yi)
S,= E„d'pid'p2,

o(p) )o
(51)

&&G(qo, q&, ko), (57)

with the function G taken to be the nonrelativistic
propagator satisfying

which is a multiple of A, . The contribution to the dif-
ference is

-q2 p 2

+ko+ G(e,e; ko)
(8—A) s,= (1/or) (ln2 —o). (52) 2~

It is found that the various contributions to Sb cancel
so that

2i
d'iV(q, 1)G(l,qi, k—o)+ b(q& —ql) ~ (58)

(2m)4

(8—A) so ——0.

C. Fluctuation Energy, Bound
Intermediate States

(53)
Here, V(q) = (Zn/2m')(1/q') is the Coulomb potential
and p„/2~ is the binding energy of the state in question.
The momentum space representation that will be used
in this calculation is

The remaining part of Q, with no powers of k in the
numerator arising from 8' and 0'„is called T.

( pal
Z'=4(2~)' ~ e(y,)l(k' —2kqo k' —2kp2)

&(iepA (y,—q&) S&'(q&—k, qi —k) ieyA (qi —yi)

( qi„pi„) d k
x( — l@(y)

E ko —2kqi k' —2kPi 3 k'+X'

&(d'pid'p2d'qid'qo. (54)

The magnetic part of the potential can enter explicitly
or implicitly through the wave functions or the prop-
agator. The propagator can be expanded in powers of

4»'(q')4»'*(a)
G~o(q', a) =

i P„'+2ko~—PP

It shouM be pointed out that S was chosen to approxi-
mate the low-momentum behavior of Sp' to order w/c

so that the contribution from the bracket of Eq. (56)
in T should be zero since forming the difference, 8—A,
emphasizes the low-momentum contribution. Indeed,
substitution of Eq. (56) into T and expansion of the
bracket in a Born approximation series shows that the
first two terms give no contribution so that the con-
tribution of the bracket vanishes in the order required.
Therefore the full contribution of T can be obtained
by replacing Sg' by S.

' There still remains an infrared divergence in this term but it
is state independent to order Z'0.'. The lowest order contribution
of U to the difference is of order Z'n4 1n(Zo,) or smaller.
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T, is evaluated by using the wave function, Eq. (7),
and picking out the hfs:

4, (&&, t
4'(p.)4'(pi)

& =-«'I —l(o~ I)
(y2 qo)'(pi —qi)'

t' qo~ po~
XG(qo, qi; ko) I

L k' —2kq k' —2k po)

p&u
x

I

—
II (p —q )'+(y —q )'j

k —2kqi k qkpi]

d'pid'p, d'q, d'qo. (60)
k'+X'

In the last square bracket, terms of momentum
raised to the fourth power have been dropped since
their contribution to the difference is smaller than those
retained by a factor of at least (Zn)' In(Zn). In addi-
tion, the two terms in the last bracket contribute
identically so twice the first is retained. From the
equation of motion, Eq. (58),

"G(qo, qi; ko) Lf(q~) —f(pi) jl'(qi —pi) 4'(pi) d'pid'qi

koJ G(q»y& ko)Lf(pi) —f(p)34'(pi)d'pi

2i
+ I f(qo) f(p)j (61)

(2~)4

metry considerations. Transforming to coordinate space
it is found that

4 t'n l $k'l 13
T.=

I

——IE„Plnl —I+ —+ol —'
I

3 I„);&~,)
~-()

X i
d'rd'r'8(r')V'P, (r') f,*(r)v, (63)

where j runs over all I' states and 6;=P„'—PP. Terms
of order 5/~' contribute in relative order (Zn)' times
an integral which diverges for the high momentum-
free intermediate states. However, the divergency is
state-independent so that the contribution to the
difference is finite and too small. Thus only the erst
two terms of Eq. (63) contribute to the difference. The
sum over states is now broken into a sum over bound I'
states and an integral over free I' states. Use is made
of the completeness relation,

p p'(r')tp'*(r) =b(r —r'),

to extract the 1n(Zn) contribution from the first term
of Eq. (63), with the result

Zono (2 13)
I

—»(z~) ——IE-
&3 36)

4n (1i+
3~'~

d'l (1 )a,l,„inl —I, (65)
(2m)'

po~
~o(y,) I

E ly o(0) I'& ~ Eko —2kq ko 2kP,j—and

~s

xl — IG(q p„.k.)
E k' —2kpi k' —2kp)

ko
X@o(pi)—d4kd'pid'podoq

where f is any nonmatrix function. Substitution into T
results in /1 1~ t'1 Pq

~-=I ———
I, ~~=I —+ —

I,p'i '
E~& pio)

