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addition, Fig. 6 exhibits values of t t/p corrected for the
nonuniformity of the electric field. The correction is
obtained as follows.

In Eq. (7), the coeKcient t; is interpreted as an
effective ionization frequency v which takes into ac-
count the variation of the field with the radius of the
cavity and the loss of electrons by radial di6usion. The
value of v lies between the value of v, at the axis of the
cavity where Z,/p is determined, and the value of t

associated only with the lowest radial diffusion mode.
The value of v associated with the lowest diffusion
mode is obtained by a variational calculation. " The
maximum correction is the di6erence between v; at the
axis of the cavity and v for the lowest diffusion mode.

"P. M. Morse and H. Feshbach, 7OIethorls of 7'heoretical Physics
(McGraw'-Hill Book Company, Inc., New York, 1953), Chap. 6;
S. J. Buchsbaum, Quarterly Progress Report, Research Labora-
tory of Electronics, Massachusetts Institute of Technology,
January 15, 1957 (unpublished), p. 10.

The corrected values are obtained by applying the
maximum correction.

The experimental values of t,/p do not agree with
dc measurements of the Townsend ionization coeKcient
n that was determined by Rose" when the two coeK-
cients are compared by the use of the relation' t,/p
=atsE/p. The values of mobility were obtained from
reference 8. The discrepancy is greatest at small values
of E/p. The values of o;/p that are plotted in Fig. 6
are not affected by taking into account the Quctuations
of the average electron energy with the time variation
of the microwave 6eM.
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Nonequilibrium statistical mechanics, as developed by Kirkwood, Irving, and Zwanzig, is applied to a
system of charged particles interacting via the electromagnetic field. Particles and field are treated statisti-
cally both from the classical and quantal points of view. It is shown that Maxwell's equations are valid for the
quantum statistical ensemble-averaged fields. An exact form for the hydromagnetic equations is derived,
and it is shown that these equations differ from those which are customarily considered to be exact.

N
Ec=g et(r —rt)/~ r—rs~', (1.2)

and
V Er=0. (1.3)

Similarly the magnetic field B is expressed as the sum
of an internal and an external part:

B—Bint+ Bext

*On leave from University of Colorado, Boulder, Colorado.

I. CLASSICAL THEORY

E consider a system composed of S charged
particles subjected to external forces and inter-

acting via the electromagnetic field. Let r: ri, -. rN
be the position vectors of the particles and e&, eN
their electric charges. It is assumed that apart from the
masses mi, ~ - mN the particles have no further electrical
or mechanical structure. The electric field E is decom-
posed into a transverse internal part Er, an instan-
taneous Coulomb part Ec, and an external part E'"':

E—EF+FC+Eext (1 1)
where

The system is enclosed in a large volume t/'= I' so that
the electromagnetic field may be described by a denu-
merable set of coordinates. Following Heitler, ' a set of
real vector functions Ai(r) is introduced, complete with
respect to transverse vector fields and with the fol-
lowing properties:

Ai A„dr=4nrc'5„„

|7'A),+kisA), =0,

v Ay=0,

(1.6)

(1.7)

where ki'—=coi'/c', lrq= 2srn/I. , and n is a vector having
non-negative integral components. The fields E~ and
B' ' are expressed in terms of the field coordinates gi
by the equations

E'= —(1/c)g~ q,A)„

B'- =P, q„vyA„.
W. Heitler, The QNaetum Theo&'y of Radiatioe I'Oxford Univer-

sity Press, ¹wYork, 1954), p. 39.
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where
A/=Alt, ' '+g qiAy(ri) (1.11)

is the vector potential evaluated at the point r~, and

U= U'"~++ e;e / ~

1',—r
~

(1.12)

is the total potential energy. The Hamiltonian, (1.10),
is nonrelativistic for the particles, but completely
general for the electromagnetic field. The Hamiltonian
equations of motion for the system are

8rq/Bt —=uq ——Ly~ —(eq/c) Aq5/mi„(1. 13)

Dpi/Bt = (ep/c)up (AgV'. I,)—V'.I,U, (1.14)

(1.15)

&pi/cu= —~i'qi, +pi, (ei/c)ui Ai, (r~). (1.16)

The symbol V signifies the usual gradient operator
acting on the quantity to the left.

