QUANTUM STATISTICAL MECHANICS

In particular this gives for the average normal product

n

(bw*mbw™)=(1—pw)pw (A=pw)?

dpwr
=nlpy"(1—pw)™"

=n!Ng",

(11)

where N, is the average occupation number of the
state w. It can be seen that the average normal product
of an even functional $§(¢) is obtained by taking all
possible pairings of the ¢ factors, and replacing the
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pair ¢(x) o(x’) by
> w(hws/2V)Ny{exp[iw: (x—x')—hws(t—1')]
+exp[ —iw: (x—x)+Aws(E—1t')]}.

This result shows that the average of a chronological
product is obtained by contracting the product in all
possible ways, using the propagator
D(x—x")=>_w(hws/2V)

X{(Nw+1) expliw- (x—x')—%ws|i—1'| ]
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+ Ny exp[—iw- (x—x)+hws|t—1¢'| ]}. (12)
This is also in agreement with Matsubara’s rules.
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When the mass is zero, the operator v; commutes with the Hamiltonian of a noninteracting spinor field.
This leads to the possibility of a two-component neutrino that has been employed in connection with parity-
nonconserving neutrino reactions. Every representation of the full inhomogeneous Lorentz group describing
a free particle of arbitrary nonzero spin can be split in the same way when the mass is zero. In particular,
a reduction of the free electromagnetic field from six components to three, is exhibited in a way exactly
analogous to the reduction of four-component massless spinors to two components. This illustrates the fact
that parity nonconservation, when it occurs, cannot be a result of any intrinsic property of a free field, but
must, instead, be ascribed to particular interactions occurring in nature.

The possibility of relating the v; degeneracy of the massless spin one-half field to its invariance under
conformal coordinate transformations is discussed. The two-component free Dirac particle is invariant
under the conformal point transformations, and also under the reciprocal radius transformations. Some
different definitions of the conformal group are distinguished.

I. INTRODUCTION

HE study of strange particles has, for two reasons,
stimulated interest in processes involving neu-
trinos. In the first place, the lifetimes of hyperons and
of K-mesons imply interaction constants corresponding
remarkably well with those found in the 8 decay of
nucleons and of muons and in pion decay.! In the second
place, its zero mass suggested for the neutrino a special
role with respect to parity.>3
When the mass is zero, the operator ys; commutes
with the Hamiltonian of a free Dirac particle, so that
a free neutrino is describable by a projection 3 (14+ys)y¥
or 3 (1—+vs)y¥ of the four component . The present paper
investigates the question whether this projection, and
what it implies, is a special property of massless neu-

* On leave from the University of California Radiation Labora-
tory, Berkeley, California.
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trinos, or whether a corresponding reduction is also
possible with spins other than one-half when the mass
is zero. The theory of spin-zero and spin-one particles
of vanishing mass is developed in Sec. IT in a way
entirely parallel to that for spin one-half.

In Sec. IV the v5 degeneracy of the massless Dirac
particle is related to another consequence of having zero
mass, to invariance under conformal transformations.
These transformations, which have been discussed in
more than one way in the literature, are defined in
Sec. ITI. Only the interaction-free case is considered.

Notation
9=49/9x, 8/3y, 9/9z=1p;
0:=0/c0t=19,;
a-b=a;b,+ asbotasbs;
a-b=a-b+asb,.

Repeated indices are summed. Dummy indices take
on all values u=1, 2, 3, 4. The asterisk designates the
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complex conjugate of a c-number or the Hermitian
adjoint of an operator.

e#**»=alternating symbol on 1, 2, 3, 4;
e‘’F=alternating symbol on 1, 2, 3;
Bruo=PBBuB,, etc. h=c=1.

II. REDUCED REPRESENTATIONS FOR
MASS-ZERO FIELDS

A. Dirac Field

What will be called the vs degeneracy of the massless
spin one-half field reveals itself in the following way.
In covariant form the Dirac equation is

(YuOut-m)p=0. €Y

When transformed to Hamiltonian form, the Hamil-
tonian,

H=wa-pt+ym

2
=750 pt+vum, @

commutes with ys=vrysysys, if and only if m=0.
When the mass does vanish, the state vector ¥ decom-
poses according to the eigenvalues 41 of ~s:

10s=t0 Py,

Ya=3(1kvsY.

