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Contribution of Core Polarization to the Cohesive Energies of the Alkali Metals
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An approximate potential is constructed to represent the e6ect of polarization of the atomic core on the
energy of the valence electron in an atom with one valence electron. The potential is proportional to 1/R'
at large distances from the nucleus, but vanishes at the origin. The potential is treated in first-order pertur-
bation theory to determine its contribution to the cohesive energies of the alkali metals. Numerical calcu-
lations have been made for lithium, sodium, and potassium. In the latter element, it represents about —,

of the observed cohesive energy.

I. INTRODUCTION
'

q OR the alkali metals, it is a good approximation to
consider the valence electron to be moving at a

relatively large distance from a reasonably compact
ionic core. In first approximation, the core can be
assumed to be spherically symmetric so that the
electric field external to it is the Coulomb field of the
positive ion, characterized by the potential energy—e'/r. This is not strictly accurate since the external
electron distorts the core, inducing in it a dipole
moment proportional to the polarizability of the ion.
The Geld of the distorted core then reacts back on the
valence electron, adding to its potential energy a term
proportional to e'/2r4. The effect is an additional
binding. Higher moments are also induced. Because
the valence electron in the solid is, on the average,
closer to the nucleus than in the free atom, there will be
a contribution to the cohesive energy of the solid from
the polarization eGect.

The simple form of the eGective polarization potential
given above is valid only when the valence electron
stays at a large distance from the core. Actually, the
orbit of the valence electron penetrates the core. For
an S state, the wave function of the valence electron is
finite at the nucleus. The expectation value of the
polarization potential, j'IfI V„dr, is infinite for such
a state because of the 1/r4 dependence of the potential.
The object of this work is to give a more adequate
treatment of the polarization effect by finding an
effective polarization potential whose expectation value
is Gnite for any state of the valence electron.

II. THE APPROXIMATE POTENTIAL

The development of a polarization potential in this
section is based upon some work by Bethe' for a two-
electron system. Suppose that a self-consistent Geld
has been found for the positive ion of an alkali metal
atom. We consider in perturbation theory the interac-
tion of this atom and the valence electron. Under the
inhuence of this perturbation, the Hartree-Fock one
electron functions for the core electrons come to depend
parametrically on the coordinates of the valence elec-

~H. A. Bethe, in IIandbech der I'hysik (Edwards Brothers,
Ann Arbor, 1943), Vol. 24, Part 1, pp. 339 ff.

tron. The Hartree-Fock energy of the core also depends
on the position of the valence electron. The equations
for the core electrons are as follows (atomic units are
used throughout the remainder of this paper):

2—Vt'+ U(rr, r,)—A (r&,r.)+—u, (rt, r,)

where

and

= e, (r„)u;(rt,r„), (1)

2
V(rt, r,)= —2Z/rt+ g Iu, (rs,r„) I'—drs,

i ~ rl2

A (rr, r„)f(rt, r„)

u (rs, r„)f(rs, r„)—drs Iu;(r&, r,). (3)

2
E,(r„)=P u, &'&'(rt)—u;&'&(r, ,r„)drt.

rim
(6)

~ L. C. Allen, Bull. Am. Phys. Soc. Ser. II, I, 26 (1956}.See
also the Quarterly Progress Report of the Solid State and Molec-
ular Theory Group, Massachuset ts Institute of Technology,
October 15, 1955 (unpublished).' R. M. Sternheimer, Phys. Rev. 96, 951 (1954l.

The quantities rl and r2 are coordinate for core elec-
trons; r, is the coordinate of the valence electron. The
approximation involved in Eq. (1) are discussed in the
Appendix. The energy of the core is computed from
these equations in the usual way. Exact solution of
these equations will not be attempted. The quantity
2/rt„will be treated as a perturbation according to the
procedures of Allen' and Sternheimer. ' Perturbation
theory for the Hartree-Fock equations is quite compli-
cated because of terms arising from altered Coulomb
and exchange integrals. Allen has shown, ' however,
that the total energy E of the determinantal wave
function can be written in perturbation theory as

Eo——Ep+Er (r,)+Es(r„), (4)

where Eo is the energy of the unperturbed determinantal
function and Ej and E~ are given by:
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The unperturbed functions I;(') satisfy

