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tion will exceed p-meson production. But by comparing
the s-phase shifts with p-phase shifts at low energy
it is dear that when the kinetic energy available to
each of the final mesons exceeds 50 Mev the mesons
will be predominantly in p states.

The experiment of Blevins, Block, and Harth" shows
that for 470-Mev or+ energy the sr++p cross section is
10/z inelastic. This wouM indicate an inelastic cross
section of 2 mb. H the total kinetic energy available in
the center-of-mass system is interpreted to be available
to the mesons, the calculated sr++ p ~ st+sr++sr+ cross
section is 1.4 mb and the sr++p —+ p+sr++m' cross
section is 0.68 mb. Although the sum of these cross
sections agrees with experiment quite well, the Born-
approximation result gives 1.48 mb and 0.60 mb,
respectively, for the above cross sections. Thus agree-

'~ Blevins, Block, and Harth, Bull. Am. Phys. Soc. Ser. II, j.,
174 (1956).

ment with experiment at this energy is not decisive for
the determination of the static one-meson approxima-
tion. Nevertheless, for 400—550 Mev incident pion
energy the final mesons are above the range of s-meson
production and below the energy where the approxima-
tion of high-energy (3,3) phase shifts with sr and the
neglect of the other p-phase shifts has an appreciable
eGect; thus agreement with experiments in this range
should be good. Since the one-meson approximation
diGers from the Born approximation by as much as a
factor of three in this energy range, further experiments
at these energies will be enlightening.
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A method is proposed for obtaining limitations on the shape and possible energy dependence of the force
in a given scattering state of the two-nucleon system, from a knowledge of the phase shift in that state
over the nonrelativistic domain, and is illustrated for S waves.

I. INTRODUCTION "e6ective force, " obtained by neglecting Quctuations
in members of this class over interparticle distances
much smaller than the wavelength of the incident
nucleon. For example, at suKciently low energies the
nature of this equivalence is well known as the shape-
independent approximation. ' What limitations are im-
posed on the "effective force" by data at higher ener-
giesP

In Sec. II a method is developed, within the context
of S-waves, for deducing this information from the
given phase shift on the assumption that the force is
static. In essence, the dependence of the phase shift on
the force is schematized by replacing the latter by its
value at a discrete set of radial points, whose position
ratios are so chosen that the representation of the
matrix elements of the force is an "optimal" one in the
sense of a Gauss-Jacobi quadrature approximation. It
is then possible to employ these points as probes of the
force by allowing their positions and associated ampli-
tudes to be fixed by the experimental phase shift in its
dependence upon energy. The latter is assumed, for the
sake of clarity, to be developable in a power series
which converges at least asymptotically in the domain
of interest. The order of quadrature theorem to be

HE purpose of this paper is to give a method for
translating the results of a partial-wave analysis

of nucleon-nucleon scattering data into equivalent
information on the nuclear force. Our concern is not
with the general mathematical problem of deducing a
potential from the complete two-body S-matrix. '
Rather, we seek to obtain only those properties of the
nuclear force which are determined by experiment.
Just as all potential models must imply the correct
eGective range' in order to fit the low-energy data, so
they must all contain the properties we seek in order
to fit the higher energy data. Thus, by setting an upper
limit to the energies under consideration, we limit the
detail with which the incident nucleon is able to observe
the force by which it is scattered. All potentials of a
class yielding the experimental phase shifts over this
energy region may then be considered equivalent to an

* A preliminary report of this work can be found in the Pro-
ceedings of the Sixth Rochester Conference on High Energy Nssctear-
Ehysics {Interscience Publishers, Inc. , New York, 1956).

'In this connection see, for example, R. Jost and W. Kohn,
Phys. Rev. 87, 977 (1952); SS, 382 (1952).

~ J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);
H. A. Bethe, Phys. Rev. 76, 38 (1949).
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used, and hence the number of points representing
the force, depends on the number of terms used in a
power-series expansion and thus carries with it a
corresponding energy range of validity. In this manner,
successively higher orders of quadrature become pro-
gressively more sensitive to the details of the nuclear
force, thus reQecting the physical situation in which
the nucleon also becomes more sensitive to the details
of the force by which it is scattered as its energy
increases. In any order of quadrature, force ratios thus
specified may be regarded as constituting an operational
definition of the "eRective force" alluded to earlier.

