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Meson Production in Meson-Nucleon Collision*f
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By using the Chew-Low theory, meson production cross sections in meson-nucleon colhsions have been
calculated. The various production amplitudes, in the one-meson approximation, yield integral equations
whose kernels involve scattering phase shifts. For these, experimental or theoretical phase shifts were used.
Calculations with pseudoscalar mesons show that, for coupling constants deduced from scattering, the Born '
approximation differs greatly from the results of the one-meson approximation. Agreement with experiments
at 470 Mev is good but not decisive.

1. INTRODUCTION

I~HEW and Low' have recently shown that low-~ energy p-wave pion-nucleon scattering is ade-
quately described by pseudoscalar mesons with pseudo-
vector coupling to an extended nucleus. In spite of
ignoring recoil and pair terms, they reproduced the
experimentally measured (3,3) phase shifts including
the resonance. Their calculation leads to a set of non-
linear coupled integral equations which in the one-meson
approximation can be solved approximately. They re-
tained some of the features of relativistic field theories

by satisfying the crossing theorem of Gell-Mann and
Goldberger' and the requirement of unitarity. The only

adjustable parameters in this calculation are the coup-

ling constant and the cuto6.
Ke calculate meson production cross sections in

meson-nucleon collisions in the pseudovector meson

theory using the one-meson static approximation. That
is, in virtual scattering processes states containing

more than one meson and one physical nucleon have

been ignored. Although the nucleon is represented by
the lowest eigenstate of the complete Hamiltonian and

is given enough degrees of freedom to represent its
charge and spin states, it is not given translational mo-

tion. These two approximations are clearly unjustified

for high-energy processes, but Tio attempt was made to
determine the limit of their validity. Configurationt

containing two mesons will probably be importans

near a resonance for double meson production. Our

solution is consistent with the restriction arising from

the unitarity of the S matrix in the one-meson approxi-

mation, whereas crossing is not exactly satisfied. I'o

facilitate numerical integrations all the phase shifts

except the (3,3) are taken to be zero. Experimentally

measured phase shifts are used when available.

*Based on a dissertation submitted in partial fulfillment of the
recIuirements for the Ph.D. degree at the University of Chicago.
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Energy Commission.
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where 7~, 72, r3 are the Pauli matrices.
The production matrix for a transition from an

initial state containing a nucleon iIre ——4'()(rn) and a
meson q to a final state containing a nucleon %0' ——%0(ttt')
and two mesons pi, ps is'

~, (pipsttt) = (+0'
I
aoiUos"'t+(sos Uni"' t

I +,'+').

This expression for the production matrix is equal to

on the energy shell. The latter is very complicated o8
the energy shell and is not used in obtaining the follow-
ing integral equations.

Let
0=—aoiUps(') t+apsUi i(') t.

As a consequence of the equations of motion,
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The Kronecker delta functions are simultaneously
diagonal in charge and momentum. It also follows that
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e N. Fukuda and J. S. Kovacs, Phys. Rev. 104, 17g4 (1956).

2. INTEGRAL EQUATIONS FOR THE
PRODUCTION AMPLITUDE

%e shall use the notation of Chew and I ow through-
out, with the exception of using mesons in definite
charge states; hence

—',(riWw-s), rt=a1
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Delta functions do not appear in this expression, and
a, and 0 commute.

Let us dehne a new quantity

&@o'101+," (m)&'-=(+o'IOI+, " (m)&

-~,»(~o'I V» '»I~o&-~.»&~o'I i » ' ti~o&. (2.4&

On the energy shell this is equal to

(eo'I Oi @,(+) (m)).

Using (2.4) in (2.2) and (2.3) and summing over inter-
mediate states, we get
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and
&e, (N) I

v„«)' leo(~) &&+„(+)(~) I v, (o"
leo& &e,(N) I v„«)'leo(~) &(e„(+)(~) I v, (o)' leo&—&+."'(~) IOI+o& =2

5'o(~) IoI+o(~)&&+o(~) ll' ""I+o& &+o(+) Il' ""I+o(~))&+o(~)IoI+o&
I

O)v 1

�%v
&e,(~) I v, (o» le, +)&&~,(+)101~,

&

o}p cd p+oo

(@ (I) I
0

I
@ (+)) &@ (+)

I
y (o) t

I
@ )

(2.6)
(oi+«

Equations (2.5) and (2.6) are the equations that will be solved to obtain the production matrix when the inter-
mediate states are limited to one nucleon and one-meson —one-nucleon states.

