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The Fredholm theory of integral equations is used to give a rigorous proof of the analyticity and bounded-
ness of the ordinary nonrelativistic scattering amplitude for a fixed momentum transfer. The results follow
from ordinary quantum mechanics and certain conditions on the potentials. These conditions are stated
explicitly, and the bound states are treated with rigor. It is shown that the amplitude vanishes in the limit
of large momenta, and thus simple dispersion relations are derived. Finally, it is proved that the partial-wave
expansion is convergent in the unphysical region, provided the potentials satisfy the same conditions as
above.

I. INTRODUCTION

''N relativistic field theory it has been rigorously
~ ~ proved by Bogoliubov' that the S-matrix has the
required analytic properties necessary to derive the
dispersion relations for scattering at a fixed energy-
momentum transfer. These relations were 6rst heuris-
tically derived by Goldberger in the forward case, and

by Goldberger and others for 6xed momentum transfer.
It is of both theoretical and practical interest to see
precisely under what conditions similar relations hold
in ordinary quantum mechanics for the scattering of
particles from potentials.

Such relations have been conjectured by Goldberger. '
They follow easily if one assumes the uniform con-
vergence of the Born series for the scattering amplitude,
since one can see by inspection that every term in the
perturbation series is analytic in the momentum for a
fixed momentum transfer. ' However, this is a very
strong assumption and amounts to assuming the result.

In this paper we shall consider the ordinary nonrela-
tivistic Schrodinger scattering amplitude, written as a
function of the magnitude of the momentum, k, and the
magnitude of the momentum transfer, z. Under certain
explicit assumptions on the potentials, which are quite
general, we shall rigorously prove that the scattering
amplitude for a fixed r is analytic in the upper half-

plane of k, and uniformly bounded there as well as on
the real axis. Our approach is inspired by Jost and Pais'
successful application of the Fredholm theory to the
scattering integral equation. ' We shall follow their
notation rather closely, and denote by J,.P. their paper
which we shall refer to often below.

In Sec. II we write out the Fredholm solution of the

scattering integral equation and from that get the cor-

responding expression for the scattering amplitude,

writing it explicitly as a function of k and r, the mo-

~ Lockhead Fellow, 1956—57.».N. Bogoliubov, mimeographed notes (unpublished).
s M. L. Goldberger (private communication).
3 After this work was completed a preprint of a paper by D. Y.

Kong was brought to the attention of the author. In it these dis-
persion relations were written down on the basis of such an
assumption.' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

mentum and momentum transfer respectively. The
expression will have the form of a quotient of two
functions. In Sec. III we shall prove that for a large
class of potentials, essentially those for which the
integrals, Jt" r

~
V (r) ) dr, and Jag exp (ctr) r'

~

V (r)
~

dr
are finite, the numerator of the scattering amplitude is
analytic in k in the upper-half complex k-plane, and
uniformly bounded for Im k~&0, if r is real and
—',r &~n (n ~&0).

The use of the Fredholm theory enables us to handle
the bound states rigorously and easily. In Sec. IU we

shall show that the Fredholm denominator is analytic
and bounded as above. We shall also prove that for real
potentials the zeros of this denominator occur only on
the positive imaginary axis of k, and that, except for the
zero at k=0, all the other zeros correspond to bound
states. Thus our scattering amplitude will have poles on
the positive imaginary axis whenever we have bound
states.

In Sec. U we show that, except for the Born term,
the scattering amplitude actually vanishes on a large
semicircle in the upper half-plane of k, in the limit as
the radius approaches infinity. We also show that
restricting the singularity of the potential at the origin
makes the scattering amplitude vanish faster for large

~

k ~. In Sec. Vi we apply the Cauchy integral formula

and get the dispersion relations.
Finally, in Sec. VII, we prove rigorously that in the

unphysical region,
~

k
~

~& sr, the partial-wave expansion
written in terms of k and r converges absolutely if
v-&o. . This gives us a method of getting the value of
the scattering amplitude in the unphysical region from
the phase shifts.

In all our proof we do not use anything which is
foreign to the usual formulation of quantum mechanics.
In the field-theoretic case the microcausality condition,
expressed in terms of the vanishing of the commutator

outside the light cone, plays a major role. Below we

make no such explicit assumptions, and we do not have a
precise definition of what causality means for a poten-

tial of infinite range. But the analog to the commutator

condition is certainly built into quantum mechanics.