In Sec. III the quadrature method is applied in the
lowest three orders. In each order, a system of algebraic
equations is set up whose solution gives the dependence
of the force ratios upon the coeKcients of the power-
series expansion representing the phase shift. The
gross features of the force may be obtained analytically
as limiting cases. Thus the lowest order of quadrature,
valid in the energy interval 0—15 Mev, establishes a
mean interaction distance and hence corresponds to
conventional eRective-range analysis. The two succeed-
ing orders, valid in the energy iritervals 0—40 Mev,
0—120 Mev, respectively, establish narrow bounds on
the shape parameters I'i and Ep (respectively, the
coefficients of E' and E' in an effective-range expansion)
corresponding to an infinite short-range repulsion. It
is observed that the Feshbach-Lomon (FL) semi-
empirical analysis' of nucleon-nucleon scattering accu-
rately confirms these bounds. More detailed information
is obtained by resorting to a complete numerical solu-
tion. Thus, values of the core radius are obtained which
agree well with the results of calculations based on
core-type potentials. In the second order of quadrature
a single force ratio is derived as a function of Pl. As a
further illustration of the method, interaction wave
functions are constructed directly from Pl and com-
pared with wave functions calculated from a corre-
sponding potential model. Turning to the third order
of quadrature, a pair of force ratios are obtained as
functions of Pl and P2. It is shown that the eRective
force strongly correlates the scattering at different
energies. Thus, the bare requirement of a static force
is sufFicient to strongly restrict the range of values that
P2 can assume for a given value of Pl.

It is entirely possible that a consistent description of
nucleon-nucleon scattering cannot be achieved with the
aid of static forces, even at quite low energies. In Sec.
IV, the quadrature method is generalized to provide a
useful technique for the analysis of nonstatic forces.
The qualitative success of the quadrature method in
'S states, its operationally well-defined character, and
the simplicity of the numerical analysis involved, all
encourage a more extensive application. With the
advent of more accurate data, application of the
method both in higher orders of approximation and to

' H. Feshhach and E L. Lomoii, Ph. ys. Rev. 102, 891 (1956).

additional scattering states will become feasible and,
it is hoped, prove a fruitful source of information about
the two-nucleon force.

+lb, dx'G(x, x') f(x')u(x'), (2)

in which

G(x,x') =—(I/E) (Kx&)j p(Kx&) (Ex&)np(Kx&). (3)

Here jo and eo are spherical Bessel functions, 8 is the
'5 phase shift, and x& (x&) denotes the lesser (greater)
of x and x'. For each energy the integrands in Eq. (2),
which shall be denoted by I, are the product of an
oscillatory function and another function w(x) having
limited spatial extension corresponding to the hnite
range of the force. Let us schematize this behavior by
making the assumption

I-w(x)s-p i(x,E),

where s.p i(x,E) is a polynomial in x of degree 2u —1,
the coeKcients of which depend upon the energy. As
the energy increases, the rate at which the integrand
oscillates within the range of the force becomes more
rapid. The value of n used in Zq. (4) must therefore
depend upon the energy region in which the scattering
is considered.

The usefulness of the assumption Eq. (4) is due to
the following theorem. Let p„(x) be a set of polynomials
orthogonal in (0, pp) with weight function w(x). Then

00 00

mp i(x)w(x)dx= P X„„harp —i(x,),
Jo r=1

(5)

where x „ is the rth zero of p„(x), and X „are the
ChristoRel coefficients, which are related to the mo-
ments of w(x). These coefficients are given by

i
I

" w(x)P„(x)
dx (6)

The usefulness of the quadrature theorem Eq. (5) in
approximating any definite integral Jp"dxw(x)g(x) is

II. METHOD OF QUADRATURES

We begin with the Schrodinger equation for S-states,

$d'/dx'+E'+X f(x) ju(x) = 0, (1)

where f(x) is the radial dependence of the potential
in this state expressed in units of its range
X= (MVpR')/Ii', where Vp is the strength of the force
(positive for attractive potentials); and E'= (3EER')/Ii'—a notation we shall adhere to throughout this paper.
It is convenient to re-express Eq. (l) as an integral
equation:

u(x) =xjp(Ex)X(E cot8) t dx'x'j p(Ex') f(x')u(x')
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obvious, and requires only that the integral exist in the
Stieltjes sense in order for the sequence of quadrature
approximations {Q } to converge. Such an approxi-
mation scheme is "optimal" in the sense that, if
g(x) is represented accurately by a or& i(x), then
Jo"dnv(x)g(x) requires the specification of g(x) at only
the u zeros of p„(x) in order to be represented with
equal accuracy. 4

When the integrals of Eq. (2) are approximated in
this manner, one obtains

u(x) =xjo(Zx)'A(K cot5 ) g A„„x„jo(Zx,)u(x,)
r=l

where

+X P ~„„G(x,x„„)u(x.,); (7)
r=1

A„„=A„,f(x„,)u '(x„„),

and 6„ is the phase shift corresponding to the eth order
of quadrature. At this point, it may be observed that
Eq. (7) is the forrnal solution of Eq. (1) corresponding
to the potential

Xf (x) =X P A.,5 (x—x.,).