A particle described by Eq. (3) involving ¢, alone,
and not y_ or y.* will be called a Weyl particle. For
¥4, the positive-frequency solutions of Eq. (3) corre-
spond to e-p/|E|=1 or spin along the direction of
propagation m,=%; the negative-frequency solutions,
to ¢-p/|E|=—1 or m,=—1%. Space reflection must,
therefore, involve particle-antiparticle conjugation, de-
fined as the interchange of positive and negative fre-
quencies. Indeed, since

108,* = o* pYi¥,

©)

where

4)

the choice*
Yiri(x) = e W * (—x), 5)

where eo*e = —¢, makes y,™f obey the same inter-
action-free equation as .

Under gauge transformations of the first kind, how-
ever, Y* and therefore ¢, f transform oppositely to y..
Hence, if a Weyl particle had charge e>0, the operation
(5) would combine reflection and charge conjugation.
If, on the other hand, the particle has no coupling to
the electromagnetic field, a distinction can be drawn
between (1) particle-antiparticle conjugation, which is
involved in space reflection in the Weyl theory, and (2)
charge conjugation for which the identity operation can
be trivially chosen.*

4J. A. McLennan, Jr.,, Phys. Revy. 106, 821 (1957); K. M,
Case, Phys, Rev, 107, 307 (1957).
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B. Scalar and Vector Fields

In order to see whether with bosons a development
parallel to that for spinors is possible, the scalar and
vector meson equations will be cast in a form like the
Dirac equation, the Hamiltonian found, and the limit
m=0 taken, and a decomposing operator like 5 sought.

1. Duffin-Kemmer Formalism and the Mass-Zero Limit
Bosons are described® by the covariant equation
(Bu0u+M)Y=0, (6)

where the 8, obey the Duffin-Kemmer algebra deter-
mined by

BusntBryu=Bu0mn+Brdsy, (M
special instances of which are

(A1=B)8=B.B:2, wv ®)

(1—B.2)B.=0. ©)

Although only four 8’s occur in Eq. (6), these relations
are also satisfied by a fifth,

Bs= (1/4I>€M)\P‘3kam (10)

just as in the case of the Dirac algebra. The algebra of
the B, is distinguished from that of the v, in that the
B. have more than one irreducible representation and
are singular. The representations by 10X10 and by
5X5 matrices describe spin-one and spin-zero fields,
respectively. The vector meson field, for example, is
described by a ten-component quantity ¥ which, in a
particular choice of the B,, is given by ¢=(E,H,A ¢).

Plane-wave solutions are assured if the second-order equation
(O—M?%y=0 is derivable from the first-order Eq. (6). It can
be shown generally® that to describe massless particles, / must
be a singular matrix. Also, for a given irreducible representation,
M must transform as a scalar under Lorentz transformations.
The Dirac algebra has only one inequivalent irreducible repre-
sentation, from which M must be a multiple of unity: for M to
be singular it must be zero. In the Duffin-Kemmer algebra, the
representation of the Lorentz transformations is reducible, and
M need not be a multiple of unity. As will be seen in Eq. (15),
M is indeed nonzero, and if Eq. (6) is to describe massless particles
then M must be a nonvanishing singular matrix v. In order to
develop,” in as parallel a way as possible, the cases of mass m#0
and of mass zero, we shall proceed from Eq. (6) as far as possible
with M unspecified. Only in those equations that are different
for mass m and mass zero will M/ be replaced by m or ~.

A second-order wave equation can be derived by
multiplying the first-order equation (6) by 8,8,, on the

5 N. Kemmer, Proc. Roy. Soc. (London) A173, 91 (1939).

6 H, J. Bhabha, Revs. Modern Phys. 21, 451 (1949).

7" The Hamiltonian formulation for nonzero mass has been
obtained by Kemmer, reference 5, and later authors. Massless
particles have been treated in the abstract I' formalism by
Harish-Chandra, Proc. Roy. Soc. (London), A186, 502 (1946).
A somewhat different treatment has been presented in order to
develop, in as parallel a way as possible, the cases of finite mass
and zero mass and to find an actual realization of the zero-mass
case.



PARTICLE HAVING MASS ZERO

left and using the basic relation (7) to obtain

0, (M) =0 ,8,»(MY). (1
Then, upon differentiating, one obtains
0, (MY) = 3,800 (MY). (12)

If the particle has mass, M =m0 can be divided
through in Eq. (12). Applying Eq. (6) twice then gives

(O—m?Y=0 (mass m>=0). (13)

If the particle is massless then Eq. (6), on left multipli-
cation by (1—7), leads to

Budu(vi) =0, (14)
provided
(A=)Bu=Bvy, (1—7)y=0. (15)
Then, in Eq. (12),
O(w)=0 (mass zero). (16)

The first of Eqgs. (15) shows that vy is not zero; the
second of Egs. (15) shows that it must be a singular
matrix, an idempotent projection operator.

