HIGH-LATITUDE EAST-WEST ASYMMETRY

collection of the data presented here make it impossible
to decide whether this was the case.

Until adequate data are available from high-counting-
rate equipment now operating, it appears to be pre-
mature to attempt to proceed further in the discussion
of possible mechanisms that could produce the observed
long-term change in the asymmetry. However, the
effect is likely to be linked with the mechanism that
produces the long-term change in the position of the
“knee” of the latitude-intensity curve, whatever this
may be.® In any event, it seems that the systematic

6 P. Meyer and J. A. Simpson, Phys. Rev. 99, 1517 (1955).
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study of the east-west asymmetry using high-counting-
rate equipment with large counter trays’ over a period
of several years will be worthwhile, since by this means
we have a very sensitive method for detecting changes
in the relative intensities in these directions, while
virtually cancelling out otherwise troublesome atmos-
pheric effects.
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Antarctic Research Expedition and the Commonwealth
Scientific and Industrial Research Organization.
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The Mgller potential has been used to describe the electron-nucleon interaction and a formula has been
worked out in the Born approximation for the differential cross sections of elastic and inelastic scattering
of high-energy electrons by 2p-shell nuclei on the intermediate-coupling model with neglect of configuration
mixing. Preliminary calculations have been made for Be® and C to test some of the qualitative features
of the formula deduced, especially the 8 dependence of the o(6) vs 6 curve for inelastic scattering with change

of total angular momentum J.

I. INTRODUCTION

ATA on elastic and inelastic scattering of high-
energy electrons by various nuclei have been
compiled through the experiments of Hofstadter and
his associates.’~ With the nucleus taken as a continuous
charge distribution of various shapes, theoretical calcu-
lations for elastic scattering have been made by Schiff*
in the Born approximation and by Yennie ef al.® through
an exact phase-shift analysis. Schiff® was the first to
deduce the cross section for inelastic scattering from
the collective nuclear model. Recently, however, Tassie’
has attempted an explanation of both elastic and in-
elastic scattering data from the shell-structure model
of the nucleus by utilizing the results of Amaldi et al.?
for u-meson scattering by nuclei. This treatment con-
siders the nucleus in the independent-particle model

1 Hofstadter, Fechter, and McIntyre, Phys. Rev. 91,422 (1953);
92, 978 (1953); Hofstadter, Hahn, Knudsen, and MclIntyre,
Phys. Rev. 95, 512 (1954); J. A. McIntyre and R. Hofstadter,
Phys. Rev. 98, 158 (1955); R. Hofstadter and R. W. McAllister,
Phys. Rev. 98, 217 (1955).

2 McIntyre, Hahn, and Hofstadter, Phys. Rev. 94, 1084 (1954).

3J. H. Fregeau and R. Hofstadter, Phys. Rev. 99, 1503 (1955).

4 L. I Schiff, Phys. Rev. 92, 988 (1953).

5D. R. Yennie ef al., Phys. Rev. 95, 500 (1954).

6 L. I. Schiff, Phys. Rev. 96, 765 (1954).

7L. J. Tassie, Proc. Phys. Soc. (London) A69, 205 (1955).

8 Amaldi, Fidecaro, and Mariani, Nuovo cimento 7, 553 (1950) ;
7, 758 (1950).

where the nucleons are assumed to move independently
of one another in a strong central field. The drawback
is that the low-lying levels of Be®, to which Tassie has
applied his calculations, cannot be reproduced in their
known positions. Figure 2 of his paper shows how his
theoretical curves differ from the experimental ones
(reference 2) even in qualitative features.

At the present time the work of Jahn and his group,’—
following the intermediate coupling model suggested
by Inglis,!’® has indicated that the low-lying levels of
2p-shell nuclei, with the exception of a few at the end
of this shell [Be® is a 2p-shell nucleus with the configur-
ation (1s5)%(2p)%], all belong to the same configuration
and are split up through the interactions among the
nucleons. For the 2p-shell nuclei the central and non-
central interactions are assumed to be present in com-
parable proportions since neither the pure LS- nor the
pure jj-coupling model holds within this shell.

We have worked out the general theory of electron

9 H. A. Jahn, Proc. Roy. Soc. (London) A201, 516 (1950).

1 H., A. Jahn, Proc. Roy. Soc. (London) A205, 192 (1951).

U H. A. Jahn, cyclostyled notes of three lectures held in the
Institut Henri Poincaré, Paris, in May, 1952 (unpublished).