That is to say, the effect of the assumption Eq. (4) is
to replace the continuous function f(x) by an equivalent
set of 5-function shells, whose strengths are related to
the values of f(x) at the zeros of an appropriately
chosen set of orthogonal polynomials by Eq. (8).

The phase shift 5„ is determined from Eq. (7) by the
vanishing of the determinant of the simultaneous alge-
braic equations for u(x„,) formed by setting x succes-
sively equal to the zeros of p„(x). It will in general
depend upon the n quadrature strengths A„„and a
characteristic range R„„.The essence of the method
lies in considering these as unknown quantities to be
6xed by the experimental phase shift in its dependence
on energy. For this purpose it is useful, though not
necessary, to express the experimental phase shift as a
power series in the energy,

K cot5= nx '+-', (2x)E'+8Pix'E4+32Pox'Eo
+ (2x)o"-iP

which is assumed to be an accurate transcription of the
experimental data at energies E&E„. Here a=a 'r,
where u is the scattering length and r~1.23X10 " cm
is half the eGective range. The E s are the "shape-
dependent coefficients" of the scattering. ' The n.+1
unknowns entering into 5„are now to be 6xed by the
I+1 terms of Eq. (10).The significance of this is that
the I' s contain the characteristics of the force operative
for E&E„;that is, they represent the "effective force"

' A thorough discussion of the Gauss- Jacobi quadrature theorem
may be found in G. Szego, Orthogonal Polynomials (American
Mathematical Society Colloquium Publications, New York,
1939), Vol. 23, pp. 46—8, 340-54.

referred to in Sec. I—modi6ed, of course, by whatever
experimental uncertainty is present. If Eq. (4) is indeed
valid, then one may expect the shape information
contained in Eq. (10) to be equivalently expressed in
terms of the ratios of the quadrature strengths A„„
through the formula

f„(x„,„ i)

f„(x„,„)

7'; r ui(xnr —i,) (~mr —1,$

X, „ i m(x, ,) & A.„,„)
Once the orthogonal polynomials to be used in the

quadrature analysis have been speci6ed, the prescrip-
tion for obtaining the force ratios of Eq. (11) from the
phase-shift data is unambiguous and may be regarded
as their operational de6nition. It is true that this
characteristically intimate relationship to the data
makes the method peculiarly dificult to justify in a
mathematically adequate way. However, it may be
noted qualitatively that there are two mechanisms
operating to enforce a rapid convergence to the correct
set of force ratios for some initially specified potential
f(x). First, the "optimal" mathematical convergence
afforded by the quadrature theorem assures a good
representation of the integrals in Eq. (2) even if Eq.
(4) is only a rough approximation. Second, there is the
strong condition that the quadrature strengths A„„
must produce the phase shift corresponding to f(x). If
the quadrature theorem were exactly applicable at a
given energy, this condition would be automatically
satisfied. It may be hoped that, even when such is not
the case, the above condition will force a rapid conver-
gence to the correct force ratios.

Ayy= 1
&

R= ~r 2.0)&10 "cm. (14)

The location of the 5-function shell which reproduces
the observed S-phase shift for E&E~ is thus 6xed.

For the purposes of this paper, binding corrections are unim-
portant.

III. '8 EFFECTIVE FORCE

n=i
The lowest order of quadrature is equivalent to

replacing f(x) by

f, (x) =A„b(x—1) (12)

in the integrals of Eq. (2). Here the characteristic range
R has been set equal to R», the radial position of the
zero of Pi(x). The corresponding quadrature phase shift
is easily obtained by the method described in II:

& cot&i=alii jo (&)[1—&iijo(2&)]. (13)

The over-all. potential strength X occurring in Eq. (2)
has been absorbed into A~~. Comparison of the first
two terms of a power-series expansion of Eq. (13) with
the first two terms of Eq. (10) leads, in the limit of
zero binding (infinite scattering length), to the identi-
6catlons
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However, no shape information can be obtained even
if Eq. (4) should be satisfied exactly in this energy
range. Thus the lowest order of quadrature corresponds
precisely to the shape-independent approximation. The
energy region in which Eq. (13) is valid is that for which
the scattering length and effective range represent the
phase shift accurately, i.e., 0&8&X& 15 Mev.