L
—VP+ V(ri) —A (ri) $u;&'& (ri) = e;&0&u;&'& (ri), (7)

where V(ri) and A(ri) are constructed analogously to
(2) and (3). The first-order perturbed functions
u "& (ri,r„) satisfy'

I
—VP+ V(ri) —A (ri) —e,&0& ju;&i& (ri, r„)

= (e &'& —2/ri„)u &0&(ri)

2
u, &'&'(r2) u, &"(r2,r„)—dr2

y12

+ u &'&"(r2, r„)u;&'&(r2)—dr2 u, &" (ri)

2
+Q ' uj (r2 lv)uv' (r2) dr2u—&'"(ri)

r12

2
+ u "&'(r2)u;"&(r2)—dr2u;"&(ri, r„), (8)

where

spherical harmonics in the standard way and obtain:

1 1 r. r.2—=—+—cos8+ (3 cos'8 —1)+ for rl) r„,
r1, r1 r1' 2r1'

(12)
I r1 r1'

=—+ cos8+ (3 cos'8 —1)+ for r„)ri.
r lv rv rv 2yv

In (12), 8 is the angle between ri and r..
The term in (12) proportional to cos8 yields the

ordinary dipole polarization; the term proportional to
(3 cos'8 —1) gives a quadrupole term, and so on. We
terminate the series after the second term. The order
of magnitude of the quadrupole effect will be considered
in Sec. V for a simple case.

If we substitute (12) in (5), we see that the expec-
tation values of all the terms except the spherically
symmetric one vanish. We obtain

vv

Iuo(ri) I'«i
y, JO

~00 2
l»(ri) I'—dri (13)

2
e, '&&(r„)=

I
u;I& (ri) I

'—dr i

I
t 2

+P u &'&"(ri,r,)u;&'&*(r2)—u;'&(ri)u "&(r2)dridrl

2
+ u &'&*(ri)u "&'(r2)—u &'& (ri,r„)u,&'& (r2) dridr2

r12

2
u, "&'(ri,r.)u;&'&*(rl)—u;&'& (r2)u;&'& (ri)dr„dr&

r12

u;&'&'(ri)u;&'&'(rl) —u, &'& (r2,r„)u;&'& (ri)dridr2 . (9)
r12

In finding the second-order perturbation according to
(6) and (10), we may neglect the contribution from the
spherically symmetric part and from e ."), since it is
known from self-consistent field studies of neutral atoms
of the alkali metals4 that the spherically symmetric part
of the potential of the valence electron produces little
change in the wave functions of the core electrons.

To obtain the change in the wave functions of the
core electrons, we now have to solve the pair of diGer-
ential equations:

L
—VP+ V(ri) —A (ri) —e;&'&ju, &'& (ri,r„)

2y1
cos8u,'0&(ri) for r„)ri,

These equations are too complicated to solve. We drop ~ '+
all the perturbed Coulomb and exchange integrals from 2r.
Eqs. (8) and (9) so that they reduce to the ordinary
forms of perturbation theory: rl

cos8u;&'& (ri) for ri) r„.

I
—VP+ V(ri) —A (ri) —e;"&]u,&'& (ri,rv)

=( ''"'(.)—2/ .) '"'( ), (1o)
where

2
e, '&'& (r„)= I u; '& (ri) I

'—dri.
rlv

The error involved in eliminating the offending terms
is discussed in Sec. VI where it is shown to be reasonably
small. Equation (10) is still too diQicult to solve, since
it contains all multipole orders. We expand 1/ri„ in

The solutions must then be joined on the boundary
r1= r, . This is a very difIicult task unless fast electronic
computing equipment is available. The assumption
now is made that the fraction of time the core electron
is outside the valence electron can be neglected: in
other words, we consider only the region r,&r1 and
neglect the region r1&r,. This assumption is plausible
on physical grounds. It will be examined further in Sec.
III, where a comparison is made with the work of

4 See, for instance, the treatment of neutral K and of K
D. R. Hartree and tA'. Hartree, Proc. Cambridge Phil. Soc. 34,
550 (1938}.
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Bethe' in which both regions are considered for a
simple case. The equation which actually is used is:

L
—Vt'+ V(ri) —A (ri) —e; '&)I "&(ri,r,)

2r'
cos&N, &'& (ri). (15)

2

Reasonable approximations to solutions of this equation
have been found for a number of cases by Sternheimer, '
They are used in this work.