Certainly the choice of the Green's function that we
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use in our integral equation has quite a lot to do with
our results. But that is not all, and the fact that we
use a local potential is quite important. For even if we
had used the same Green's function, but an interaction
of the form J'V(x, y)f(y)d2y, our results would not
have followed. Of course, if V(x,y) is zero outside a
6nite region, we can make our scattering amplitude
bounded by multiplying by exp(ika), a being the range
of U. But including functions with essential singu-
larities at infinity in the dispersion relations is rather
meaningless.

We just mention here for completeness that if V(x,y)
=8(x+y)V(~ y~) i.e., the pure exchange potential, all
our results, except for the 6rst Born term, will still
hold. But this case is rather an exception, and the
results are probably due to its form being very similar
to the local case where V(x, y)=5(x—y) V(~ y~).

In what follows we shall restrict ourselves to central
potentials, but the generalization to noncentral poten-
tials is not dificult. We have also applied the same
techniques to the case of the Dirac equation. The
Green's function is similar and the results follow easily
except for stronger restrictions on the behavior of the
potential at the origin. The amplitude in this case will
not vanish for large E, and we get dispersion relations
with one subtraction. The integral in these relations will
extend from E=m, to infinity, and we have to deal
with only one unphysical region, namely m (E
&(2222+air )&. We shall discuss these results in more
detail in a later paper.

II. SCATTERING AMPLITUDE IN TERMS OF
THE FREDHOLM SERIES

In this section we shall write down the Fredholm
solution of the scattering integral equation, and from
it express the the scattering amplitude in terms of the
Fredholm series. The amplitude will be written as an
an explicit function of the magnitude of the momentum
and that of the momentum transfer. We follow the
notation of J.P.

The Schrodinger equation,

[V2+k2 —XV(r)]P(r) = 0

K, (x,y) = K(x,z)K(z, y)dz. (7)

The solution of (5) is given formally by

p A()P,k; x,y)
P(k, x) =F(k,x)+x2 F(k, y)dy, (8)

&(X2,k)
where

( ) )n2 f
&(X2,k; x,y) =K2(x,y)+P ~~ dxi dx„

n-i

and
X 8& "& (k; x, y, xi, ,x„), (9)

( y2)e
~(&2,k) =1++ dxi "dx„

n=x ~~1

XD&"~(k; xi, ,x„). (10)

The Fredholm determinants 8("& and D("' are given by

8&"'(k; x, y, xi, ,x„)

K2(x, y) K2(x)xi) ' ' K2(xpx~)
E2(X1 y) E'2(X1,X1) ' ' ' K2(xi x )

E2(x„,y) E2(x„,x,) E2(x„,x„)

The asymptotic form of the solution of (2) is

P(x) exp(ik x)+
~

x
~

' e xp (ik
~

x~ )f(k, r), (4)

where f(k, r) is the scattering amplitude, and

r =k[2 (1—cos8) j*'

is the magnitude of the momentum transfer.
Since K(x,y) is singular for x= y, we cannot directly

write the Fredholm solution of (2). Instead, we iterate
(2) once and get

P(x) =F(k,x)+X2 ~~ K2(x,y)$(y)dy,

where

F(k,x) =exp(ik x)+X "E(x,y) exp(ik y)dy, (6)

alld

is written in the usual dimensionless form. The potential
strength X is defined by normalization of V (r) at small
distances.

We look for the solution of (1) which for large r
behaves like a plane wave plus an outgoing spherical
wave.

D&"'(k; xi, ,x„)
K2(xl)xl) ' ' ' K2(xl)X~)

(12)

P(x) =exp(ik x)+X K(x,y)P(y)dy, (2)

K(x,y) = —V(y) exp(ik~ x—y~)/4~~ x—y~. (3)

The solution of (2) is a solution of (1), and the Green's
function which we have chosen guarantees that our
solution will satisfy the required boundary conditions,

E2(x.,xi) . E2(x„,x„)
Under very general assumptions about U(r), namely

that V(r) &~ M'/r2, and Jo" r
~
V(r)

~

dr ~& M & ~, Jost and
Pais have shown that for any finite

~

'A
~

the series implied
in (8), (9), and (10) converges uniformly and absolutely,
and that if X is real P(k, x) will have no singularities for
k real except possibly at k=0.
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Starting from (8), we shall now derive a similar
expression for the scattering amplitude. The scattered
wave, f, (k,x) is given by

f,(k,x) =X K(x,y) exp(ik. y)dy

p 6(l%,2,k; x,y)
+X' ~ F(k,y)dy,

and the scattering amplitude is

f(k,r)= l~
l lxl exp( —iklxl)4"(»x)3 (14)