To exhibit the crossing symmetry of the production amplitude it is convenient to rewrite (2.2) on the energy
shell after eliminating 0
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~
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The crossing symmetry is equivalent to requiring the
production matrix to be invariant to the substitution

ol

y (0)~~@„,(0) )

Mo+'LcE co»&-—

@ (o)~+@»(o)f

o}o+loc= M+2.

Equation (2.7) is seen to be unchanged by this substi-
tution. This substitution exchanges elements in the
third term of (2.2) with those in the fourth term of the
same equation. Thus both these terms must be calcu-
lated to the same accuracy to satisfy the crossing theo-
rem. In the pseudovector theory, in order to obtain an
analytic solution, additional approximations beyond

those mentioned above are necessary. These approxima-
tions are made in terms which always have a positive
energy denominator and which thus are presumably
smaller than those in the fourth term of (2.2). We shall
return to this point.

In distinction to the behavior of our solutions under
crossing, unitarity as consistent with the one-meson
approximation is strictly satisfied in our solution. The
unitarity of the S matrix requires that

where E,=Ef.
In the one-meson approximation the solution will be

required to satisfy (2.8) when the states &el are limited
to one physical nucleon and one nucleon-one meson
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scattering states. It is readily shown that if

then
(2 9)

Upon comparing (2.9) with (2.2), it is seen that &i I Tl f)
differs from (2.2) by the replacement of e by —e. Thus

and unitary is automatically satished by the equations
of motion. The following is clear: in (2.2) the term with
always positive energy denominator has nothing to do
with unitarity, whereas the last term of (2.2) is re-
sponsible for unitarity and must be treated to a corre-
sponding degree of accuracy as the requirement of
unitarity demands. In the pseudovector theory the
one-meson approximation requires the retention of
one-nucleon —one-meson scattering states in the last
term of (2.2).

The solution of the coupled integral equations
(2.2) and (2.3) in the one-meson approximation is
further simplified by using an angular and isotopic
spin eigenstate decomposition of &%s(m')

I
0l%', 1+') and

&4, '+'(I) lol%'s&." ' The coefficients of the former
quantity in this decomposition will be labelled by
T(g, ~), ~~, ~~ corresponding to 6nal mesons of total orbital
angular momentum l and a total angular momentum of
the whole state J.The isotopic-spin subscripts T, t have
similar meanings.

Our procedure may now be compared to that of
Barshay, ' Franklin, ' and Rodberg. ' Barshay starts
with the relativistic pseudoscalar meson theory in the
Heisenberg representation and obtains the meson pro-
duction amplitude which he later reduces to the static
limit. After establishing Eq. (2.7) he sum over both
intermediate states, keeping terms containing one
nucleon in both, and one nucleon in one and a nucleon
and a meson in the other. On the other hand, Franklin
observes that the meson production matrix oG the
energy shell has a singularity of the type seen in (2.2).
After identifying only one of the 5&», 5&» singularities,
he obtains an integral equation of the type (2.5). In
this integral equation he omits sums over intermediate
states containing one-meson —one-nucleon states, i.e.,
the fifth and sixth terms in Eq. (2.5). The result is the
inhomogeneous part of his integral equation. But be-
cause only one of the 5-function singularities was iso-
lated the resultant expression is not symmetric with
respect to the final mesons, at the end he symmetrizes
this expression. Although the inhomogeneous part of

' B. Lipprnann and J. Schwinger, Phys. Rev. 79, 469 (1950).
~B. d'Espagnat, Kgl. Danske Videnskab. Selskab, Mat. -fys.

Medd. 28, 5'o. 11 (1945).' L. S. Rodberg, Phys. Rev. 106, 1090 (1957).' Saul Harshay, Phys. Rev. 103, 1102 (1956).
s Jerrold Franklin, Phys. Rev. 105, 1101 (1957).We thank Dr.

Franklin for communicating his results ahead of publication.