'

H;„= d'rb(r) vf,„(r),
J

II( d'rb(r) vg, (r), ——

(66)

p.
+-I —

I (%~ s) 4'(p) I

~ E ~') & 4k' —2kq k' —2kp)

t' q„ pp, dk
X

I

—
I @(q) d'pd'q, (62)

& k' —2kq k' —2kp kopje&

where p„=(000,iE ) and kp= —koE„.The first term,
called T„contains no infrared difhculties while the
second, Z„still contains a ln) dependence and will be
combined with Lo. In T, use is now made of Eq. (59)
to substitute for 6 and the k integration is then per-
formed. The result is then expanded in powers of
momentum, retaining only the quadratic terms as in R.
Terms proportional to y&-p& may be dropped on sym-

d'O *( )~a-( )/a:(0)

Here ~z represents the principal quantum numbers of
the eS state, j the principal quantum number and m

the magnetic quantum number of the bound inter-
mediate I' state, and 1 the momentum vector charac-
terizing the free I' state. The difference between states
has already been formed in the first term of Eq. (65).
The integrals I; „andH; are easily carried out using
an integral representation" for the wave functions f;
"I.I. Schiff, QNantlm 3IIechanics (McGraw-Hill Book Com-

pany, Inc. , New York, 1949), p. 85.
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The difference, 8—A, is then formed, resulting in a
complicated infinite series. The summation has been
carried out with the aid of computing machines. "The
integrals H& and I& can be evaluated by using an
integral representation of the wave function" i'. The
remaining integral over 1 is divergent for large 1. The
divergency, however, is state-independent and disap-
pears when the difference 8—A is formed. The resulting
numerical integral has been evaluated with the aid of
computing machines. "The contribution to the diR'er-

ence is

3 (2 13)
(a—~)..=-I -lnzn ——

!
m. (3 36)

32 16——(0.040) — (3.063), (67)
3' 3' 2

where the first term has been evaluated analytically,
the second results from the sum over bound states, and
the third results from the integral over free states.

Tb is evaluated by substituting a magnetic wave
function, Eqs. (CS, 6), for one of the g's. This results in
two terms which contribute identically. Twice one is
taken and the hfs is extracted, the contribution from
the small components of the wave functions being
neglected. The result is

Z'n'( 8 ) ( 13
I

5—-»2 II + ——»nZn!~.
3 ) ~ 12

4Zn (1
Z. P I;„.I;„.ln!

d'i (1)Ji„Ii„ln-I —!, (70)
(2n-)' E8) 3

where the I's have been defined in Eq. (66) and

(1)m„'(r)I; „=)d'r~I — ! P; '(r),
«4-'(0)
(1)n '(r)

A'(r),
E r) P„b(0)

(71)

The first term, Tb, contains no infrared difficulties
while the second, Zb, still contains a ink dependence
and will be combined with I.D and . In Tb use is made
of Eq. (59) to substitute for G and the same k integra-
tion as occurs in T is performed and expanded in
powers of the momenta. As in Eq. (63) the term of
order 5/~' does not contribute. The expression is
transformed to coordinate space and the completeness
relation, Eq. (64), is again used to extract the major
contribution with the result

I' p2r
Tb=32Z'n'en tb ' @~(pg)I

~ k' —2kq2 k' —2kp2)

( A Pi~
!xG(q2, qi, ko) I(k' —2kqi P—2kpi)

d'pid'p2d'qid'g2 ( d'k
xy (y,)

(yi —qi)'(p2 —qu)' (k'+X')

Use is made of Eq. (61) to give

( & P~~
Tb 64m'eZn'o tb

——~
—p~(p2)

I

Ep —2k' k' —2kp, &

( pi~xG(q, yi; ko) I
— —I4"(pi)

Ek' —2kpi k' —2kp)

d'p, d'P2d'q (ko& 8i
X

I

—!d'k+—«-'e s ~@ (p)
(p,—q)' (k')

(68)

and e was defined in connection with Eq. (65). The dif-
ference between states has already been formed in the
first term of Eq. (70). The integrals I; „canbe evalu-
ated in a manner similar to that used for I; . The
result is an extremely complex infinite series. The sum-
mation has been carried out with the aid of computing
machines, "and its contribution was found to be neg-
ligible. The integral J~„canbe evaluated with the aid
of an integral representation" of the P state of Pi. The
result can be expressed in terms of hypergeometric
functions of complex arguments. In extracting the real
part of the result, it has been found necessary to use an
integral representation of the functions. The remaining
integral over 1 diverges at the upper limit but the
remarks applied to the third term of Eq. (65) also apply
here. The contribution of the third term of Eq. (70) to
the difference is then expressed as a double integral
which has been evaluated with the aid of computing
machines. ""The result is