The perturbed wave functions are then used to
calculate the Hartree-Fock energy of the perturbed
core according to (4), (6), and (13). This energy is a
function of r, . It can be used as a potential energy
function for the valence electron. The valence electron
wave function lt (r„) satisfies the equation:

P
—V,'—2Z/r, +Ee(r.)$&&t (r,)= qk(r„), (16)

where Eo(r„) is the energy of the core and e is the total
energy of the system: core plus valence electron. A
derivation of this equation is given in the Appendix.
It is seen from (13) that the first-order perturbation of
the core gives the screening of the nuclear charge by
the core electrons. Core valence exchange has been
neglected in obtaining (16). The term Es(r.) is the
polarization potential that is desired. It will be
called V„(r,) from now on, and according to (6) in
the approximation of neglecting the region r~)r„ is
given by

(2q
V„(r„)=I, IZ ~,&»*(ri)ri cos|&u;"&(ri r„)dri. (17)(rs r

The potential must represent an additional binding
since the inclusion of the valence electron coordinates
in the core wave functions is an improvement of the
total wave function of the system. In applying (16) to
the cases of interest, we use perturbation theory and
treat V~ as a perturbation on self-consistent-field wave
functions for the atoms and solids studied.

III. COMPARISON WITH BETHE'S SOLUTION

In order to test the validity of the approximation
which neglects the region r&) r„ the polarization poten-
tial obtained according to (17)was compared, in a simple
case, with the result of Bethe's treatment' in which the
region rJ &r, is not discarded. We consider the case of
polarization of the j.s electron shell in a situation where
the unperturbed wave function of these electrons is
proportional to e ~". This is true only when the
potential of the core electrons is —2Z/r, but fair
accuracy can be obtained for helium and lithium
(in the latter case, variational wave functions can be
used' ). When the core function is so simple, the per-

~I am indebted to Dr. Sternheimer for furnishing me with
tables of his perturbed wave functions.' Morse, Young, and Haurwitz, Phys Rev. 48, 948. (1935).

where x=Zr, . For comparison, the result obtained by
Bethe' is:

—9- 1 20 4
V„(x)= 1——e "I 1+2x+6x'+—x'+—x'

I

x4 3 3 3

2——e 4 (1+x)4 . (19)
3

These potentials are shown in Fig. 1 for Z=2.69, the
variational parameter for lithium. The result of the
simple approximation of the introduction would be
just V~(x)=9/x4. Near the nucleus, the potentials
(18) and (19) can be expanded in power series. The
potential of Eq. (18) begins like —(16/15)x, whereas
Bethe's potential begins like —(8/3) x'.

To compare the two approximations further, the
expectation values of (18) and (19) were found using
an approximate wave function for the 2s state of the
lithium atom. The approximation proposed here, Eq.
(18) gave an average polarization energy of 0.00621
rydberg, while the more accurate expression, (19) gave
0.00651 rydberg. The difference amounts to 4.6 jo of
the latter value. We may conclude from this comparison
that the proposed approximation is satisfactory.

IV. APPLICATIONS TO THE ALKALI METALS

Sternheimer has obtained solutions to Eq. (15) for
some states of electrons in lithium, sodium, and po-
tassium. These functions were used to. compute the
approximate polarization potential according to (17).
Self-consistent-field functions were used for the unper-
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FIG. 1. Comparison of approximate polarization potentials, for
lithium. Vg is the approximate potential computed according to
(17); V& is that computed by Bethe (Eq. 19); and Vz is the
asymptotic potential 9/z', where z=Zr (s=2.69).

turbed wave function can easily be found analytically. '
The approximate polarization potential computed ac-
cording to (17) is, when one considers two 1s electrons:

9 (
V,(x)= — 1—e "I 1+2x+2x'

4 2 4
(18)

3 27)'
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t'urbed core functions. The polarization potentials so
obtained are given in Table I.

To determine the effect of V~(r) on the cohesive
energies of the alkali metals, we have recourse again to
perturbation theory. First-order perturbation theory
was used, and expectation values of V„were found for
the valence electron in the free atom as well as in the
solid. The average value in the solid will tend to be
larger in magnitude than in the free atom since the
valence electron in the solid is confined to the atomic
polyhedron. Self-consistent-field wave functions were
used for the ground state of the valence electron in the

Lithium Sodium Potassium

Average value {free atom)
Average value (lowest valence

state in solid)
Change in effective-mass ratio

(m/ra*)
Change in the cohesive energy

(kcal/mole)

—0.0075 —0.0130 —0.0353

—0.01'70 —0.0194 —0.0595

+0.0094 —0.0055 —0.0372

2.34 2.24 8.66

TABLE II. Effect of the polarization potential. Average values
of the polarization potential are given in rydbergs for lithium,
sodium, and potassium. The change in the effective mass and the
cohesive energy is also given. The effect always is to increase the
cohesive energy.