Let f= f(r,p, q&„pi„t)=f(q,p, t)—be the distribution
function (d.f.) in the phase space of the complete
system. Then, the Hamiltonian form of the equations of
motion implies that the d.f. satisfies Liouville s equation

(8f/Bt)+A f=0, (1.17)

where the operator A is dehned by

Af= Z us ~ if+2 pi(& f/&q~)

++&(e /c)u A —U}V. V' f

The Hamiltonian for the system, particles and Geld, is

1 t' eg

~ 1~——A~ I+U+l Z(pi'+~~'qi'), (1.10)
~2m, & c

f being normalized to unity (f,1)=1. The notation

(f,g& expresses the fact that (f,g& is a symmetric scalar
product of f and g defined over the entire phase space
of the system. If the functions f and g are suKciently
mell-behaved, the operator A. is skew-symmetric:

(Af,g&= (f—,Ag& (1.20)

Equation (1.20) may be used to obtain an expression
for the rate of change of (g&. In fact,

~(g)/~t= (f ~gl@&+(~fl@g)

=(f,~g/~t) (~f,g—&
=(f,~g/~t&+(f, ~g).

(1.21)

8f*/Bt+A*f"=0,

with the operator A.* defined by the equation

~*f*=Zu~ ~ i,f—'+2 p (~f"/~q&, )

(1.23)

+P(1/m )&e„E„+(e/c)uiXBi+X } V f*

+Z(Z(e /c)u'A (r ) 'q }(~f—*/~p ) (124)

Xq being the nonelectromagnetic part of the external
force acting upon the 0th particle.

We now define a symmetric scalar product (f,g) by
means of the following expression:

Equation (1.21) expresses the basic statistical mechan-
ical law of transport.

It is convenient to introduce a new d.f. f* which is
a function of r, I, qi, pi. Since the Jacobian of the
transformation, r, p, qz, pi~, u, qi, pi, is a constant,

f(r,p,qi, pi„t) =constf*(r, l,qi,pi, t). (1.22)

The d.f. f* also satisfies a Liouville equation,

+Z&Z( /) A ( )—" }(~f/~p), (11g) (f,g) = fgdrdN g dqidp)„ (1.25)

(g&=(f,g&=~ fgdqdP, (1.19)

~ J. H. Irving and J. G. Kirkwood, .J. Chem. Phys. 18, 817
(1950).

and where it is understood that V'r~ does not act upon
u~. A formal difhculty is that the d.f. is a function of an
infinite number of variables. However, all results of
practical interest will be expressed in terms of reduced
d.f.'s; that is, in terms of functions obtained by inte-
grating f over all but a small number of variables.
Further, if any genuine progress is to be made along
these lines, a method to obtain reasonable approxima-
tions for the reduced d.f.'s must be found.

H g(q, p, t) is a dynamical variable of the system, the
statistical ensemble average (g& of g is expressed (using
essentially the notation of Irving and Kirkwood') by:

so that with f* normalized to unity, (f*,1)=1, the
average value (g) of any function g of the particle coor-
dinates, particle velocities, field coordinates, and field
momenta is given by

(g&= (f' g) (1.26)

The operator A* is skew-symmetric with respect to the
scalar product (1.25), so —(A*f,g) = (f,k*g) Therefore, .
the basic law of change may be expressed by the relation

~(g&/~t= (f*,~g/~t)+(f*~*g) (1 27)

The derivation of expressions for the law of change for
specific dynamical variables may be accomplished by
the use of Eq. (1.27). These derivations are postponed
until the quantum mechanical theory is developed,
since, for the class of dynamical variables of immediate
interest, the quantal and classical expressions are
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formally the same. The quantum expressions, however,
make use of quantum (Wigner) d.f.'s fw, fw* which
replace f, f* in Eqs. (1.2)—(1.27).

IL QUANTUM THEORY

A pure state of the system is represented by a wave
function which satisfies the Schrodinger equation

iM)p(q, t)/Bt = x)p(q, t), (2.1)
where X, the Hamiltonian operator, is given by the
expression

1 (A es
3C=Q

~

—V.g——As )+U
2m' Kz c

Aa
+'2

I
-—.

