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Method of Moments in Quantum Mechanics*f
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(Received April 29, 1957)

An approximation technique for quantum-mechanical problems based on the expectation values of the
powers of the Hamiltonian is developed. The mathematical foundations on which this approach is based are
the method of moments employed in probability theory, and the theory of orthogonal polynomials. In
practice this method constitutes an extension of the Rayleigh-Ritz principle and gives a systematic method
of improving the trial function.

L INTRODUCTION

'HE general problem in quantum mechanics is the
diagonalization of the Hamiltonian operator. In

the method of moments the procedure is to assume that
an arbitrarily chosen state vector is expanded in the
complete set, the members of which are the eigen-
functions of the Hamiltonian. The problem is then to
determine the unknown eigenfunctions occurring in this
expansion, their eigenvalues, and the associated expan-
sion coefficients. To achieve this end, a step-by-step
method is prescribed that will remove all but one term
in the expansion.

It is not necessary in the course of this calculation to
assume any separation of the Hamiltonian into per-
turbed and unperturbed portions. It will frequently be
convenient, however, from the computational point of
view, to take the initial vector to be an eigenfunction
of a portion of the Hamiltonian. The basic numerical
quantities that enter into a calculation are the matrix
elements of the powers of the Hamiltonian in the chosen
initial state. Because these quantities are simple to
calculate, it is feasible to carry the calculations to
quite high orders.

I

II. DESCRIPTION OF THE METHOD

The system to be treated is described by a Hamil-
tonian JI.The system is assumed to be enclosed in a box
in order to assure that the state vectors occurring are
normalizable to unity. The normahzed eigenfunctions
of the Hamiltonian are p(E;,a;). The II's are the eigen-
values of additional operators A that commute with
the Hamiltonian and that are necessary to completely
describe the states. The P's satisfy the equations

II/(E;, a, )=E,If (E;,a;),
AP(E;,a;) = a,&(E,,a;).

The P's and the E s are of course unknown, although
the a, 's will in general be known. To proceed it is
necessary to choose a trial function p. It is most con-
venient if P is an eigenfunction of the auxiliary
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variables A. In this event the expansion of p in the set
of P's is

4=2~ 4(E) (&)

The dependence of the P's on the a's has been dropped,
as P is an eigenfunction of the A's and only one set of a' s
can appear for each E.

It is convenient to introduce the function

(2)

associated with this expansion. Fe(E) is a nondecreasing
function of bounded variation that vanishes for suK-
ciently small E. The first property holds because Fe(E)
changes only by amounts

l
n,

l

' at the points E,. The
second property is a result of taking p to be nor-
malizable. The eigenvalues E; of II describe the allow-
able energy levels of a physical system, therefore there
must be a smallest one and hence a smallest point of
increase for F&(E).

The function Fe(E) contains essentially all the in-
formation about the physical system. The eigenvalues
are immediately evident as points of discontinuity of Ii

and the eigenfunction that belongs to E~ is given by
the formula

The matrix element of any function of H in the state P
is given by the expression

(ylG(e) ly)=) G(E)dFe(E).

Thus the quantum-mechanical problem is equivalent
to determining the function Ii.

The function P is a probability distribution function,
and there are procedures for the determination of such
a function. The method to be employed is called the
method of moments, and consists in developing an
approximating sequence of functions Fe&"&(E) that it is
hoped will converge to Fe(E). The quantities employed
to compute Fo&"&(E) are the moments H„of the distri-
bution Fe(E). These are defined by
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There is a difhculty in principle that should be noted at
this point. The moments may not uniquely determine
the distribution. A very simple way in which this may
occur is if some of them are infinite.

The requirement on the approximating function
Fp'"&(E) is that it be a step function with e points of
increase such that its first 2e moments agree with
those of Fp(E) The. Nth approximating function de-
pends on 2e numbers; the e values of the argument

pp&
"&, , pJ"&, at which Fp&

"& (E) is discontinuous
and the e real positive numbers b~&"), b2&"~, , b„&"',
which are the magnitudes of the discontinuities. These
numbers must satisfy the 2e relations

H = E'dF (E)= ELF (n&(E) =Pp'(nkvd'(n&

(k=0, 1, 2, , 2n 1). —

the root of the equation

This solution is

Pi(E) =
Hp

p&'&=Hi/Hp,

=0

and b&') is just Hp.
The inequality stated above is to this order the

Rayleigh-Ritz principle. That is, the smallest eigen-
value of H, E;„satisfies the inequality

E; (E=Hi/Hp.

A slightly diGerent approach is also possible. From
the set of functions 1, E, E2, ~ ~ ~, it is possible by the
usual Schmidt orthogonalization procedure to construct
a set of polynomials p (E) with the properties

1
Hp
Hl

P„(E)=

E E2 ~ ~ ~

Hg H2
H) H3

H„g ~ ~ ~ H2„g

is constructed. The polynomial P„(E) has e real dis-
tinct roots. These are the correct values for the e&")'s.