TABLE I. Polarization potentials for lithium, sodium, and
potassium. The potentials all are negative (binding) for large r,
and are given in atomic units. (1 atomic unit—=2 rydbergs. ) The
repulsive part of the potassium potential is presumably due to
neglect of the region r1)r, . It does not make a large contribution
to the average polarization energy because the valence electron
wave function is small in the interior of the core. The radius r is
given in units of the Bohr radius aH.

Radius (7)

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0.15
0.20
0.25
0.30
0.35
0.40

0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

1.40
1.60
1.80
2.00

2.5
3.0
3.5
4.0
4.5
5.0
6.5
6.0
6.5
7.0

-~p(Li)

0.0000

0.0567

0.1144

0.1538

0.1856

0.2151

0.2693
0.2999
0.3132
0.3134
0.3068
0.2942

0.2593
0.2207
0.1835
0.1505
0.1222
0.0987
0.0798
0.0690

0.0417
0.0274
0.0184
0.0126

0.0054
0.0026
0.0014
0.0008
0.0005
0.0003
0.0002
0.0002
0.0001
0.0001

—Vp (Na)

0.0000
0.10
0.28
0.56
0.99
1.18
1.331
1.349
1.344
1.321
1.286

0.9037
0.5631
0.3831
0.2360
0.1161
0.0700

0.0517
0.0871
0.1307
0.1610
0.1755
0.1771
0.1698
0.1573

0.1257
0.0958
0.0709
0.0520

0.0243
0.0122
0.0066
0.0039
0.0024
0.0016
0.0011
0.0008
0.0006
0.0004

—Pp (K)

0.0000
0.69
1.14
1.39
1.49
1.38
1.17
0.861
0.636
0.414

+0.220

—0.4707—0.7283—0.6893—0.5463—0.3908—0.2471

—0.0162
+0.1534

0.2'789
0.3770
0.4464
0.4913
0.5133
0.5175

0.4875
0.4292
0.3621
0.2968

0.1686
0.0947
0.0547
0.0330
0.0208
0.0137
0.0094
0.0066
0.0048
0.0036

For sodium and lithium, the wave functions of P. O. Lowdin,
Phys. Rev. 90, 120 (1953), were used; for potassium, the wave
functions were taken from D. R. Hartree and W. Hartree, Proc.
Roy. Soc. (London) A166, 450 {1936).

free atom. ' For the solid, the expectation values must
be found to order k', and to do this, wave functions
correct to order k' must be used. The functions for
lithium were obtained from Kohn, ' the ones for sodium
were computed by us from the empirical Prokofjew
potential given by signer and Seitz," and those for
potassium were obtained from our previous work on
this element. "The results are given in Table II. It is
interesting to see that the large contribution of 8.7
kcal/mole in potassium amounts to 37% of the observed
cohesive energy. This large value is required to offset
the effect of the k' terms on the Fermi energy, "so that
the cohesive energy is approximately given by the
standard procedure. Similar large values of the polar-
ization effect may be expected for rubidium and
cesium. The compensation with the k4 terms may also
occur for these.

An estimate of the error introduced by using first-
order perturbation theory to determine the eGect of V„
on the valence electron energy was made by integrating
the appropriate equation to 'determine the first-order
perturbation of the wave function, and thus the second-
order perturbation of the energy for the lowest state,
I », of the valence electron in potassium. The energy
of that state decreased in second order by 5.6%. We .

may conclude that first-order perturbation theory is

satisfactory.
In the case when the cohesive energy of the solid is

calculated on the basis of a self-consistent field, as for
potassium, " it is clear that the eGect of polarization
must be added to the result previously reported, For
lithium and sodium, calculations have been based on
empirical potentials which reproduce the spectroscopic
term values. In these cases, the effect of polarization
is presumably contained in the empirical potentials. In
the quantum defect method, a correction for polar-

Lithium: V. Fock and M. J.Petrashen, Physik Z. Sowjetunion,
8, 547 (1935). Sodium: D. R. Hartree and W. Hartree, Proc.
Roy. Soc. (London) A193, 299 (1948). For potassium, see refer-
ence 4.' W. Kohn (private communication)."E.Wigner and F. Seitz, Phys. Rev. 43, 804 (1933)."Herman, Callaway, and Woods, Phys. Rev. 101, 1467 (1956).