)X) -+ oo

After taking the limit in (14), expanding the deter-
minants of the numerator in (13) in terms of co-factors
of their first rows, and rearranging terms, we get

f(k,r)= —— exp( —ik y)V(y) exp(ik y)dy

Now we introduce a set of new variables corre-
sponding to those used in field-theoretic dispersion
relations. We let

~=-', (k+k'); r= y —z,

~=k—k'; R=-', (y+z).
(18)

G; (k,r) = '—e—xpLi(k' ——,'r') 'n. rj
4 J

XX,(R—-', r, R+-', r) exp(i~ R)drdR, (20)

From these de6nitions it easily follows that m ~=0;
s'=k' ——'r' and cos8= (1—r'/2k'). We can now write
for (16)

f(k, r) =——V(r)+G2(k, r)+Gg(k, r)
4

G4(k, 7) Gg(k, r)
+ +, (19)

6 (X',k) h(X', k)

X'
exp( —ik' z) V(z)Z(z, y)F(k, y)dzdy

4+ ~
and

j=2, 3, 4, 5; n=m/lml,

(21)
X4

exp( —ik' z) V(z)E(z, xg)
kr~

A(X',k; x~,y)
F (k, y)dzdx&dy, (15)

~(V,k)
where k'=kx/l xl.

Substituting (6) for F(k,y), we get
G, (k, r) =G;*(—k,~). (22)

We note that G; (k, r) does not depend on the direction
of ~ nor on the direction of n. Furthermore, it is easy
to see from (17) that Ã;(k) =1V;*(—k). Hence we have

X

f(k, r) =—— exp( ik' y—)V(y) exp(ik y)dy

t exp( —ik'. x)¹(z,y) exp(ik y)dzdy

"exp(—ik' z)¹(z,y) exp(ik y)dzdy

X4
t E4(x,y)——~' exp( —ik'. z) exp(ik y)dxdy

4(X',k)

X'
t ¹(zy)

exp( —ik' z) exp(ik y)dzdy,
6 (X',k)

(1
where

¹(x,y) = V(z)X(x,y),

&~(z,y) =V(z) 1tm(z, y),

For any physical scattering, i.e., lkl )~', r, all the-
series and integrals in (20) converge uniformly and are
well defined for a large class of potentials, namely those
for whichtheintegrals Jo"r

l V(r) ldr and J'0"r'l V(r) l
dr

are 6nite. This is already clear in J.P. However, in the
next section we are going to let k be complex, and let
it vary in the upper-half. plane. In that case we have to
define the scattering amplitude in the unphysical
region on the real axis,

l kl &~-', r, and the integrals in
(20) will not be convergent there for r AO unless the
potential falls off fast enough.

In field theory one is able to define the scattering
amplitude in the unphysical region by going back to
the Fourier transform of the corresponding four-fold
vacuum expectation value. Here, if we want to stay
within the bounds of ordinary quantum mechanics, we

6) have no such underlying structure, and to the best of
our knowledge restrictions on the potentials are
necessary.

III. ANALITICITY AND BOUNDEDNESS
OF THE 6;(k,v)

E4(z,y) = V(z) t E(z,x~)&(X',k; x~,y)dx&, (17)

¹(x,y) =V(z) E(z,xi)h(X', k; xi,xs)Z(xm, y)dxidxa

In this section we shall extend the domain of defini-
tion of G;(k,r), in (20), into the upper-half complex
k-plane, while keeping r real and fixed. We shall prove
the following lemma.

Lemma I.—If the potential, V(r), satisfies the three
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conditions,

4O

I V(r) I
& M'/r',

rl V(r) ldr&M(~,

analytic and regular for x)0. From (20) and (17), one
(A) easily gets for k&~0

Ilail' r

I Gs(»r) I
&~exp(l«) I V(I R—srl) I

~!p

exp(nr)r'I V(r) Idr&~L& ~, n&~0, (C) I V(l R+-', rl) I (1/r)dRdr. (23)

Changing back to the variables x and y we get
then for real r, ', r ~&—n, the G; (k,r) are analytic functions
of k regular in the region Im k=~&0 and uniformly
bounded in the region rc&~0. On the real axis they are
continuous boundary values of the above analytic
functions, with branch points at k= &~v.

For later use we note there that the conditions (3)
and (C) imply that

Jp
exp(nr)r I V(r)

I
dr & M"& ~, n&~ 0. (3')

f(k) = C (k,x)dx,

The proof of Lemma I depends mainly on a theorem
concerning the integrals of analytic functions over a
parameter. We shall state this theorem at this point,
as it will clarify our approach.