It is now possible to solve the e linear equations

It has been shown that the following prescription gives
the unique function satisfying these requirements. ' The
polynomial P„(E)defined by Except for a normalization constant we have p„=P„,

and the determinantal form is just a convenient method
of writing the Schmidt process. Most of the results
quoted above then follow from the properties of the
roots of sets of orthogonal polynomials and their
associated distribution. '

If all that is desired is an estimate of the eigenvalues
and their spacing, it is sufhcient to calculate the roots
of the determinants. If wave functions are desired, then
appropriate polynomials in the Hamiltonian of the form

II(H —p, & "&) are used to operate on the initial vector.
It is possible to construct e vectors f& "& in this form.

The f&"& are given by

&.{nike.(n& (k=0, 1, 2, , e—1)

for the b& 's.
The approximating function F&&"&(E) is now com-

pletely determined. It has the following useful proper-
ties. All the t.;&"' lie between the greatest and least
points of increase of Fp(E), or the smallest p;&"& is an

upper bound for the lowest eigenvalue of H and the
largest e;&") is a lower bound for the largest eigenvalue.
Between any two points of increase of Fp"(E) there is
at least one point of increase of F&(E), and at each
point of increase e;" the inequality

Fp(~& (p,.-)(Fp (p, (~&)(Fp(~) (p,.+)

The vectors P&"& are orthogonal,

This result may be proved by expressing the matrix
element in terms of the original vector p:

The properties of the energy-distribution function
Fp(E) are employed to write this expression as an
integral,

, II(E—p;~"&) II (E p;&"&)dFp(E) =0, —krak'
i~a, s ~

holds. Thus there is an eigenvalue of H between any (p„&"&,p„&"&)
successive p's. These remarks also apply if Fp(E) is
replaced by Fq&~& (E) for n(X

The lowest-order approximation is given by Fp&'& (E).
This function has a single point of increase given by

' J. V. Uspensky, Arl, Introduction to Mathematical I'robability
(McGraw-Hill Book Company, Inc., New York, 1937). The
theorem stated above is a trivial generalization of those proved
in this book. References are given to the original work here and in
reference 2.

(E—p;&"&)'dFq(E) )0, k =k'i'
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where the usual properties of orthogonal functions have
been used.

A similar argument is used to compute the expecta-
tion value of H in the state P),("):

is introduced. Here o-~&"& is always non-negative and
vanishes only for an eigenfunction.

III. EXAMPLE AND CONCLUSIONS

A simple example of this technique is the following
application to the problem of neutral scalar mesons
interacting with static nucleons. The notation is the
same as that by Wentzel. ' A cut-off K is employed,
since the moments are divergent. The first four moments
of P in the state Po(u)@0——0) are

~ (n) (y (n) y (m))

To test the adequacy of the state QI, (") as approxima-
tions to the eigenfunctions of H, the quantity 0- de-
fined by

)'
~),(")=

l (ga,rf'P~)
())t'),p) ) )

Ho —1)

IIg=0,

g «K p, (I~+(L)KI
!H2= ——ln!

(2~)' 2 2 E p )
g' ~E' ~a,=

(2 )' I 3 )
In the linear Rayleigh-Ritz approximation there is no

change from the noninteracting system. The quadratic
approximation is determined by solving the equation

g' I (&+~z)
!0 —,'«x —&' lnl

(2 )' & )

The solution of this equation is

g fE+a))r )~«x )I, lnl—
(2~)' 4 p ) . =0.

g' E3

(2m)' 3

g «x (X+~x)
l2 —

p,
' lnl

E ) j(2x)' 2

g' )&'~ g' (&'
t

'
)

g' «~ I'&+~xq y' I
+I

(2)r)'3 3 ) (2m)'& 3 J. ((2m)' 2 4 p ) )

For large E, where the logarithmic terms and the
diR'erence between E and ~~ can be neglected, this
becomes

E= ',E 1&!1+--
8 (2m)'i

The negative root diverges linearly to —~ just as the
correct value of the self-energy does. The constant
1—LI+(9/8)g'/(27r)'$'* is smaller than the correct
value.

The advantages of this method are that it is inde-
pendent of the magnitude of the interactions, and the
basic quantities are relatively simple to compute. The
chief shortcoming is the requirement that a suSciently
good initial state p be chosen so that all the moments
are finite. A detailed calculation of the phonon-polaron
problem is being carried out and will be published
shortly.

3 G. Wentzel, QNuntuns Theory oj Fields (Interscience Publishers,
Inc., New York, 1949}.