Turning now to the second order of quadrature, use
of the potential

f2(x) 4218 (x $1)+A22b (x—1) (15)

in the integrals of Eq. (2) produces, in the same manner
as above, the second-order quadrature phase shift:

$1—h. six&jo(2E$1)]L1—A22jo(2E)]
A21A22$1 jo (Exl) cos E

E cot52= (16)
A21$1 jp (Exi)$1+A22jp(2E)]

+A22jo (E)L1 A21$1jp(2E$1)7

In Eqs. (15) and (16), )i has been absorbed into the
quadrature strengths A», 2=822 and $1=221/R22+1.
Consider the basic quadrature polynomials to have
been chosen, so that x~ is fixed. There are thus three
free parameters in Eq. (16)—E, 421, A22—which are to
be axed by the conditions that the phase shift shall
correspond to the observed scattering length, effective
range, and shape-dependent parameter P~. Assuming
zero binding, equating the first three terms of a power-
series expansion of Eq. (16) with the corresponding
terms of Eq. (10), one obtains the conditions

E A21$1 (1 A.22)/ (1—p),

E'. 3x= —@2+(3—xi)p+2$1,
6

E'. p (a„+Fib )&2"=0,
n=o

(17)

(19)

—0.0416&Pg&"&& —0.0375. (21)

in WhiCh &a=A22(1 —Xi) and a„, b„are funCtiOnS Of Xi
alone.

Numerical methods are needed to obtain a complete
solution of Eqs. (17)—(19). However, some general
features may be seen analytically. Assume that the
amplitude 422 of the outer shell is positive (attractive).
Then Eq. (17) shows that the inner shell is repulsive
for 1—xi&@&1—indeed becoming infinitely so at @=1.
From Eq. (19) one easily determines Ei&"&, the value
of P& corresponding to an infinitely repulsive inner shell:

Pi&"&=—Q a„/Q b„
= —(3/40) (xi+2) '(xi'+2$1'+8$1+4). (20)

By definition, the ratio of zeros x& must lie in the
interval (0,1); and from Eq. (20) Pi&"& is observed to
be monotonic in this region. Equation (20) thus
provides bounds on P~&"):

It is then suflicient that these bounds be obeyed experi-
mentally in order for the data to be consistent with a
force having a short-range repulsion. By using the first
three terms of the power-series expansion Eq. (10), it
is seen that Eq. (21) implies a maximum in the 'S
phase shift in the range 40—60 Mev. The method is
thus shown to be consistent since, if the force be static
and well-behaved, the core feature follows directly
from the existence of such a maximum.

In order to understand the eGect of the shape
parameter Pi on the force, one must choose a physically
appropriate set of polynomials orthogonal in (O, a&),
i.e., a set whose weight function rejects the spatially
concentrated nature of the force. Choose for example
the Laguerre polynomials L„& & (x), with weight function

w(x) =x e '& &, (22)

in which the scale factor c(a) =a+2+(a+2)l is such
that x22=1, corresponding to Eq. (15). As a becomes
very large, it is easily shown that x& approaches unity
as a limit. One may use Eq. (18) to define a "core"
radius as the radius of the inner shell corresponding to
infinite repulsion:

(23)

As the core region grows in size, the attractive region
grows narrower and deeper by virtue of the imposed
binding. In the limit n= ~ one obtains an infinitely
repulsive region bounded by a 8-function attractive
shell of infinite amplitude having radius r. In view of
the physical unreasonableness of such a narrowly
confined attractive region, further detailed examination
will be limited to the choices n=0, 1, and 2. This does
not affect the limits of Eq. (21) on Pi&"& seriously. In
fact it can be shown that Eq. (21) remains correct for
these values of n, provided one allows the inner shell
to have a finite amplitude. The bounds on the core
radius are

0.26X10 12 cm&r, (0.50X10 "cm, (24)

in which the lower limit corresponds to o.=0 and the
upper limit to o.=2. These bounds are consistent with
core radii obtained from potential models' for which
Pi lies in the range of Eq. (21).