'2 J. Callaway, Phys. Rev. 103, 1219 (1956).
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ization must also be applied, " but its magnitude has
not been calculated. It need not be the same as that
obtained here.

Here

e.i'&(r„)——(3 cos'f& —1) I,&'&(rt). (20)
~v

f1
eP& =

~
u, &" (rr)

~

'—(3 cos'0 —1)drr.
4 fv

(21)

The quantity e;&') vanishes for an S state, but not for
I' and D states, etc. At first sight, this would seem to
lead to a term in the potential energy proportional to
1/r„', which would be of greater magnitude than the
dipole term. It is easy to show, however, that if e;") is
summed over all the levels characterized by different
values of the magnetic quantum number ns belonging
toa closed shell of definite l, the sum vanishes. We can
proceed to calculate the quadrupole polarization po-
tential in a manner similar to (17).

p Fv

V, (r„)=—P;
~

~ I;&ol*(rr)rr'(3 cos'8 —1)
&v ~03

Xu~i'&(rr, r„)dr&. (22)

At large r„ the potential is proportional to 1/r„'. For
the situation of Sec. III, V, has the form

V. QUADRUPOLE POLARIZATION

The same approximation introduced in the study of
dipole polarization can be applied to the quadrupole
polarization, which results from the terms in (12)
proportional to (3 cos'fl —1). Again, we consider only
the region r,&rj. We add a term to the wave function
of the core to represent the quadrupole distortion.
This term, I;l2& (rt,r„), satisfies, by analogy

~1 +'V(rl) + (rt) e' jl' (rl r )

tions mentioned in Sec. III. The expectation value of
this potential has been found for both the free lithium
atom and the metal. It lowers the energy of the valence
electron in the free atom by about 0.001 rydberg and
increases the cohesive energy by about 0.4 heal/mole.
This is about 20% of the contribution from the dipole
polarization. It would appear from this that the sum
of the effects of the several terms of the series (12) does
not converge with great rapidity.

There are, however, other eGects proportional to r '
for large r. Such terms would come, for instance, from
a third-order calculation of dipole polarization and
from the kinetic energy correction to be discussed in
the Appendix. The existence of these eGects, whose
magnitudes are not well known at present, limits the
accuracy possible in a calculation of cohesive energies
from self-consistent fields.

All of the eBects discussed in this paper pertain to
the so-called correlation between valence and core
electrons. It appears that much of this correlation
energy can be developed in a series of terms forming an
e6'ective potential; the terms in this series are propor-
tional to r„'"at large r„where e is an integer greater
than 2. The major part of the r, 4 term is the dipole
polarization, which can be approximately evaluated;
the other terms remain obscure. It is probably impos-
sible, however, to expand the entire correlation energy
in this way, since the derivation of Kq. (1) as given in
the Appendix involves certain approximations.

VI. EFFECT OF NEGLECT OF PERTURBED COU-
LOMB AND EXCHANGE INTEGRALS IN

PERTURBATION THEORY

We consider now the effect on the energy of the
inclusion of the perturbed Coulomb and exchange
integrals into the equation of first-order perturbation
theory. To estimate this, we evaluate the integral
occurring in Eq. (8) which we call A V, :

30-
V,.(x)= ——1—e '*~ 1+2x+2x'

X6L

2
6V,=P I,&'&*(r,)—e, l'&(r2, r„)drt.

f12
(24)

4 2 4 4 4
+-x'+-x'+ —x'+—x'+ x' ~, (23)

3 3 15 45 225

where x=Zr. For small x, V, begins as —(8/35)x.
In spite of the (1/x ) term, the function V, is linear in
x at the origin. It follows that a representation of the
quadrupole potential as just —a,/r, ', where a, is the
quadrupole polarizability, may give a considerable
overestimate of the polarization energy even for states
for which the expectation value of r ' is finite.