I +~),'q)' (2 2)
L i aq~&

A mixed state having probability a; for the pure state
P;(qt) may be represented by the density matrix
p(q, q', t) defined by

p(q'q' t)—=2 (tA' (qt)4' (q't) (23)
in which )p denotes the complex conjugate of )P. The
equation of motion for the density matrix follows from
(2.1) and is expressed by the equation

ihip(q; q', t)/Bt= {K(q)—BC(q')}p(q; q', t), (2.4)

in which X(q) operates only upon the q variables of p.
The quantum mechanical phase space d.f. which is the
closest analog of the classical d.f. is the Wigner d.f. fw
which is defined by' '

fw(q, p, t) = ~e' '»p(q sAy; q+wAy)dy, —(2.5)

where py=g, p y, and dy= g, (Ey,. The equation of
motion for fw is obtained by the use of Eqs. (2.4),
(2.5), and the inverse,

p(q —mAy; q+mAy) = e ''»'fw(q, p')d—p', (2.6)

of Eq. (2.5). This equation of motion, which is the
quantum analog of the Liouville equation (1.17), is
expressed by

&fw/@+Aw fw=0, (2.7)
where A~ is an operator which may be represented
several ways, one of which is by the di6erential form,

1 es fA+5-
Awfw=g ' ps ——As cos~ —Vs'V&

~
'Vrsfw

c (2' ")I

+Z) p).(&fw/&q))+ Q As ps — A„'—U
& stye 2mpc

2 (A~—-'g co),'q)s —sin( —V V„~fw. (2.8)
A k2

' E. Wig))er, Phys. Rev. 40, 749 (1952).
4 J. H. Irving and R. W. Zwanzig, J. Chem. Phys. 19, 11'tp'3

(1951).

The quantum mechanical ensemble average (g) of a
function g is given by

(g) =(fw, g),

with (fw, i)=1, and

(2 9)

(fw g) = —fwg"q&p. (2.10)

For suitably well-behaved f, g the operator Aw is again
skew-symmetric, (Awf, g)= (f,A—wg), so the quantum
law of change is given by the following equation

~(g)/~t=(fw, ~g/~t)+(fw, Ag) (2.11)

with asi independent of q, p. For such functions

A~g, =kg„ (2.13)

and the classical and quantal expressions, (1.21) and
(2.11),are formally identical. For functions of the type
g., it is again convenient to transform from the r, p, q)„p),
variables to the r, I, q)„p), variables, with the result that

~(g.)/Bt= (f ",&3g,/~t)+ (f *,A*g,). (2.14)

which is formally identical with Eq. (1.27).
The equation of motion for the various reduced d.f.'s

may be derived with the aid of Eq. (2.11).For example,
the 1-particle d.f. f„(')(r,p, t) for particles of type i is
defined by

f (')—=(f, &(r—r.)h(p —p.)), (2.15)

so the equation of motion is

~f,(»/&t=(f, A ~(r ')~(» ».)) — (2 «—)
Equation (2.16) may be expressed as

gf„(» p 2 t'0
+—Vf (» —U'"'—sin~ —V, V~

~ f,('&=0„(2.17)
at m„" A &2

where

e„(A
0,= ~, ——,cos —V~, V~, V~,

c &2 i

( er e s e,e„ 5 2
+( A. .p.—

&m.c 2m„c' ) ~r )r„—r„))A

t'A+

xsin( -r.„ t'~,
( il(r —r.)il(r —p.)).

E2

Equation (2.11) expresses the general quantum law of
change for any function g.

A class of dynamical variables sufEciently general for
many applications consists of functions g. of the form

g =go(q)+2 g.(q)P +Z Z &s«»4 (2 12)
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Ia 1
(E')=

l fw Q e84'VV
cat E c i lr —rpl)III. MAXWELL'S EQUATIONS

The quantity Q„may be expressed in terms of various it follows that
particle-particle and particle-6eld pair d.f.'s.

The charge density at a point r is defined by

g Zi; ek~(r rk) ~ (3.1)

1 1
fw, Q ey upV

c i lr —rgl

If the average value of g, is designated by p„ then
according to Eqs. (2.14), (1.24),

ua
+vxl vx

lr —r~l) )
ap, /at= (fw*, A* Pi, ei~(r- rg))

= —V (fw', P& e,„S(r—r&)). (3.2)
4—

I fw, P ei, ui,8(r—ri)

However, g,=g„e„„b(r—ri) is the electric current
density at r, and if J, denotes the average value of this
electric current density, Eq. (3.2) may be written

1 ( uie—vxl vx
lr —r l) l)

Bp,/Bt+V J,=O, (3.3) = —(4r/c) J,i (3.8)

g, =B(r,t) =gz qzVXAi, (r)+B'*", (3.4)

which is the law of conservation of charge for the
ensemble averaged charge and current densities.

The magnetic 6eld intensity is expressed by

where J,~ is the average value of the longitudinal
current density. By combining Eqs. (3.7), (3.8), and
the corresponding relation for the external 6elds, the
second Maxwell equation

and we 6nd that
4n- 1 8

vx(B)=—J.+-—(E)
c c8t

(3 9)

1 8 gBext
——(B)=-(fw*,2 p~VXA~)+-
c8t c c Bt

1
= —VXl fw*, ——P PiAi l

—VXE'"',
c )

= —vx(E).