It remains to investigate the dependence of the
second-order force ratio upon P~ for the three choices
of a. Solutions of Eq. (19) were obtained as a function
of P~ by use of the computing facilities at the University
of California's I ivermore laboratories. The @uter shell,
located at E» slightly greater than E», always has
amplitude A2~ 1; while the inner shell, located at
x~822 0.2—0.6X10 " cm, has an amplitude A~~ de-
pending sensitively on P&. The force ratio is given by

f(*21) il21p'1) a+2 —Q(a+2) "+'
e&(a+2& (25)

f(x22) 422(P1) a+2++(a+2).
' R. B. Raphael, Phys. Rev. 102, 905 (1956).
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Equation (25) is plotted in Fig. 1 as a function of P&
for 0.=0, 1, 2. All three curves exhibit the same general
behavior, which is also in qualitative agreement with
what is expected on the basis of potential-model calcu-
lations. As P» decreases from large positive values, the
force becomes progressively less attractive at small
distances until, at P»= —0.0375, it becomes repulsive
at the inner-shell radius R~». Note that this value of
P» is only weakly dependent upon x», as is reasonable
from Eq. (17). Below the asymptotic value P&&"&, the
force ratio decreases from values corresponding to
infinite attraction at E~». This behavior cannot be
readily interpreted in terms of a smoothly varying
"effective force" having binding appropriate to»S
states even though the shells themselves maintain this
binding. Accordingly, P»'"' will be taken as the lower
limit in P» for which the quadrature method in this
order gives meaningful results. In Fig. 2 the radius R~»
of the inner shell, in units of t, has been plotted as a
function of P» for the three choices of o.. Again the
curves for diGerent n exhibit a similar behavior. It is
of interest that in each case E~» attains its minimum
value near the "core" region, and that this minimum
value equals r, to a good approximation.

An energy range of validity must now be established
for results in the second order of quadrature. Most
simply, it is the energy region over which the first three
terms of a power-series expansion of E cotb~ represent
this function within a few percent. However, due to the
rapid variation of E cotb& with energy above 15 Mev,
it is not the most suitable function for representation

by a power series. It is much more appropriate to make

+25.0-
f/ Ra&)

f,(R„)

0.8—

0.8-

Rq)

F

0.2
-0.025

I

0,0

F»o. 2. The radial position 821 of the inner shell as a function
of P& for the three quadrature polynomials L&(")(x), ex=0, 1, 2.
R» may be viewed as a core radius for P& lying within the core
region speeiiied by E&l. (21).

use of the logarithmic derivative

I's IC cot(ES——+Is), (26)

in which x is so chosen that F~ satisfies the condition

=0, E=O.
.BE $=$

(27)

The parameter S thus determined is, for zero binding,
identical with that occurring in the eGective-range
expansion Eq. (10). Because I's has a much weaker
dependence on energy than Ecotb&, its power-series
representation is valid over a much broader energy
interval. This is particularly evident in the case of core
conhgurations, for which b~ passes through zero in the
vicinity of 150 Mev. In contrast, E cot(EX+is) re-
mains well behaved over the entire nonrelativistic
domain. In the case of zero binding, the approximation
to I'~ which corresponds to a knowledge of P» is

0.0 -0.025 I PI

I I

I

0.0 I's'= —(SP&+-,')x'E'.

In Fig. 3 the quantity

(28)

~ Force fat f0 .f(Rs~)/f(Res) as calculated
from potential models. es (p2 I 2 )r2 (29)

-25,0—

F»G. 1. The ratio of amplitudes of the effective force f~(x), as
specified at the two zeros of the Laguerre polynomial L&( ) I'x) by
Eq. (25), in its dependence upon the shape parameter P& for
a=0, 1, 2. The cross-hatched area, corresponding to Eq. (21),
shows the bounds on PI suKcient for a short-range repulsion in
the 'S force. Also shown are force ratios calculated from typical
potential functions. Observe the excellent agreement in the case
of the exponential potential which is the weight function for the
polynomials I „&~&(x).

is plotted as a function of energy for ca=0, 1, 2 and for
values of P» representative of various potential func-
tions. With few exceptions, F~ agrees with I'~ within
15%%u~ below 40 Mev. The interval 0&8&40 Mev is
therefore attributed to results obtained in the second
order of quadrature.