Piu P2p l t' pip P~
xI

Ek —2kpi k —2kp2& Ek —2kpi k2 —2kp)

d'pid'P2 f d4k

(yi —p2)' Ek'+X')
~ The author wishes to thank M. Ferris of the Livermore com-

puting group for evaluating the numerical sum and integrals
resulting from Eq. (65).

2' 5. F. Mott and H. S. %. Massey, The Theory of Atomic Col-
lisions I,'Oxford University Press, London, 1949), pp. 48—50.

1p 8 q t 13
(8—A) rb =—

I
5——ln2 ! I +——2 lnZn !

3 I k 12 )
128 32

+ (—0.003)+ (0.934), (72)3' 3' 2

~ The author wishes to thank R. Moore and R. Shafer of the
Livermore computing group for evaluating the numerical sum
resulting from Eq. (70).

23 Reference 21, pp. 50—53,
'4 The author wishes to thank Dr. H. Reich and the Watson

Computing Laboratory of International Business Machines Cor-
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where the first term has been evaluated analytically,
the second results from the sum over bound states, and
the third from the integral over free states.

D. Infrared Divergent Part

The infrared divergent part of 7.
' just cancels" that

from LD. A check must be made for any finite con-
tributions after the cancellation. This check could be
made by adding the parts LD, Z„Z&,and U and ex-
plicitly evaluating them; however, a simpler method
presents itself. The ) dependence in F comes entirely
from T„T~,and U. In the five terms arising from
these, "use is made of

4(1 s)Lf(zs) —f(Ps) 3iev~'(1 s
—qs)5'r'

&& (qs —k, q
—k) d'psd'q.

&(p )Lf(ps) —f4) ji~&5'"(p —&, c I )d'p'—

2i
+ 0(q) Lf(c)—f(~)j, (73)

(2m)4

which is just the relativistic analogy of Eq. (61). The
first term in the right-hand side of Eq. (73) contributes
terms that are not )-dependent and are dropped. The
remainder is the entire X dependence resulting from T.
At this point the parts resulting from 7.' are exactly
what is called 2„those from T~ are Z~. In this form
the cancellation against L~ is obvious. Hence there is
no contribution to the 8—3 difference from the terms
I-D+&.+&s

IV. PROTON-STRUCTURE AND FINITE-
PROTON-MASS EFFECTS

In Sec. III the nucleus was considered to be an
infinitely heavy point proton. These restrictions will be
relaxed here.

(a) Proton structure The effect.—of proton size may
be accounted for roughly by modifying the external
potential. Equation (5) then becomes

Z~(vs ) ( 1'i'
isa~'(q) =

2~s i qs) (q'+rts)
e ~y pXq~ p

(74)
(2ir)s 0 q' ) (q'+Fssk

poration for evaluating the integral leading to this result. The
integrais and sums arising from Eqs. (65) and (70) were thought
to be too lengthy to include here. The author would be happy to
furnish copies of these to those who express that desire. These
integrals and sums have been deposited as Document number 5226
with the ADl Auxiliary Publications Project, Photoduplication
Service, Library of Congress, Washington 25, D. C. A copy may
be secured by citing the Document number and by remitting

:$1.25 for photoprints, or $1.25 for 35 mm. microfilm. Advance
payment is required. Make checks or money orders payable to:
Chief, Photoduplication Service, Library of Congress.

25 Even though it has been shown that the infrared divergent
terms of U do not contribute to the a' correction, it proves simpler
to include them in the demonstration of the over-all cancellation.

where F& and F2 are of the order of either the proton or
the m--meson mass. In either case r,»~»«Z. This modi-
fication can enter in one of two ways, either explicitly in
the expressions for AE or implicitly in the wave func-
tions. In the 6rst case this has the effect of making the
potentials effectively constant in the integrals, de-
creasing their contributions to 8—A by at least a
factor of (Za~/F)' which would make them much too
small. In the second case the wave functions are
modified by the short-range potential of the nucleus
and the difference 8—A is insensitive to this short-
range modification. It is found that the first contribu-
tion to 8—A from this effect is again of order (Zns/F)'.