The last expression follows because Vx(Ec)=0.
Let g, be the transverse electric field Er,

g.= —(1/c)pi piAi

Then it follows that

is obtained. Similarly, we 6nd

V (B)=0, V. (E)=4vrp, . (3.10)

Therefore Maxwell's equations are valid for the
quantum mechanical ensemble-averaged fields (E),
(B), and these equations have the form of the macro-

(3 5) scopic equations. However, as has been emphasized by
Irving and Kirkwood, ' the true macroscopic equations
must be expressed in terms of suitable space-time
averages of the ensemble averaged quantities. The
macroscopic quantities so obtained satisfy the same

(3 6) equations.

IV. HYDROMAGNETIC EQUATIONS

1 8 1( ea
——(Er)= ——

l f *,P P —A u — 'q Aj, (r) l

c8t c'E i i c )
4

I
1

eIuj q rA: q r

i,et pm„be the average value of the mass density
m„P&„& 8(r—r&), ' for particles of type i, and pm„u„ the
average value of m, P&„& ui5(r —ri,). Considerations of
the same type as those which led to the law of con-
servation of charge yield the equation of continuity for
particles of type v,

+(fw*, P& VXLVXA&(r)fq&)

= —(4 /c) J.'+VX(B'- ) (3.7)

8—pm„+V' (pm„u„) =0.
Bt

(4.1)

The exact form for the hydrornagnetic equations is
in which J, designates the ensemble average of the
transverse current density. the momentum density, m„Q~„i uq5(r —rq), for par-

If g, is the instantaneous Coulomb 6eld,

g.=Xi e~(r r~)/l r r~l', — — ~ Z~„)fq represents the summation of fj, over all k belonging to
tpg)e v.
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ticles of type &v. The result is expressed by If the following pair distribution functions are intro-
duced:

8 tv—(pm„u„) = ~ fs *, s&s. P ue Vu&,h(r —r,)
Bt ( (v&

e~
+2 eeEe+—

u& XB& h(r —r&)
(v) )c

and

f„„"&(r„rb)= (f&r*, h(r, —r„)h(r~ —r„)), (4.8)

f "'('» ')=(f * h( —.)h(p'-p)), (49)

= V +v pmvuvuv++vxv

Eext+ (J /e) XBexs

+ (frs*, e„g{Ee'""+ueXBq'"'}h(r—re)),

(4.2)
in which the stress tensor e„ is defined by

e„=— srs. (—fr&*, g(u&, —u„)(u&,—u,)h(r —r&)), (4.3)
(v)

and the number density e„of particles of type ~ by

ss.=(f *,Z h(r —r.))=&.f."'( )r, (44)
(V)

S, being the total number of particles of type v. Equa-
tion (4.2) may be written in the form

dv

pm„—u„= V' ev+NvXv+ pe„E ""+(Jev/e) XB +Gv (4.5)
dt

where d"/dt= (it/itt)+u„V and

G„=N„e„(frr* {E '"'+(u„/c)XB '"'}h(r—r„)), (4.6)

or

r—r„1
G,=X,e,

~
frf*, Q 1V,eo ——p p~A&, (r)

o )r—r) e

+v
~ ~+—Xg q&VXA&, (r) 6(r—r„) ~. (4.7)

c

f,&, 's~(r, u, q&,') = (f/ *,h(r —r„)
Xh(u —u.)h{q,

' —q,)), (4.1O)

G„may be expressed by the relation

'f—f~
G„=E„e,P Ã„e„ f„„&s&(r, r„)dr„

)r—r„(s

—1V.—Q A&, (r) P&,f &,
t'&(r, pg)dp&,

c

—X„—PPVXA&, (r))X q&,u
c

Xf &,
's& (r,u, q&,)dudq&, . (4.11)

Equations (4.5) bear some resemblance to the equations
which are customarily considered to be exact for a gas. '
The Coulomb term in G, corresponds to the collision
term in the usual formulas. However, even if the Geld
and particles motions are uncorrelated, Eqs. (4.5) do
not appear to reduce exactly to the usual expressions.

Equations for the transport of other quantities may
be obtained, but until we have in our possession a
reasonable approximate procedure for computing the
various reduced d.f.'s, it hardly seems worthwhile to
derive them.

'L. Spitzer, Jr., Ftsysscs of Felly lossszed Gases (Interscience
Publishers, Inc. , New York, 1955), p. 18.