Let us now discuss what value of P» best fits the
scattering. For this purpose, it is most convenient to
refer to the Feshbach-Lomon (FL) analysis, s which
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0.00234&P ~ ~&0.004&6. (34)

In order to observe the eGect of variations in P~ and
P2 upon the force, numerical calculations were carried
out using the Laguerre polynomials L„&"(x), for which

0.5

-0.5--

FIG. 5. The interaction wave function N~&') {r) is illustrated at
50 Mev for various values of P1 representative of monotonic and
core-type forces. Note especially the suppression of the wave
function at small distances as P1 approaches the "core" region of
Eq. (21). All wave functions are normalized to unit incident-
particle density.

must be satisfied by the phase shift at higher energies
in order to retain a "static" interpretation of the 'S
force) In order to answer these questions and to obtain
an understanding of how the higher energy data
determines shape, a detailed examination of the third
order of quadrature has been made. In this order,
application of the quadrature theorem is equivalent to
solving Eq. (1) with the potential

fs(~) =&sr5(x—y)+hssb(x —s)+h»b(x —1). (33)

Here R=Rss, so that y=Rsr/Rss, s=Rss/Rss, ' and the
order y&s&1 has been adopted. Just as before, an
expression is derived for E cot8~, expanded as a power
series in the energy, and compared with the first four
terms of Eq. (10). The four parameters As; and R are
thus fixed by the scattering length e (chosen infinite),
the mean interaction distance r, and two shape param-
eters P~ and P2.

The bounds Eq. (21) on Pt corresponding to a hard
core remain unchanged in this order as does Eq. (23)
for the core radius. However, the following restriction
on the parameter P2 must hold simultaneously with
these in order for the higher energy data to be con-
sistent with a hard core:

+0.005"

-0.005"

-6.0l ~

Fzc. 6. The range of values which P2 can assume consistently
with a static force (unshaded region) is shown as a function of P1.
Along the dashed lines, the quantity e&=(I'3 —I"3'}F3 ' assumes
roughly constant values as indicated. The point P&= —1/24,
Pm=1/240, where the bounding curves intersect, corresponds to
a constant logarithmic derivative F, in accord with the FL
analysis. The rectangle marks oB the values of P& and P& corre-
sponding to a short-range repulsion, as speciimd by Eqs. (21)
and (34).

y~0.0661, s~0.3648. Consider A» and R fixed by
means of conditions analogous to those of Eqs. (17)
and (18). A given value of P& then specifies, by means
of a condition analogous to that of Eq.. (19), a restricted
range of values of A» and A.» Ljust as it had previously
given a Neiqge value of Asr, Eq. (19)$.This restriction
in turn implies a limitation on P2 by means of a con-
dition, similar to the preceding ones, on the E
term of a power-series expansion of E cotta. That is,
if one is able to find Pj by means of a good knowledge
of the scattering below 40 Mev, it then becomes
possible to place restrictions on the scattering at higher
energies by requiring that it be caused by the same
force. Conversely, conformity to this condition by the
phase shifts at the diferent energies is a sufhcient
condition that the force responsible for the scattering
be static. This limitation is plotted in Fig, 6 as a
function of Pi. In Fig. 7, the two force ratios specified
by this order of quadrature are plotted as functions of
P2 for several choices of P~—these choices being con-
sistent with the static limitation of Fig. 6. The overall
variation of the force with P~ at middle distances
( sr) remains substantially unchanged from that
observed in second order. However, large variations
can be induced by P2 without being inconsistent with a
static force. Thus for P~= —0.039, a small decrease in
the strength of repulsion at 0.4&(10 " cm requires,
by virtue of a binding condition analogous to Eq. (17),
a very great increase in the strength of repulsion at

10—"cm. Note that when P'~ takes on values corre-
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50.0-
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sistent with experiment. Thus the point in Fig. 6 where
the pair of curves delimiting the "static" region join,
corresponds exactly to the constant logarithmic deriva-
tive employed by the FL semiempirical analysis. How-
ever, it must be emphasized that the data is not
sufficiently accurate to exclude the possibility of a
nonstatic or nonlocal force, especially if such a force
does not lead to a strongly energy-dependent loga-
rithmic derivative. We turn brieRy to consider this
alternate interpretation in the light of the quadrature
method.

00"

-25 0"

-50.0

0.0

P, =-0,0

—O.OI

(a)

P, =-0.0

0.0

IV. NONSTATIC FORCES'

Let us now take the view that the 'S force is non-
static; and that it is the energy dependence rather than
the detailed shape which is of greatest importance in
reproducing the data. There exist very many ways of
describing a nonstatic force. All of these should possess
in common the property that, for sufficiently low
energies, nonstatic sects are negligible. This is in
strict analogy to the static situation, in which the many
ways of describing static forces must all be equivalent
at sufficiently low energies. We may then ask what the
energy dependence must be in order to fit the higher
energy data, in the same way that we have previously
asked for the shape dependence.