Theorem I.s If C(k,x) is analytic in k, regular in a
certain region I' of the complex k-plane, and if C (k,x)
is continuous in the closed region composed of F and
its boundary 8, then if

ll ls
r

IGs(k, r) I
&&i expl Qr(z+y)]

I V(z) I.
I V(y) IX-— dxdy. (24)

This last integral is 6nite, by (8') and (C), as long as
-', r &~a. Thus the conditions of theorem I are satisfied.
On the real axis of k, the integrand in (20) has branch
points at k=+ ', r, and -hence Gs(k, r) will have branch
points there too.

For the remaining three G; (k, r), j=3, 4, 5, the proof
of our lemma depends on finding an upper bound for
the iterated kernel Zs(x, y) and for the numerator of
the Fredholm resolvent, A(X',k; x,y) in the region x&~0.
We shall write

1~ (»,y)=A(x, y)V(y)/4 y,

where from (3) and (7) we have

expLik
I
x—x'I]

X V(x') expl ik
I
x' —y I

]dx'

lx —x'I lx' —yl

For ~~& 0, we have

f(k) is analytic in k, regular and uniformly bounded A(x, y) =
and in the region I', provided that there exist 8 (x) such
that IC (k,x) I &~%(x) for all k on 8, and provided that

(26)

4'(x)dx& ~.

Of course, we can also say that for k on the boundary
8, f(k) is continuous in k. Furthermore, recalling the
fact that an analytic function takes its maximum value
on the boundary of a region of analyticity, we can
conclude that if IC(k,x) I

&~%'(x) for all k on 8, this
inequality will also hold for all k in I'.

Our method of attack will follow the conditions of
theorem I. The closed curve 8 in our case will be the
real axis from —kn to +kn, and a large semicircle in
the upper half-plane with radius kg. We shall show that
in the integrals in (20) defining the G;(k,r) the inte-
grands are analytic in k, for a&0, and that for k on 8
they are bounded by a function of r, R, and r which is
integrable if ~~~&n.

The proof of our lemma is trivial for the case of
Gs(k, r). One sees by inspection that the integrand is

I
V(x')

I

IA(x, y) I «xpL —xlx —yl]
4sr lx —x'I lx' —yl

In J.P. it is shown that for any V(r) satisfying (A) and
(8) the integral on the right hand side of the above
inequality is always less than a constant. Therefore,
for ~~&0,

IA(» y) I
~&&expl —xlx —yl]

l&s(» y) I
&~& expL —xl» —yl]I V(y) I/(4'). (27)

For large k in the upper half-plane one can see from
(26) that

I
A (x,y) I

will become very small since it will
either oscillate to zero for large Re k or be damped to
zero for large ~. In Appendix I we shall prove that for
any e no matter how small, one can find k, with Ikl
large enough, so that

IA(»y) I
&~«xpL —xl» yl] x&0 (28)

It is clear from (26), (27), and theorem I that
e See for example E. C. Titchmarsh, The Theory of Fssssctsons

(Oxford University Press, New York, 1939), second edition, pp.
99-100. using 27 we shall show at the end of this section that
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hP', k; x,y) is analytic in k, regular for «&0 and that From (V) it follows that
it has the following bound:

I ~P '» ' x y) I
~& c2I v(y) I/(4 y)

where C2 is a constant.
On the other hand, using (28), we shall show that

for lkl large enough,

l~(X',k; x,y) I

& ec3 exp[—«I x—y I jl v(y) I/(4ry), «& 0, (30)

where C3 is a constant. This last inequality gives an
upper bound for 6 for k on any large semicircle in the
upper half-plane.

We remark here that both E2(x,y) and h(l&. ',k; x,y)
are continuous in k for «&~0. For j=4, 5 we use (29) to
estimate the integrands in (20) for k real, and (30) for k

on the large semicircle. For the case j=3 we use (27)
to get a bound on the integrand. Hence we get from
(20) and (17) that for k on 8,

IG, (k,~) I
& f&f'I-; exp[Ariz —yf]

I v(s) I I vb) I

X dzdy, (31)
4n-y

where the L s are constants. Now since the integrand
is (20) was analytic in the region inside 8, then (31)
holds for any k inside 8 also. Consequently, since we
can choose kg as large as we please, (31) holds for all

k such that «&» 0. From (8') and (C) one easily sees that
for r/2&~n the integral on the right hand side of (31)
is finite. On the real axis one sees from (20) that the

G;(k, r), for j=3, 4, 5, also have branch points at
k=&~/2. Hence, except for the assertions we made
about d, (l&,',k; x, y) the proof of our lemma is completed.