A Hamiltonian formulation is obtained by choosing
v=4in Eq. (11) and writing

94(1—B4) (M) — 3 3B (My) =0. (17
Multiplying Eq. (6) by B4 on the left, one obtains
918U+ 8- BuBy+B My =0. (18)

If the particle has mass, then Eq. (17) can be divided
by M =m and added to Eq. (18) to give

10y =Hy= (a p+Bsm)Y (mass m) (19)

where

«=1(8:3—664). (20)

If the particle has no mass, then Eq. (18) can be
multiplied by M=y on the left, and conditions (15)
applied before adding to Eq. (17), to give

10(W)=H(w)=a p(y¥) (masszero). (21)

The Hamiltonian formulation is completed by the
time-independent equations,

[8- 98+ (1—BHM =0, (22)

obtained from Eq. (6) on multiplication by (1—842).
Equation (22) relates the field quantities to the space
derivatives of the potentials, H=VXA. If the mass is
nonvanishing, Eq. (22) also relates the potentials to
the space derivatives of the field quantities. If the mass
is zero, the projection operator ¥ must be chosen so that
My=vy=(E,H,0,0). Then 0=V-E and the potentials
are not derivable from the field quantities. This can be
accomplished by choosing y=p, so that because B
satisfies the relations (8) and (9), v satisfies the con-
ditions (15).

The second-order wave equation (16) and the
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Hamiltonian equations (21), which read
VX E+oH/at=0, VXH—0E/dt=0, (23)

are obtained only for the field quantities. For the
potentials (1—v)y=(0,0,A,4), such equations can be
obtained only by a special choice of gauge, such as
imposing

ay(l'—’}’)‘p: apﬁpv(1_7)¢y

in addition to the Eq. (21) derived for vy.
The equations of motion (6) for finite or zero mass
are derivable from the Lagrangian density,

L= %[‘Zﬂua;&b"" 6#&&#]‘*‘ \l_/Mlﬁ,
where the adjoint is
1/-/=¢T‘n4, N4= 284£—1.

From this Lagrangian, a conserved energy-momentum
tensor and current density are obtained:

®uv= J(auv—ﬁnv‘_ﬂw)M‘l’y
Ju=WB =Y (Brat ey, ¥IBy].

Because 7484=p84 is an indefinite matrix, the particle
density jo is indefinite in sign. This indefinite particle
or charge density characterizes bosons as compared
with fermions. Because of it, an extra factor 84 appears’
in the definition of expectation values. In particular,
the energy density is given by

W=y, Hy=ytMyp=— Q.

The usual expression Y!Hy is indefinite in sign in the
c-number theory and is appropriate only where Fermi-
Dirac quantization is involved.

The eigenvalues A of H may be positive or negative
corresponding to positive- or negative-frequency solu-
tions, or zero corresponding to the static solution. Since
the total energy,

(24)

E= f VB YAV = f YIMYdV,

is positive, and
E=2N,
where

v~ [vsuav

is the total number of particles (which is conserved in
the absence of interaction), the positive- and negative-
frequency solutions correspond to particle and anti-
particle, with the energy positive in any case.

2. Spin-One Analog of the Weyl Particle

With Eq. (21), a treatment of the vector field =y
can now be given that is analogous to that given for
spin one-half at the beginning of this section. Since,
by Eq. (7), 8s commutes with & but not with 8s, 8s
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commutes with the Hamiltonian (21) for mass zero but
not with that (19) for finite mass. In'fact,

ay=4:8v, (25)
where
1
S=-BXx8 (26)
7 ,
obeys the angular-momentum commutation rules
[Si,Sj:IziEiijk (27)

and has the eigenvalues 41, 0, —1 of a spin-one particle.
When the mass vanishes, & decomposes according to
the eigenvalues =1 of B5:

=3 (1=£85)P, (28)

(In the five-dimensional representation 85=0, and no
such decomposition takes place for the spin-zero field.)