(b) Finite proton muss. —The effects of the finite
proton mass on the radiative corrections to the hfs
have been calculated' to order Ztrlc/3II and have been
shown to be proportional to ~f '(0) ~'. This is to be
expected since these are short-range effects due to the
motion of the proton. Effects of order (Zn)'~/M are of
interest here. These arise from higher derivatives of the
wave function at the origin and may be state dependent.
These should be investigated further. $

(8—A).„v——3.4+0.8. (75)

Or, using the results of Wittke and Dicke, '

A sr, = 1 420 405.80+0.05 kc/sec,

one obtains

(8—A ).„o——3.3+0.8. (76)

These are to be compared with the value calculated in
Sec. III,

(8—A)t =5.28. (77)

This discrepancy cannot be explained by finite-
proton-size effects, as was pointed out in Sec. IV. The
explanation of the difference may lie in the ~/M effects,
but it would be surprising if they are large enough. t

VI. ACKNOWLEDGMENTS

The author wishes to thank Dr. N. Kroll of the
Columbia University Physics Department for pointing
out the need for this calculation and for the many
helpful suggestions received during the progress of the
work. Thanks are also due to the computing group of

t Pote added in proof.—A low-energy calculation of part of this
eGect has been made by Dr. C. Schwartz. The contribution to the
di8erence is small ~0.2 (private communication).

V. COMPARISON WITH EXPERIMENT

As was pointed out in Sec. IV, the calculated dif-
ference, 8—2, should completely describe the ratio
Ass, /Dvr, in order n'. Using' Ave, =177 556.86&0.05
kc/sec, and. Kusch's' value Avr, ——1 420 405.73&0.05
kc/sec, one obtains
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APPENDIX A

The Dirac wave functions for the 1S and 2S states
of hydrogen can be written in the usual representation

APPENDIX 8

The difference of two divergent integrals, as in Kq.
(9), is defined by

@'(p) t' 2p2 ((p' —p2') l
d'pp' = d'p p'

J p0(0) g &2 g (p2+p 2)3)

( 4-(r)P„r=
I (i33 r/r)g„(r) I

(A-1)
(a-1)

~2 2 22

This is Rnite, since 2P2 ——Pi. The result iswhere

4' ()=c '"(p )' @'(p)
Q)fd3p p2 —3p 2

~'(0)
' '(A-2a)

(B-2)

(
y2(r) =C,.—"(P,r) I

1+r-
3+2s)

~ ()= C -e"(p ),
(2+s)K

t d'pid'p2 8
4'(P2)~PI'(Pi) =-pi(ln2 —0), (B-3)

~ l~'(0)I'2P,r ~
!

3+2s)
(A-2d)

2

52(r) = C2e ~2" (p2r) 'I 1—r—
[1+(1+-,'s) &]K

f' d Pid P2 13 'Pi4'(Pi) pi
~J — 4'(P2)

I&'(0)I'
(8-4)where

s=[1—(«) ]'—1; pi ——KQZ) p2=K( s/2)&,

r = f 1—[2(s+2)]l)/(3+2s),
APPENDIX C

The magnetic wave function can be obtained from
the Dirac equation by treating the magnetic potential
as a perturbation. The action of the magnetic potential
on the Coulomb S state will introduce some D state
which cannot contribute to the results of this paper.
Therefore only the S state part of P~ will be dealt with.

C '= (P '/ )(2"(2+ )/I" (2s+3)),

p2'2" ( 2s+3 p f'1+[2(s+2)]'y

22r (I'(2s+3)) 4 [2(s+2)]'* )

(A-2b)
The values of the other differences of integrals which
occur are

(A-2c)

The small components, q, are P/» smaller than the large
components, f. In the nonrelativistic limit s((1,

0(r) P 0(0)e—I31r. P 0(r) $20(0)e—e2r(1 P r) .