Eq. (2.5) contains some of the terms in Eq. (27) of
Franklin, it does not contain all terms whereas our
inhomogeneous terms involve a further sum over one-
meson intermediate states and presumably higher order
eGects. Franklin gives a further comparison of Barshay's
approximation to his. The result of Barshay's and
Franklin's approximations is that their result does not
obey unitarity in the one-meson approximation. Since
unitarity implies bounds for partial cross sections of
given angular momentum, our resultant production
cross sections are smaller than theirs. In distinction to
the pseudovector theory, in the charged scalar theory
we' have calculated the meson production amplitude in
the one-meson approximation without any further
assumptions; that is, a solution obeying unitarity and
crossing symmetry has been obtained. This may afford
an interesting comparison as to the inhuence of violat-
ing the crossing symmetry in an approximate solution.
Rodberg6 uses equations of the type used by Franklin
which also treats the two hnal mesons differently but
retains one-meson states in terms with singular de-
nominators. Thus he obtains a single linear integral
equation.
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FIG. 1. Calculated total meson production cross section for the
reaction m++p ~n+~++m+ vs meson kinetic energy in the
laboratory system. For comparison the Born-approximation re-
sult is included.

s See author's thesis, University of Chicago, 1957 (unpublished).

3. RESULTS AND CONCLUSIONS

Meson production cross sections have been calculated
in the one-meson approximation in the pseudovector
theory. The solution obeys unitarity as demanded by
the one-meson approximation. When the production
matrix is expanded in terms of angular momentum and
isotopic spin eigenstates, the resultant amplitudes yield
integral equations which are coupled to only one other
equation if (3,3) phase shifts alone are used. Of these
amplitudes T~~ ~), ~2, 2~ can be solved exactly. This
amplitude is independent of the (1,1), (3,1), and (1,3)
phase shifts. At low energy, when the (3,3) phase
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FIG. 2. Calculated total meson production cross section for the
reaction m++p~p+x++m es meson kinetic energy in the
laboratory system. For comparison the Born-approximation
result is included.

up to 400 Mev. For higher energies these phase shifts
are extrapolated. This cannot be done with a great
deal of arbitrariness. Nevertheless the low-energy pro-
duction cross sections will probably be independent of
the high-energy phase shifts. At 500 Mev and above, the
phase shift is taken to be constant and equal to m. This
is undoubtedly wrong but in absence of experimental
information the most convenient choice was made. The
other p-phase shifts have been ignored. This is per-
missible for less than 400-Mev meson kinetic energy.
As a consequence of these two approximations the
production cross sections calculated on this basis will
be too low for high energy.

The crossed-diagram contributions which were treated
to a lower approximation could have been handled
equally well in the presence of all the p-phase shifts.
Therefore the use of (3,3) phase shifts alone was not

shifts only are used, this turns out to be larger than
any other eigenamplitudes. Since the calculation of
T(;, ;~, ~2, 2~ makes no approximations in the crossed
terms, the crossing theorem is strictly obeyed for this
amplitude. On the other hand, the calculation of
T~L~~, ~2, ~~, etc., require the approximation of terms
which come from crossed diagrams with lower order
expressions; thus crossing symmetry is not exactly
satisfied for these amplitudes. But since these ampli-
tudes are smaller than T|~,~~, ~2, 2~ at low energy, our
solution obeys the crossing theorem to a high accuracy
in this region. The calculation was done with f'=0.08
and a 6.3 pc~ meson energy cuto8; the production
cross sections are shown in Figs. 1, 2, 3, and 4. The
(3,3) phase shifts are taken from Bethe" and Margulies"
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FIG. 4. Calculated total meson production cross section for the
reaction m. +p —+ p+x +m- es meson kinetic energy in the
laboratory system. For comparison the Born-approximation
result is included.
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Fxo. 3. Calculated total meson production cross section for the
reaction m +p —+e+m +~+ es meson kinetic energy in the
laboratory system. For comparison the Born-approximation
result is included.

critical in obtaining solutions for the production
amplitudes.

At threshold for the process sr++p~ ss+sr++sr+,
only T&I, g, &s, s& contributes if (3,3) phase shifts alone
are used. For this process the cross section at threshold
is 13 times the Born approximation result. Again at
threshold the cross section for sr++p —+ p+sr++sr' is

13 times the Born approximation result. The cross sec-
tions for sr +p —+ ss+sr +sr+ and sr +p-+ p+sr +srs
are increased by factors of 6 and 7, respectively,
over their values at threshold in the Born approxima-
tion. These conclusions, as discussed in the previous
paragraph, could not be very far from the strict use of
the one-meson calculation. This increase of a11 cross
sections is a consequence of the resonance in scattering
at an energy of 2.1 pc' in the center-of-mass system.
Since sr++p is in a pure isotopic spin triplet, whereas
sr +p is not, for reactions starting from the former
initial state greater enhancement is obtained.