For the state &, the positive- and negative-frequency
solutions in Eq. (29) correspond to ms=-1 along the
direction of propagation. The eigenvalue 7 3=0 belongs
to the static solution of Eq. (29) and might be elimi-
nated by a supplementary condition. In the abbreviated
theory involving &, as in the original theory involving
&, the energy is positive for both signs of the frequency.?
The abbreviated theory corresponds to the same asso-
ciation between spin direction and the sign of the
frequency that was discussed in the Weyl theory.

The law of transformation under space reflection,

P,7f(x) =n:2,*(—x), )

involves particle-antiparticle conjugation, as in Eq. (5).
[Eq. (5) is especially clear in the representation in which
¢=(E,H,A,$). Here one finds ®(x) = (F(x), iF (x), 0, 0),
where F=E-+:H, and &~f(x) = (—F*(—x), —iF*(—x),
0, 0), corresponding to the conventional behavior of E
and H under space reflections. ]

The particle-antiparticle conjugation involved would
generate opposite changes in ® and ®*f under gauge
transformations of the first kind unless the vector par-
ticle had e=0 as well as m=0. When the massless vector
particle is neutral, a charge conjugation operation can
be defined and is, up to a phase factor, the identity
operation. This is actually the situation for the electro-
magnetic field.

This discussion indicates that when the mass is zero
and in the absence of interaction, a vector field ®; can
be constructed that is related to ® as two-component
spinors ¢, are related to four-component spinors .
The free-particle equations are, in both cases, invariant
under space reflection with a law of transformation
involving the interchange of positive and negative
frequencies. The particles involved must then be of zero

8 With this understanding the difficulties of interpretation and
quantization disappear from the otherwise identical electro-

((iynamics discussed by J. R. Oppenheimer, Phys. Rev. 38, 725
1931).
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charge as well as zero mass if the theory is to be in-
variant under charge conjugation.

The free neutrino is not intrinsically parity-noncon-
serving* any more than is the free photon. Indeed, while
mass and spin are intrinsic properties of free particles,
parity (like electric charge) is meaningful only relative
to the fields with which a particle interacts. The differ-
ence between the neutrino and the photon is in their
couplings. In B-decay interactions, apparently neu-
trinos (or antineutrinos) of only one spin polarization
are emitted, while in electromagnetic interactions,
photons of both polarizations (called particle and anti-
particle in the Weyl-like formulation) are emitted and
absorbed.

Incidentally, 85 is not the only operator for the spin-
one field that commutes with H if the mass is zero. A
second operator is the scalar 9s=28s>—1. In fact, the
decomposition according to 3(14n5)=Bs=v and
2(1—ns)=1—B=1—1 is precisely the separation of ¥
into gauge-independent and gauge-dependent parts
discussed after Eq. (22) above. In the spin one-half
case 1—y=0, and in the spin-zero case y=0, and no
gauge group appears in the zero-mass limit. For mass
zero, the spin-one field can be decomposed into both
&, and ®_ and into gauge-independent and gauge-
dependent parts. The spin one-half field decomposes
into ¥4 and y¥_ parts but not into gauge-independent
and gauge-dependent parts. The spin-zero field decom-
poses neither way.

Considerable detail has been gone into to show that
the Weyl 2-component spin one-half particle is not
unique, but that an entirely analogous possibility exists
theoretically for the massless vector field. The result
may be stated quite generally for any representation
Y(m,s) of the inhomogeneous Lorentz group. If the
mass is zero and the quantized spin s#0, each repre-
sentation ¢(0,s) of the group including space reflections
splits into two ¢, (0,s) that are inequivalent except
under reflections. These two representations correspond
to the two spin states, parallel and antiparallel to the
direction of propagation, that are possible for a massless
particle of discrete spin. The zero-spin representation
is exceptional because no such splitting of the one-
dimensional representation is possible. If the mass is
not zero, the various states of spin polarization are
equivalent under proper Lorentz transformations.

III. CONFORMAL TRANSFORMATIONS

The s degeneracy, or the possibility of a reduced
representation has been seen to arise, with nonzero spin,
whenever the mass is zero. It is also known® that wave

9J. A. McLennan, Jr., Nuovo cimento 10, 1360 (1956) and
thesis, Lehigh University, 1952 (unpublished). I am indebted to
Dr. McLennan for the loan of this thesis. McLennan actually
proves the conformal invariance of an entire class of homogeneous
wave equations, including the neutrino, in a very general but
formal way. The conformal invariance of ’the massléss Dirac wave
equation was also proven in the somewhat unphysical six-dimen-
sional formalism by P. A. M. Dirac, Ann. Math. 37, 429 (1936).