We now prove that 0 P', k; x, y) is analytic in k

regular in the region ~)0, and we also derive the
bounds (29) and (30). From (11) and (25) we see that
the Fredholm determinants 8'"&(k; x, y, x~, ,x„) can
be written as follows:

8& "&(k; x,y, x&, ,x~)
(v(r)& - tv(*)~=A'"'(k, »" -)I I II I(4 Z) = &4~~; )

where A &"&(k; x, y, x&, . ,x„) are the determinants with

A(x, ,x;) substituted for E2(x;,x;). Using Hadamard's
lemma' and (27), we get

Now the determinants 8(") are analytic in k, and hence
from (32), (33), and Theorem I we see that the series
(9) definining A(&I, ,k; x,y) is a series of analytic func-
tions which are regular for ~)0 and furthermore

lvb) I

I
&(X',k; x, y) I

&1V +Q (v+1)&'"+'&
4my

I v(y)l
y +n+l~n « &~0. (34)4y'

The series on the right is convergent for finite IX I
and

we thus get (29). Also D(X2,k; x, y) is analytic in k
regular for a)0, for it is defined by a uniformly con-
vergent series of analytic functions.

To get (30), we use (28), and we have, for large
I
k I,

f8 "& (k; x, y, x,, ". ,x„) I

~& (v+1)!e"+'expL «I x—
yf j

&lv(y)f& - prv(~~)lqx
I I II I I

«&o (35)
E 4 y ) =~ E 4~*, ) '

where we have intentionally not used the Hadamard
lemma so as to enable us with the help of the triangle
inequality to get the exponential on the right hand side.
We can now easily get an analog to (34) with c sub-
stituted for lV:

I v(~) I

l~()',k,x,y) I
&~e exp[ «lx —

yl j

X(1++ IX'I "(m+1)e"M"), «&~0. (36)

For lkl large enough, e could have been chosen small

enough to make the series in (36) convergent. This
proves (30). It is also clear from (36) that in the limit
as fk f~~, «&~0, A(X',k; x, y) vanishes.

IV ANALYTIC PROPERTIES OF A(X', k) AND THEIR
RELATION TO THE BOUND STATES

)
8&"&(k; x,y, x&, ,x„)dx) dx„

&I v(y) l~
& (I+1)' "+' X"+'M"

I (33)
E 4y)'

I8&"&(k x,y,x.. .x„)I
&~(I+1)I&~+'&E~+'

&
lv(y)l~ - ! Iv(*')Iy

IIII
E 4~y ) ~=~ ( 4 x; )'

6 See reference 4 for detailed references on this point.

In this section we shall show that h(X', k) is an
analytic function of k, regular for ~&0, and uniformly

(32) bounded in the region «&&0. Furthermore, we shall show
that the zeros of A(X', k) are related to the bound states
of (1).
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From (10) and (11) we have

(—9)" r

A(X' k) =1++ dxt ~ dx
n-i

Now if we fix X, then as functions of k At(X,k; x,y)
and ht(X, k) will have no zeros in common. Thus if
At(X, k)=0, this means that there exists at least one
solution of the homogeneous equation,

XD&"& (k; xt, ,x„), (10)

Ea(xt, xt) ' ' ' E2(xt, x~)

P„(k„,x) =It E(x,y)P„(k„,y)dy (41)

D&"&(k; xt, ,x„)=

Ea(x„,x,) E2(x„,x„)

Since E2 is analytic in k regular for «)0, then
D&"&(k; xt, .

,x„) is also analytic in k. Now from (25)
we have

t V(x,)q
D'"'(k; x, ,x ) =A'"&(k; x, ,x ) g

~-t &4 x;)
Using Hadamard's lemma and (27), we get

For k„real, k 40, Jost and Pais have shown that X

must be complex in (41). Hence for real X, ht(X, k) will
have no zeros on the real k axis, except possibly at k= 0.