As a first orientation, consider a rectangular well the
depth of which is energy dependent:

(36)

00.0.038

(b)

P~ +0.0039

Fzo. 7. The two ratios of the effective force f3(x), as specifIed
in the third order of quadrature, shown in their dependence on
P2 for several values of PI. Curves labeled "Z" denote the ratio
fq(a)/fa(1); while curves labeled "I'" denote the ratio 0.1'(y)f
fa(1). The interaction range R (radial position oi the outermost
shell) is an increasing function of PI and varies from R—1.3r for
PI= —0.039 to R—2.0r for PI=0.012. The radial positions of
the inner and middle shells are given by R»=yR, R»=sR
respectively. The outer-shell amplitude A33—1 for PI= —0.039,
and decreases to A.33—0.5 for PI='+0.012. Neither R nor 433
depend strongly on P2 as long as the latter is consistent with the
restriction of Fig. 6.

sponding to monotonic forces, the eRect of I'2 is no
longer concentrated at small distances.

The energy range of validity of these results is
obtained by comparing the logarithmic derivative
I'g=Ecot(Ex+83) with the erst few terms�'of its
power-series expansion:

I'a'= —(SPt+~)x'E'+ (3282+88,+-,')x'E'. (35)

Within the core region, the discrepancy e3 ——(I'3—I'3') I'& '
is less than 10% at 120 Mev. However, as is shown in
Fig. 6 the agreement rapidly grows poorer on moving
into the monotonic region.

The restriction of Eq. (34) on I'e seems to be con-

The range R and the strength X(0) are fixed by the
scattering length and effective range. Let us determine
X (E) by requiring that the logarithmic derivative
I'ir Ecot(Ex+8——ir) constructed from Uii be constant
with energy, in accordance with the FL analysis. Not
unexpectedly, we observe that the force must become
progressively less attractive as the energy increases,
and indeed change sign at E 130 Mev. That nonstatic
eRects are negligible at low energies is shown in Fig. 8
by the least-squares fit' X'(E)=2.2916—14&&10—'E'
which accurately reproduces X(E).

These results may be obtained both more simply and
more generally by means of the quadrature method.
So long as the force is a local and smoothly varying
function of position and energy, Eqs. (13) and (16)
remain valid expressions for the first-order and second-
order quadrature phase shifts. The quadrature ampli-
tudes A „are now considered functions of energy. Thus
in Eq. (13) write' A.it=A. it&'i+&iP'E', and allow R,
Egg"', Ajg&" to be fixed by a, r, and I' j in the usual way.
Choosing I',= —0.0416 in accordance with Eq. (32),
one obtains immediately E.=—,'r, h~~&')=1, and A&~('&

7A portion of this material may be found in the author' s
doctoral thesis, Harvard, 1954 (unpublished).

Terms linear in the energy may be ignored, since they amount
to a redeGnition of the effective range, and may be compensated
for by a scale transformation.
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= —1.8&10 '. Higher orders of quadrature may be
used when the energy dependence is not uniform over
the interaction volume. As an example, suppose that
the force appears static if the colliding particles are
separated by distances of the order of a meson Compton
wavelength, so that in Eq. (16) A»= const; but assume
further that 42~=42~("E'. One then 6nds A.22=1, E.= ~r
as before, and Ast"&= —(1.8X10 ')xt '. Thus a force
which at low energies is purely attractive develops a
short-range repulsion as the energy increases, this
repulsion being the stronger at a given energy the more
narrowly it is confined. .

The data below 100 Mev is insufhcient to distinguish
between static and nonstatic forces. However, scattering
and polarization data at higher energies have not as
yet been reconciled with static forces. The quadrature
method should be of use in a further testing of the
consequences of an assumed energy dependence.
Generalizations to nonlocal forces are also easily made
and have been found useful in an area where the
standard approximate methods are often not adequate.

IOO

Energy E {Nlev)

-2--

FrG. 8. The variation with energy of the strength 'A of a rec-
tangular well necessary to insure constancy of the logarithmic
derivative Fg =E cot(Ex+5g) in accordance with the FI
analysis. Above 130 Mev, the force becomes strongly repulsive.
The least-square 6t X'{E)=2.2916—0.000 14E' is seen to be an
accurate approximation to ) (8) below 200 Mev.