PARTICLE HAVING MASS ZERO

equations for zero-mass particles—or at least those,
including the neutrino and Maxwell equations, that
can be written so as to be homogeneous in the space-
time derivatives—are invariant under the conformal
group. In this section several definitions of the con-
formal group are distinguished in order to see what
connection there is, if any, between the conformal
invariance of the massless Dirac equation and its s
degeneracy.

A. Reciprocal-Radius Transformations and
Acceleration Transformations

The second-order zero-mass wave equation,
av=0, (309

is invariant with respect to the transformations by
reciprocal radii:

(30)

or #'=1/r, where r= (x,2)%. In two and three dimensions
this is well known and is the basis for the treatment of
certain problems in potential theory. In #» dimensions,
from the form of the Laplacian in spherical coordinates,
it follows that a law of transformation can be devised
for V (r),

0 =2x,/%7,

V' (r)=r"2V (r), 31

so that with [J(»")=0'(r), the transformed equation
O’(nV'(r)=0 is a consequence of the original equa-
tion O () V () =0. That such a law of transformation on
the field variables can be found so that the transformed
equation holds if the original holds, is the sense in which
an equation is said to be invariant under a certain point
transformation.

The result of two reciprocal-radius transformations,
the first x,/”’=x,/%* about the origin, and the second
% = (%, +a,)/(x+a)? about another point a, [sym-
bolically 1/4’=(1/x)4a] is the nonlinear trans-
formation

0= (muta,a?) /(1420 w+a%?). (32)

This will be called an “acceleration transformation”
because it carries a point at rest into uniform accelerated
motion, just as a Lorentz transformation carries a
point at rest into motion with uniform velocity.

Under an acceleration transformation,

¥?=a?/ (14 2a- x+a%?),

from which it follows that “circles” generally, meaning
hyperspheres, hyperhyperboloids and hyperplanes in
four dimensions, go into other “circles” under conformal
transformations. Plane waves do not generally go into
plane waves.

This kinematic interpretation of the acceleration transformation
leads simply to an interesting result in electrodynamics. The

10 S. A, Bludman, Phys. Rev. 95, 654(A) (1954).
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conformal group is known! to be the widest group of transfor-
mations leaving Maxwell’s equations invariant. The radiation
damping force vanishes for a charged particle at rest, and under
the conformal group transforms as a vector density. Motion with
uniform acceleration, including motion with uniform velocity, is
obtained from rest by conformal transformation. Uniformly
accelerated motion is the entire class of motions of a charged
particle, for which there is no reaction of radiation on its motion.
So far as electromagnetic fields are concerned, not only systems
moving with constant velocity with respect to one another, but
also systems uniformly accelerated with respect to one another,
are equivalent.!?

B. The Conformal Group and the Proper
Conformal Group

The reciprocal-radius transformations, together with
the uniform dilatations

xﬂl = )\x“’ (33)
and the ten inhomogeneous Lorentz transformations
X' = Gty (34)

generate the conformal group, C,. Since a reciprocal-
radius transformation inverts the orientation of the
three space axes, the elements of C4 consist of the space
reflections and reciprocal-radius transformations along
with fifteen continuous transformations: six homo-
geneous Lorentz transformations, four translations,
four accelerations, and the dilatation.

The acceleration transformations introduced in Eq.
(32) by two reciprocal-radius transformations are proper
transformations. By omitting the individual reciprocal-
radius transformations and the reflections, a completely
continuous fifteen-parameter group, Ca4y, consisting of
the proper inhomogeneous Lorentz transformations,
the accelerations, and the dilatations, is defined.®

All relativistic equations homogeneous in the space-
time derivatives admit the similarity group. The second-
order wave equations (30"), because they admit the
reciprocal-radius transformations, admit the full con-
formal group Cs. In the next section the invariance of
the first-order massless Dirac equation will be investi-
gated under both Cy and Cy;.