The quadrupole polarization potential, t/'„has been
evaluated for lithium using the variational wave func-

"F. S. Ham, in SolkE State Physics, edited by F. Seitz and
D. Yurnbull (Academic Press, Inc. , New York, 1955), Vol. 1,
p. ' 127.

We use for I;(') the perturbed wave function calculated

CL
W
X
W

g 8
+I; I.5-
~~ W
W~ 4
go:
X

,/
/ 2R

4&r

0
0

.I I I
l - 1.$ 2

R l ATOMIC UNITS )

I
2.5

'I

3

Fro. 2. Comparison of ten times the perturbed Coulomb
integral, (25), with the perturbation of the valence electron.
Both functions are multiplied by r, sec8 to obtain a function of
r1=R only.
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previously by Sternheimer neglecting such terms. The
calculation is performed for lithium using the analytic,
approximate, wave functions of Sec. III. We find

The equation satis6ed by the function (26) is:

(H,+H.+H;)~= AC'. (29)

9 cos8

rg'r, 'Z4
1—e "' 1+2Zri+2(Zri)'

1+—(Zri)'+ —(Zri)' . (25)

We multiply (29) by 4* and integrate over coordinates
rc

4.'(H, +H,)@dr, It (r„)+ O'H„g (x„)4 (r„r„))dr,
J

In order to obtain an estimate of the influence of this
term, it should be compared with the perturbation
previously considered: (2ri/r„') cos8. This comparison
is shown in Fig. 2. We see that ~V, has only a small
inhuence except at the origin. If greater accuracy is
desired, it would seem possible to treat Eq. (8) by
iteration: by solving it without the perturbed Coulomb
and exchange integrals, and then treating such integrals
as additional perturbations.

= 0('). (3o)

Suppose now that C satisfies the following equation:

[H, (r,)+II,(r„r,) jC =E,(r„)4. (31)

Substitute (31) into (30) and make use of the normal-
ization of 4 for all r, . The equation satisfied by f is
then obtained.

VII. ACKNOWLEDGMENTS
C*H„(~)dr, =[.—Z, (r„)jP. (32)

I am indebted to Dr. Morrel H. Cohen for valuable
discussions. D. E. Jack, E. L. Haase, and B. Rothman
assisted with the computations.

We now introduce the explicit valence electron Hamil-
tonian. Observe that

APPENDIX. DERIVATION OP EQS. (I) AND (16)

We consider a single free atom of the substag. ce of
interest, and separate the valence and core electrons
by writing the total wave function of the system as

e(r„r„)=e(x„r„)y(r.), (26)

( 2Z)
4 "H„(~)dr,= ]

—V—
r„i

+ ~4'( —V.'4)dr, P.

Z
H„(r„)= —V„'—2—, (28)

g—1 2
H, (r„r„)=Q —.

where x, stands for the coordinates of the core electrons
and r„ for those of the valence electron. P is the wave
function of the valence electron and C that of the core
electrons. By using an approximation of the form (26)
which is not antisymmetric between valence and core
electrons, we neglect valence core exchange. The polar-
ization potential derived from the equations below is
regarded as approximating that derived from an anti-
symmetric function. C is considered to depend para-
metrically on the valence electron coordinates. f and 4
are normalized individually; the latter for all values
of r, .

The Hamiltonian for the system is:
H=H, (r,)+H„(r„)+H,(r„x„), (27)

where B, is the Hamiltonian for the core electrons
unperturbed by the valence electrons, II, is the Hamil-
tonian for the valence electron, and H; gives the
interaction between the valence and core electrons.

We have made use of the Hermitian properties of the
operator (1/i)V. Then (32) becomes:

rv

e—E,(r,)— 4'(—V„'C)dr, P. (33)

The function E.(x„) obtained as the eigenvalue of (31)
is seen to play the role of an additional potential. It
contains the desired polarization potential.

We now make the determinantal approximation for
C. We write

4 =detail;(r, ,r„) (. (34)

Standard procedures then lead us to the Hartree-Fock
equations to determine the functions I;(r;,r„) in such a
way that the energy of the core is minimized for all r„.
The function E, can now be interpreted as the Hartree-
Fock energy of the system. The Hartree-Fock equations
obtained in this way are Eqs. (1).