V. CONCLUDING COMMENTS

In recent years, nucleon-nucleon scattering tech-
niques and methods of empirical analysis have improved
rapidly. It is reasonable to suppose that the lowest
partial waves contributing to nucleon-nucleon scatter-
ing will soon be known to good accuracy over much of
the nonrelativistic domain. In this paper we have
inquired how much detailed dynamical information can

be extracted from this knowledge. The limitation on
the energy region under consideration implies that one
cannot expect to identify a unique functional form for
the force. However, it remains meaningful to ask for
the properties of an "effective force, " in which Quctu-
ations occurring in distances small compared to the
Compton wavelength of the colliding nucleons have
been averaged out. In this fashion the concept of an
"effective range" is'generalized to that of an "effective
force, " to be known in progressively greater detail as
the data over wider energy regions is taken into account.
The assumed smooth variation of the eGective force
with position (and perhaps energy) makes possible, by
the application of a quadrature theorem, an optimally
accurate representation of the scattering by force
ratios, the number of which is dependent upon the
energy region in question and the accuracy desired.

There exists a number of physically appropriate
choices of orthogonal polynomials upon which the
quadrature theorem may be based. The results which
have been obtained are, for the most part, not strongly
dependent upon which of these is chosen. Thus, gross
features of the force, such as its range and the existence
of a short-range repulsion for suitable values of the
shape parameters I'~ and I'2, are quite insensitive to
this choice. For the three choices of polynomials
examined in order e=2, the core radius remains within
fairly narrow bounds, while the qualitative behavior
of the force ratio with I'~ is the same in all cases.

It does not seem possible to adduce any mathemati-
cally binding arguments for the validity of the quadra-
ture method. However, in addition to being physically
plausible by construction, it yieMs results which are
qualitatively in agreement with those obtained using
the more familiar potential models. This is the case
with the m=2 force ratio in its dependence upon I'»,
and is also well illustrated by the interaction wave
functions constructed from the phase shift. One is thus
encouraged to extend the region of application of the
method, and also to make use of the quadrature
amplitudes as an alternate description of the scattering.
As compared with potential models, such a description
is computationally simpler and more systematic.

In order to conveniently compare the results obtained
by quadrature analysis with experiment, use was made
of the Feshbach-Lomon (FL) semiempirical analysis.
This analysis must be substantiated by more direct
methods in order for the comparison to have weight. '
Careful measurements of p-p scattering in the 40-Mev
region in progress at the time of this writing, " should
provide this check. Another reason for emphasizing
accurate intermediate-energy experimentation" is the
strong correlation which was observed between I'~ and

For a critical discussion of the FL analysis, see A. M. Saper-
stein and L. Dnrand, Phys. Rev. 104, 1102 (1956)."L. H. Johnson (private communication),

~' In this connection, see also H. P. Noyes, Bull. Am. Phys. Soc.
Ser. II, 2, 72 (1957).
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the shape restrictions imposed by higher energy data
(&2).

At present it seems permissible to treat the 'S force
below 120 Mev as static. However, such treatment is
by no means mandatory in view of uncertainties in
both the data and the analyses thereof. It has been
seen that the quadrature method is easily modified to
take account of nonstatic forces. For example, it was
shown that the FL requirement of a constant loga-
rithmic derivative permits a force which, monotonic at
low energies, contains a short-range repulsion at higher
energies. Generally speaking, the quadrature method
can be useful in the analysis of complicated energy-
dependent, and especially nonlocal, interactions for
which simple analytic approximation methods are not
available.

It has been implied that a power-series representation
of the data is by no means necessary in order to apply
the quadrature method. For example, the convergence
problems associated with the use of power series can
be avoided by using the phase shifts themselves as
input data. The force ratios in a given order would
then express how the force must be restricted as a
result of specifying the phase shift at several energies.
While inappropriate to the systematic presentation
with which we have been mainly concerned, this

technique has the advantage of being more easily

adapted to experiment. "
The extent of application of the quadrature method

"Such modi6cations are being investigated by H. P. Noyes
and T. Northrup.

is limited only by the amount and accuracy of available
phase-shift information. Its generalization to higher
angular-momentum states and tensor forces is very
straightforward and easily amenable to machine compu-
tation. It is hoped that as more data becomes available
the method will prove useful in its twin capacities as a
tool for analyzing phase-shift data and as a simple
way of examining the consequences of assumed laws
of force.
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