Now for ) real, and ~„&0,we claim that all the zeros
are on the positive imaginary axis, and that f„(k„,x)
are the bound states. The possible zero at k=0, may
or may not correspond to a bound state. For large

~
x ~,

P„(k„,x) )x[-'exp(ik„[x))f (k,8). (42)

From the Schrodinger equation, we have

i& (4 '&4- 4-&4-'—)=i(k-*' k-')4-*4—- (43)

Integrating over a large sphere, we get

and hence,
i n V' n nV n 'd

i(k a' —k ') ~P„~'dx (44)
VD&"&(k; xt, ,x )dxt ~ dx„&~$"M"n"I',

«&~0. (37) and substituting the asymptotic form on the left, we
have

We conclude by theorem I that the series (10) is a
series of analytic functions. Furthermore, we have

J
),2

)

n

~

A(X' k)
~

&~1++ rl I'X"M", K&~0. (38)
n-i

—(k„+k„*)exp[i(k —k„*)
) x„(g ) f„(k„,e) ('dn

=i(k *'—k ) ~f„~'dx. (45)
J~

The series on the right hand side of the inequality is
convergent for any finite

~
X

~
. Hence, 6 (X',k) is analytic

in k, regular for ~&0 and uniformly bounded for K~~0.
Considered as a function of X, A(X', k) vanishes for

X=~X„, where X„are the eigenvalues of the homo-
geneous equation,

f„(k,x) =X„,t E(x,y)$„(k,y)dy. (39)

In this case the resolvent kernel d, (X',k; x,y)/A(X', k) is
not an irreducible fraction. According to Poincare, one
can factor out an entire function of ) from both the
numerator and denominator, and get

A(X',k; x,y) ht(X, k; x,y)

A(It', k) ~,(X,k)
(40)

where &t(X,k; x, y) and h, (),,k) havenozerosincommon.
This procedure will not change the convergence proper-
ties proved earlier, and correspondingly G4(k, r)/d, (X',k)
and Gq(k, r)/h(X', k) will respectively become G4o&(k, r)/
ht(), k) and G&&'&(k,r)/ht(), k) with the same analytic
properties as before.

For «) 0 we divide both sides by (k *+k„), and get

[~(~,',k) —I[ &Q )V[-
~n/2

PM", g)~0. (38)

' V. Bargmann, Proc. Natl. Acad. Sci. U. S. BS, 961 (1952).

—exp[ —2«-I x
I j "lf-(k-P) I'«=2«- lw-I'd» (46)

V

This is a contradiction, and therefore, we conclude that
k„a+k„=0, i.e., k„=i«„

For K„=O, and k„/0, we also get a contradiction.
Hence as in Jost and Pais, if «„=0, then k„=0, if X is
real. The states f„(k„,x) are all (except for k„=0)
normalizable, and since they are solutions of the
homogeneous equation, they are the bound states.

It is a known fact that if Jo" r
~
V(r)

~
dr &~ M & ~ the

number of bound states is finite. ' Furthermore, the ~„
will have a finite maximum, corresponding to the
lowest energy state.

Finally, we claim that for
~

k
~

—+~, «&~0, A(X', k)~1.
This follows from (28). Using, the same steps we used
to get to (38), we can show that for ~k~ large enough,
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The right hand side of this inequality could be made
arbitrarily small.

Ke note there that all our work up to this section
holds even if X is complex. However, as we have seen
above, we have to take A, real to get a relation between
the poles and the bound states. As we have mentioned
above, it is proved in J.P. that for complex X, there
might be poles on the real k axis.

Finally, we remark here that all the results of this
section follow from the conditions (A) and (B) only,
and hence are valid for a very large class of potentials.

V. ASYMPTOTIC BEHAVIOR OF THE
SCATTERING AMPLITUDE

In this section we shall discuss the behavior of the
scattering amplitude for large

I
k

I (lr ~& 0).
It is already clear from (28) and (36) that the G;(k,r),

for j=3, 4, 5, vanish in the limit as
I
k

I
approaches

infinity. Furthermore, by the Riemann-I ebesgue lemma
one can easily show that Gs(k, r) will vanish for large
k„(where k„=Re k).

In held theory the behavior of the scattering ampli-
tude for large values of the energy is not known exactly.
What one knows is that it increases rot faster than a
polynomial in the energy. This behavior is closely
related to the singularities on the light cone.

In our case everything is well defined, but a somewhat
similar behavior, though rather restricted, is caused by
the singularity of the potential at r=0. We have suc-

ceeded in proving that if we restrict the behavior of the
potential at zero more than it already is restricted in

(A) and (B), then not only do the G, (k,r) for, j=3, 4, 5,
vanish for

I
k

I
approaching in6nity, but they vanish as

1/lkl. Namely, one can show that if the potential
satisfies the following two conditions,

(D)

VI. DERIVATION OF THE DISPERSION RELATIONS

We rewrite (19) as follows:

G4f'1 (k,r) Gs "1(k,r)
g(k, r) =Gs(k, r)+Gs(k, r)+ - +, (47)

hi(X, k) Ai(X,k)
where

%e have already shown in the preceding sections
that for -', r&~n, g(k, r) is analytic in k, regular in the
region I(.&0, continuous and uniformly bounded for I(, &~ 0,
except for a 6nite number of poles at the zeros of
Di(X,k) which for real X all lie on the positive imaginary
axis. Furthermore, on the real axis g(k, r) has branch
points at k =& s r. For

I
k

I
approaching infinity g (k, r)

vanishes.
As usual we shall derive our dispersion relations in

terms of the energy variable E, where E=k' in the
proper units.