Equation (16) is obtained from (33) by dropping the
kinetic energy correction J'4'( —V„'4)dr, . This cor-
rection has the effect of an additional potential since
it is a function of x„. Because the kinetic energy is an
inherently positive quantity, the correction has opposite
sign to the polarization potential. We investigate it
further by making the determinantal approximation
for C. Its elements N, (r, ,r„) in fact are constructed
according to the equation of perturbation theory (15).
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The kinetic energy correction is investigated within
perturbation theory. We observe that —V', ' is of the
order 1/r„; i.e., it is of the same size as the perturbing
Hamiltonian in (25). If we expand the determinantal

'

function 4, we find that

+0(1/r. ') (35)

The first term is of the order 1/r„' since m, "' is propor-
tional to 1/r„s T.erms of the order 1/r, s and higher are
neglected here, but would have to be included in an
evaluation of quadrupole terms. The 1/r„' term in (35)
appears to be of the same order as V„.Upon substitution
of the perturbed wave functions m, &'& into (35), it is
found that the integral vanishes upon integration over
solid angle. Consequently there is no contribution from
the kinetic energy correction of the same order in r, as
the dipole polarization potential.
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Plasma Losses by Fast Electrons in Thin Films*
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The angle-energy distribution of a fast electron losing energy to the conduction electrons in a thick
metallic foil has been derived assuming that the conduction electrons constitute a Fermi-Dirac gas and
that the fast electron undergoes only small fractional energy and momentum changes, This distribution
exhibits both collective interaction characteristics and individual interaction characteristics, and is more
general than the result obtained by other workers. Describing the conduction electrons by the hydro-
dynamical equations of Bloch, it has been shown that for very thin idealized foils energy loss may occur at a
value which is less than the plasma energy, while as the foil thickness decreases below v/cu„ the loss at the
plasma energy becomes less than that predicted by more conventional theories. The net result is an increase
in the energy loss per unit thickness as the foil thickness is decreased. It is suggested that the predicted loss
at subplasma energies may correspond to some of the low-lying energy losses which have been observed by
experimenters using thin foils.

I. INTRODUCTION

'HERE has been recently a rather extraordinary
amount of experimental and theoretical work on

the origin and implications of characteristic energy
losses experienced by fast electrons in passing through
foils. This eRort has received great impetus from the
suggestion by Pines and Bohm' that some of these
energy losses are due to the excitation of plasma oscilla-
tions or "plasmons" in the sea of conduction electrons
and from their work on the theory of these oscillations. '
An alternate explanation, which has been advanced
many times by various workers, is that these losses
are due to interband transitions of individual conduction
electrons. Evidence in support of this has been pre-
sented' showing correlation between the fine structure
of x-ray absorption edges and the characteristic loss
lines. The plasma interpretation has been strengthened
by Watanabe's' experimental verification of the Pines-
Bohm plasma dispersion relation [Eq. (12) below] in

*This paper represents a portion of a dissertation submitted
by the author to the University of Tennessee in partial fulfillment
of the requirements for the Ph.D. degree.' D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

2 D. Pines and D. Bohm, Phys. Rev. 82, 625 (1951); 85, 338
(1952); 92, 609, 626 (1953).

I.eder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
4 H. Watanabe, J. Phys. Soc. Japan ll, 112 (1956).

Be, Al, Mg, and Ge. A critical review of the present
status of the theory and experiment in this field has
been given by Pines. '

It is the purpose of this paper to examine theo-
retically the energy and angular distribution of a fast
electron which has lost energy to plasma oscillations in
an infinite foil and to consider the eRect of the 6nite-
ness of the foil. Ferrell' has investigated the angular
dependence of the characteristic energy losses of fast
electrons to an inhnite plasma using the theory of Pines
and Bohm. ' He obtains one formula which involves the
collective interaction of conduction electrons with the
incident electrons and another which includes only the
eRect of individual interactions between conduction
electrons and the incident electrons. A single formula
will 'be derived which includes both collective and
individual interactions and which depends upon the
momentum distribution of the undisturbed plasma.

Gabor' has considered the interaction of a fast elec-
tron with a small metallic crystal containing free
electrons. He assumes that the electric field is always
zero at the surface of the crystal and examines the

D. Pines, in Solid State Physics (Academic Press, Inc. , New
York, 1955). See also D. Pines, Revs. Modern Phys. 28, 184
(1956).' R. A. Ferrell, Phys. Rev. 101, 554 (1956).

7 D. Gabor, Phil. Mag. 1, 1 (1956).