~20(r) =2pi» '60(0)e '";

e pu„(r)
4- (r)=e!

k (i32 r/r) e t3 v„(r)i

Only the nonrelativistic limit of u(r) and v(r) is
required. These are completely determined by

g2(r) =-,'p2» 'p2'(0)e»" (1—2p2r),
2»Za )

where P2~2'»Zn. The nonrelativistic momentum wave I~
"" )!

function is defined by

( 4 -'(p)
c'-'(p) = 4-'(r)e "'=

I

(2 )' ((o'p/2 )y '(p))

Using (A-3) in (A-4)

(A-4)
and

2»v '(r) =— f„(r)——u„(r).
6mr' dr

(C-3)

= —8-'(0)~(r)+ 3 lk-'(0) IV-(r), (C-2)

&2'(0) i
@"(»=~ '(p) =—

I
~2 ( (p2+p 2)2J

(A-Sa) (u„'(r)P„0(r)d'r =0, Iu„'(r)I'd'r( ~. (C-4)

2p2( p'-p2' )
4 '(P) =x '(P) =

I

— !A'(0).
~' &(p+p2)3&

(A 5b) The differential equation, (C-2), is solved subject to
the condition, Eq. (C-4) and substituted back into
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Eq. (C-3) to get: For the ground state,

1
uiP(r) =——fiP(0)e»"I —(1/r)+2Pi ln(2Pir)

6m.

+Pi(27 5)—+2Pisr j, (C-5a)
1 Pi

ei'(r) = ——Pi'(0)—e e'"L—(3/r)+2Pi ln(2Pir)
6' 2I~:

+pi(27 7)+—2pi'r j (C—5b)

and for the excited state

us(r) = ——fs'(0) e ~'"I —(1/r)+4Ps ln(2Psr)
6m.

+Ps(47 —3)—4Ps'r ln2Psr

+Ps'r(13 —4y) 2Ppsr—'$ (C-6a)
1 Ps

er (r) =——fs'(0)—e e'rI —(6/r)+8p2 ln(2psr)
6m 2~

+Ps(gy —12)—4Ps r In2Psr

+Pssr (17—4y) —2Ps'r'g, (C-6b)

where y= 2.5777 is Euler's constant.

dr 1
its(r) u'(r) = ——(-', —ln2),

leap(0)ls
(C-7)

4p
Lit'(r)" (r)+~'(r)u'(r) j

dr Zn
X =—(ln2 —1'7/16), (C-8)

Ilf,P(0)
I

s

00 dr
P() '()

IP(0) I

' 8lr«rr
(C-9)

(d' d)
u'(r)l r +- IP(r)

~p 4 dr' dr)

KZcL

(—,', —ln2). (C-10)
6m

The integrals involving I and v that are required are
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A formulation of Schrodinger perturbation theory is developed that gives a unified treatment of non-
degenerate and degenerate cases, is unique, and has a nonzero radius of convergence under very general
conditions. Two alternative procedures are given for finding perturbed eigenvectors, one of which is simpler
for the nondegenerate case or for small finite degeneracy, the other simpler for infinite or large finite
degeneracy. The low-order terms in the perturbation expansions of quantities used in applications are given.
The perturbation theory formulated in this paper has the following advantages over the conventional
Schrodinger and Brillouin-Wigner perturbation theories: (i) When the convergence criterion is satisfied,
bounds on the error made in replacing an appropriate infinite perturbation series by its first e terms can be
obtained. (ii) For the case of degeneracy, the conventional Schrodinger perturbation theory can break
down under conditions to which the convergence of the perturbation theory developed in this paper are
insensitive. (iii) There is no implicit dependence on the eigenvalue, such as appears in the Brillouin-Wigner
perturbation theory. (iv) For the case of degeneracy, statistical information about the distribution
of certain eigenvalues can be obtained without finding the individual eigenvalues. (v) The theory is
applicable to a wider class of problems than the conventional Schrodinger and Brillouin-Wigner perturbation
theories.

I. INTRODUCTION

'HE conventional Schrodinger perturbation theory
is concerned with finding the eigenvectors and

eigenvalues in a Hilbert space of a Hermitean operator
of the form Hp+eV as a power series in the real param-
eter ~.' We want to go into this theory in some detail to
point out the relation between it and the theory de-
veloped in this paper. The advantages of the latter will
be pointed out as we go along. To avoid difhculties of a
purely mathematical nature, we will assume that the

' E. Schrodinger, Ann. Physik 80, 437 (1926).

Hermitean operator Hp possesses a complete ortho-
normal set of eigenvectors $p, $i, , $„, ~ ~ with
eigenvalues Ep, E&, , E„, , respectively. We Qx
our attention on the eigenvalue Ep, and require that,
if E„NEp,then in fact

I
E„—Epl )8)0 for some fixed

8. In other words, Ep is an isolated point in the spectrum
of Hp.

Let P be the projection operator onto the closed linear
manifold MEp of all solutions fp of the equation
Hpfp=EplPp. Then Pg„=g„for E„=Ep,and Pg =0 for
E„WEp, and thus HpPJ„=EpP)„=E„P)„=PHpg„,so