Let us write re(E, r) —=g(k, r). Then P(E,r) will be
analytic everywhere in the E plane except for a branch
cut on the real positive axis and the poles on the nega-
tive real axis. We apply the Cauchy formula to p(E,r)
and integrate over the contour C shown in Fig. l. We get

P(E', r) ~ R, (r)
dE'= 2m' g; E,&0, (49)

g p~

where R;(r) are the residues of P(E', r) at the bound
states E;.The integral over the large circle vanishes as
the radius becomes infinite, and after taking the con-
tributions from the two small circles, and letting the
lines approach the real axis, we get)

1 t."Im P(E', r) ~ R,(r).
Re p(E, r) = P — dE'+P, (50)

~p E' —E pg

I
V (r) I

dr & ~,

where Ep=0, I' indicates the principal value of the
integral, and Rs(r) is the residue at E=O. If we now

(F) let f(k, r) =M(E, r) we get the de—sired dispersion rela-
tion sq

1 t "Im M(E', r)
in addition to (A), (B), and (C), one can get a bound « i' (E~r) =
for A(x, y) for large Ikl of the form

5
I ~(x,y) I

& expl —x
I
x—y I j x& o (28')

~ R;(r)
+Q V(r) (51—)— .

~=p E—E; 4n-

instead of (28). It would be interesting to relax the
conditions (A) and (B) as far as the singularity at zero
is concerned, instead of making them stricter as in (D)
and (E), and then see what the behavior of the ampli-
tude at infinity would be.

We finally remark that all the residues R;(r) are real.
This follows from the fact that for k on the positive
imaginary axis both E(x,y) and Es(x,y) are real.
Hence, all the resolvent kernals in (20) are real, and
since the G;(k,r) depend only on the magnitude of r,

t Noie aNed en Proof Here we used the f.—act that p(E+ee r)
s This is enough to make the Cauchy integral of G2, on a large =qp(E —ee, r), E&~0. This follows from (22) and the fact that

enough semicircle in the upper half-plane, arbitrarily small. n(1', k) =a*(x', —k).
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they are real too. Thus for k on the positive imaginary
axis f(k,r) is real, since V(r) is also real for a central
potential.

The relations (51) hold as long as tsr &~n. Hence for
potentials which fall off as a Gaussian or faster, (51)
holds for all finite r. In applying (51), one has to
integrate over the unphysical region, 0(E'&4v', and
the experimental data do not give us M(E', r) in that
region. In the following section we shall show that the
partial-wave expansion can be used to determine the
scattering amplitude in the unphysical region from the
phase shifts.

In the forward direction, r=0, (51)holds even if a= 0
in (C). This leaves a very large class of potentials.

VD. CONTINUATION OF THE PARTIAL-%'AVE EX-
PANSION INTO THE UNPHYSICAL REGION

In this section we shall show that the partial-wave
expansion for f(k, r) is convergent in the unphysical
region 0(k(~ v if r (n. Thus one can use it to de6ne
f(k, r) in the unphysical region. (The variable k is real
throughout this section. )

Since cosg= 1—r'/2k', we can write

00

f(k, r) = P (2l+1)Lexp(2i5~(k)) —1j
2ik &=o

X&,(1—"/2k'). (52)

FIG. 1. Contour of integration in E-plane.

where Qt is the Legendre function of the second type.
From (52) we have

I f(»r) I
~& &(»+1)I {exp(2s~,(k)) —1) I

2IkI ~~
~ IZ, (1-rs/2ks) I. (56)

For large l we have

2C/f

Iexp(2i6&) 1I=—2l&~l &~ IQ~(1+as/2k) I,

2k() t)s

IQ~(~) I=
(21+1)I

I
1—r'/2k'

I
'/

I
1+a'/2k'

I

'+'

For k real and k&~ ~sr, (52) is convergent for a large class
of potentials, which certainly includes the potentials
that sayisfy (A) and (8).