C. Conformal Transformations on the Metric

The conformal transformations have to this point
been considered as point transformations x,—x,” with
the metric g,,—g., unaltered. Since, under the accelera-
tion transformation (32),

(d,)?=[(1—2a-2)*+4(aXx)"](dx,)?,  (35)
and under the dilatation (33),
(dw,)?=N(dw,)?, (36)

4 E. Cunningham, Proc. London Math. Soc. 8, 77 (1910);
H. Bateman, Proc. London Math. Soc. 8, 223, 469 (1910).

12 This is the basis of the extension of special relativity for
electromagnetism devised by L. Page, Phys. Rev. 49, 254 (1936).
See also L. Page and N. I. Adams, Electrodynamics (D. Van
Nostrand Company, Inc., New York, 1940),and H. P. Robertson,
Phys. Rev. 49, 755 (1936).
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the conformal group does not preserve lengths [other
than the light cone (dx,)?=0]. Instead, ds?= (dx,)? is
carried into ds"?=¢(x)(dx,)? where ¢ depends on x in
a definite way prescribed by the parameters a,, A in
Egs. (35) and (36).

An alternative point of view is to regard the conformal
transformations as ones in which x,—x, but the metric
is transformed g, —g.’ =0 (x)gu. So long as o(x) is
determined by parameters of the transformation in the
same way as before, these two points of view are fairly
equivalent. However, the second point of view can be
generalized by allowing the g, to transform arbitrarily
so long as their ratios are unchanged. This general-
ization leads to a group of transformations on the
metric depending on an arbitrary function o(x) rather
than on arbitrary parameters. This is the conformal
group considered by Schouten and Haantjes® and
by Pauli.’* In the next section the conformal invariance
of the neutrino wave equation will be considered under
the first definition, the conformal group as a group of
point transformations depending on fifteen parameters.

IV. CONFORMAL INVARIANCE OF THE
MASSLESS DIRAC EQUATION

Since the massless Dirac equation

Vudp=0 (37

admits the dilatation and the inhomogeneous Lorentz
transformations, only its invariance under the acceler-
ation transformations (32) and the reciprocal-radius
transformations (31) must be shown, in order to prove
invariance under the proper or improper conformal
group.

The acceleration transformation may be regarded
infinitesimally. Then Eq. (37) implies v,9,'¥'=0 pro-
vided

YVud (0¥ +7,u0,u0¢ =0,

5((9“) = Z[ja-xa,‘—l—a,‘x- a—xﬂa' a]’ (39)

and 8¢=y'—¢ is the infinitesimal change in ¢ to be
found. The form (39) suggests a law of transformation
in which & is linear in o, and x, as well as ¢. Lorentz
invariance almost completely restricts the form of the
spinor transformation and

oY= 2[“ : x+7nﬂﬂx’]‘l’ (40)
is found, together with Eq. (39), to satisfy Eq. (38).

B8], A. Schouten and J. Haantjes, Proc. Koninkl. Ned.
Akad. Wetenschap. 39, 1059 (1936).
14 W, Pauli, Jr., Helv. Phys. Acta 13, 204 (1940).

(38)
where
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Under the reciprocal-radius transformation,

9,/ =2x,x- 04229, (41)

an even fewer number of Lorentz invariants can be
formed out of x, and the ¥’s. The form of Eq. (31)
suggests the occurrence of some power of x? and in
fact one obtains

V=ay-ayp. (42)
The free-particle Dirac equation with zero mass is thus
invariant under both Cy and Cy,.°

Projection by vs as in Eq. (3) gives, for the acceler-
ation transformations,

o=2[a vty W, (43)
and for the reciprocal-radius transformation,
Y =aty-apr. (44)
Because ey * satisfies the same equation as ¢,
Yy =aty-axely* (45)

satisfies the Weyl equation after the transformation by
reciprocal radii. This transformation therefore includes
the same particle-antiparticle conjugation that was
involved in the reflection transformation (5). By Egs.
(43) and (45), the free-particle Weyl equation is invari-
ant under both Cy and Cy,.

The interpretation of an interaction is related basi-
cally to the presence of an exfended gauge group, i.e., a
group depending on arbitrary functions rather than
arbitrary parameters. For this reason, it is especially
interesting that the invariance of the massless spin one
and spin one-half, but not spin zero, equations extends
to the extended conformal metric transformations
defined in Sec. IIT C.* Does this suggest a basic role
for the massless neutrino field along with the massless
electromagnetic and gravitational fields as the seat of a
universal, especially primordial, and relatively weak,
interaction between all matter? The neutrino interac-
tion is universal, in the sense that the pion or K-meson
interactions are not, in that possibly all particles,'s
fermion and boson, interact directly with neutrinos
with comparable strength.

I would like to thank Dr. Robert Oppenheimer for
the hospitality of the Institute for Advanced Study.
I am indebted to him and to several of my colleagues
for helpful discussion.

15 There is no evidence at present that neutrinos appear in the
decay of hyperons.