It is clear that at very low energies s-meson produc-
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tion will exceed p-meson production. But by comparing
the s-phase shifts with p-phase shifts at low energy
it is dear that when the kinetic energy available to
each of the final mesons exceeds 50 Mev the mesons
will be predominantly in p states.

The experiment of Blevins, Block, and Harth" shows
that for 470-Mev or+ energy the sr++p cross section is
10/z inelastic. This wouM indicate an inelastic cross
section of 2 mb. H the total kinetic energy available in
the center-of-mass system is interpreted to be available
to the mesons, the calculated sr++ p ~ st+sr++sr+ cross
section is 1.4 mb and the sr++p —+ p+sr++m' cross
section is 0.68 mb. Although the sum of these cross
sections agrees with experiment quite well, the Born-
approximation result gives 1.48 mb and 0.60 mb,
respectively, for the above cross sections. Thus agree-

'~ Blevins, Block, and Harth, Bull. Am. Phys. Soc. Ser. II, j.,
174 (1956).

ment with experiment at this energy is not decisive for
the determination of the static one-meson approxima-
tion. Nevertheless, for 400—550 Mev incident pion
energy the final mesons are above the range of s-meson
production and below the energy where the approxima-
tion of high-energy (3,3) phase shifts with sr and the
neglect of the other p-phase shifts has an appreciable
eGect; thus agreement with experiments in this range
should be good. Since the one-meson approximation
diGers from the Born approximation by as much as a
factor of three in this energy range, further experiments
at these energies will be enlightening.
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A method is proposed for obtaining limitations on the shape and possible energy dependence of the force
in a given scattering state of the two-nucleon system, from a knowledge of the phase shift in that state
over the nonrelativistic domain, and is illustrated for S waves.

I. INTRODUCTION "e6ective force, " obtained by neglecting Quctuations
in members of this class over interparticle distances
much smaller than the wavelength of the incident
nucleon. For example, at suKciently low energies the
nature of this equivalence is well known as the shape-
independent approximation. ' What limitations are im-
posed on the "effective force" by data at higher ener-
giesP

In Sec. II a method is developed, within the context
of S-waves, for deducing this information from the
given phase shift on the assumption that the force is
static. In essence, the dependence of the phase shift on
the force is schematized by replacing the latter by its
value at a discrete set of radial points, whose position
ratios are so chosen that the representation of the
matrix elements of the force is an "optimal" one in the
sense of a Gauss-Jacobi quadrature approximation. It
is then possible to employ these points as probes of the
force by allowing their positions and associated ampli-
tudes to be fixed by the experimental phase shift in its
dependence upon energy. The latter is assumed, for the
sake of clarity, to be developable in a power series
which converges at least asymptotically in the domain
of interest. The order of quadrature theorem to be

HE purpose of this paper is to give a method for
translating the results of a partial-wave analysis

of nucleon-nucleon scattering data into equivalent
information on the nuclear force. Our concern is not
with the general mathematical problem of deducing a
potential from the complete two-body S-matrix. '
Rather, we seek to obtain only those properties of the
nuclear force which are determined by experiment.
Just as all potential models must imply the correct
eGective range' in order to fit the low-energy data, so
they must all contain the properties we seek in order
to fit the higher energy data. Thus, by setting an upper
limit to the energies under consideration, we limit the
detail with which the incident nucleon is able to observe
the force by which it is scattered. All potentials of a
class yielding the experimental phase shifts over this
energy region may then be considered equivalent to an

* A preliminary report of this work can be found in the Pro-
ceedings of the Sixth Rochester Conference on High Energy Nssctear-
Ehysics {Interscience Publishers, Inc. , New York, 1956).

'In this connection see, for example, R. Jost and W. Kohn,
Phys. Rev. 87, 977 (1952); SS, 382 (1952).

~ J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);
H. A. Bethe, Phys. Rev. 76, 38 (1949).