As k becomes less than —,'7-, ~ being kept 6xed, the (2l)!
argument of the Iegendre polynomial becomes less I &~(*) I

=— I*I ' l*l ».
2E(g!)sthan —1; and for k—+0 it approaches —~.

Carter has shown rigorously that the absolute value He e f ] t 6 fof the phase shift for large I is always bounded by the
Born-approximation expression for 8~ for large t; i.e.,

I~~(k) I
&(-" «I V(r) I»+.'(kr)«.

and the series will converge, in the region 0&k&~r, if

I
1 r'/2k'

I &
I
1+a'/2k'

I

1.e.)
Now if (8') is satisfied, Js" exp(ar)rI V(r)Idr~&J«I", ~&a.
then since rI V(r) I

is integrable at zero, and J~+t(0+)
vanishes very fast for large /, we can write
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(55)

The integral in (54) can be evaluated exactly":

1
exp( —ar) J(+ s(kr)«= —Qt(1+as/2ks))

0 xk
APPENDIX I

e D. S. Carter, thesis, Princeton, 1952 (unpubhshed).
"G. N. watson, Theory of geese' pglcseoas (catnbridge Uni- In this APPendix we shall Prove the inequality (28).

versity Press, London, 1922), p. 389. The proof is essentially an analog of the Riemann-
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Lebesgue lemma. From (26) we write From (A-1') we have,

lyl
A (k; x,y) = "exp{ (ik I

x —x
I + I

x—y I))

To simplify the notation we let

Q. (x)
Aq, (x) = » exp[ikw(x))w1(z) dz1dz2dzs. (A-9)

~ J w1(z)

V(z)dz We now want to integrate (A-9) by parts over z1 to
&& (A 1) get a factor 1/k. But w1(Z) is zero at z1——0. Hence we

have to exclude the plane z1——0 from our region of
integration, and write

lyl p v(z)
!Q(z) =

4z E fx—xl fx—yl&

Q. (z)
Aq, = " ~ exp[ikw(z))w1(z) dz1dzgdz3

A-2) w1(z)

w(z)= lx —zf+lz —yf. (A-3)
+ exp[ikw(x))Q, (z)dx, (A-10)

aJ

IQ(z) fdx&X& ~. (A-4)

IAq. I
& exp[—«lx —yl)

Hence there exists a Q, (z) such that for any c the fol-
lowing inequality holds,

From J.P. we know that for potentials satisfying (A)
and (B) we have where 6 is a thin inhnite slab with the plane z~=0 as

its median plane, and A is the rest of the space. If we
now do a partial integration on the first term, we get

IQ(z) —Q.(z) ldz& ~

B Q.() Cg'
X

'
dzidz2dz3+ exp[-.

l
x- yl)

(A-5)

where Q, (x) is continuous, differentiable, and vanishes
with its erst partial derivatives outside a large cube
with center at origin. . Furthermore, IQ, (z) I ~&C1, and

I BQ, (z)/Bz,
I

&~C2, i=1, 2, 3, where C1 and C2 are
constants. If we now write for (A-1)

+ J J exp[ikw(z))Q, (z)dz . (A-11)

The 6rst integral is 6nite, and in the second one the slab
can be chosen thin enough to make Jq I Q, I

dz & e. We
thus get

A q —— exp[ikw(z))Q(z)dz, (A-1') C3
expL —«I x—yl)+«xpL —«I x—yf)~

we get
Aq Aq-q, +Aq, . (A-6)

Hence, we now have

IAql & «xp[ —«I x—yl)+ I
Aq. l (A-7)

Ke choose Cartesian coordinates z~, zg, z3 such that
x and y lie in the [23) plane. In that case we have,

Bw (z)
»(z) = Zj

lx —zl fz —
yf

(A-8)

Using (A-5), and the fact that w(z) ~& I
x—yl, we get

for ~~&0

xp[—«I x—yl)

(A-12)
where C3 is a constant.

Substituting back in (A-7), we get the desired ine-
quality, since we can always choose

I
k

I
large cough to

111ake Cz/fkf &6 aIld C8'/fkf &e.
An estimate of the form IA(k, x,y) I

& (C/lkl)
Xexp[—«I x—yl), is not always possible if V(r) satis-
fies only (A) and (B). One can easily give a counter-
example if one sets x=0 in (A-1), and performs the
integration. It is clear in this case that one would
need condition (E) to give a bound that goes as 1/ I

k
I
.

In general, the addition of conditions (D) and (K),
given in Sec. V, to (A) and (B) is enough to prove the
inequality given at the beginning of this paragraph.
This inequality is needed in the Dirac case and we shall
give its proof elsewhere.