2 Elliott, Hope, and Jahn, Trans. Roy. Soc. (London) A246,
241-279 (1953).

1BH. A. Jahn and H. Van Wieringen, Proc. Roy. Soc. (London)
A209, 502 (1951).

14 J_ P, Elliott, Proc. Roy. Soc. (London) A218, 345 (1953).
15 D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).
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scattering by 2p-shell nuclei, using nuclear wave func-
tions calculated with the above-mentioned intermediate-
coupling model'® and a Mdgller potential for the inter-
action between a nucleon and the high-energy electron.
This latter has also been used by Amaldi et al.?

In working out the general formulas, we have adopted
the first-order perturbation method. A better refinement
would seem to be a useless luxury in view of the inaccu-
racy of the nuclear wave functions arising out of the
uncertainty in the nucleonic interactions. Moreover,
we have used the Dirac wave function for a free particle
to describe both the incoming and outgoing electron
but have adopted only nonrelativistic wave functions
for the nucleus. This presumes small recoil velocity of
the nucleus under consideration. For the same reason
no distinction has been made between laboratory and
center-of-mass energies and angles.

Among the 2p-shell nuclei the work of Hofstadter
and his group makes available elastic and inelastic
scattering data in the case of Be® (reference 2) and C®?
(reference 3). We have assumed, for Be®, a simplified
nuclear Hamiltonian having a strong Majorana term
which justifies the consideration of LS-coupling states
as belonging to the [41] symmetry alone so far as the
first few energy levels are concerned. The results are
discussed later under the proper heading. In the case
of C2, we have made a choice of the harmonic oscillator
well-parameter by fitting the two inelastic curves
corresponding to the excitation of the 4.43-Mev and
9.61-Mev levels in Fig. 10 of reference 3. With the same
value of this parameter, we have tested the fit of the
curves B and D of Fig. 4 with regard to their slopes
and also the fit of the curve in Fig. 9 of the same
reference.

It may not be out of place to mention here that in
conjunction with the magnetic moment and ground-
state quadrupole moment which are customarily used

((1)4(2p)"INILTS, T M M | 2 exp(—iK-R@)7_OP[ (15)*(2p) "N IL'T'S",J' Mz M")

and
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to test the ground-state wave functions of nuclei, the
inelastic scattering data lend themselves to the testing
of wave functions belonging to higher energy levels.
Calculations like the ones reported here will, therefore,
provide an additional check on the validity of a certain
form of nuclear Hamiltonian and thus help in exploring
a pertinent problem in nuclear physics, i.e., the descrip-
tion of nuclear forces in terms of a two-body type
potential summed over all nucleon pairs.

II. SKETCH OF THE THEORY

Our treatment differs from those of references 7 and
8 in that we have used intermediate-coupling nuclear
wave functions instead of their independent-particle
ones. It can easily be seen that Eq. (1) of reference 7
applies to our case, when one attaches the following
meaning to p;s and Ji;:

pir=(¥;| 2 ; exp(—iK-R@®)7_D|¥,), (1a)
ih
Jir= <‘I’f e 2 ilexp(—iK-R@)y®
1V exp(—iK-R®)r_ \1r> (1b)

Here 7 and f denote initial and final states, ¥ denotes
the nuclear wave function, () denotes the jth nucleon
and the isotopic spin operator 7_(?=2%(1—7;) picks
out the protonic part out of a nuclear wave function
involving both neutron and proton parts. Other symbols
are as used in reference 7. We have neglected the
interaction of the electron with the nucleons brought
about by the magnetic moments.

If one writes ¥; and ¥, in the manner of reference 14,
the general matrix elements that appear in p;s and Jis
are of the form

(2a)

(i1/2Mc){(15)* (2p)"INILTS, T MM | ¥ Lexp(—iK-R@) v

+ VD exp(—iK-R®) Jr_@| (15)4(2p) "N L' T"S", T M s M"),

where the state on the right containing dashed quantum
numbers is any of the LS-coupling states whose super-
position is required to construct the initial nuclear
state, i.e., the ground state, while the state on the left

(2b)

is a similar one for the final state. There will be two
types of matrix elements appearing in each of (2a) and
(2b) corresponding to the decoupling of an s particle or
a p particle. For (2a) these two types are

((15)4(2p)"INILTS, T MM | Y ; exp(—iK- R@) 7D | (15)4(2p) "IN L' T'S" T ' M r M )ss

=0r1058077 0"

X§(2T+1)(23+1){5TT'-\/§[

@(.._)T+T’+2S

1
CeT+1)2T'+1)T(25+1)

’

g ]U(TT%l;%T')} (32)

T

16 At the time of communicating this work for publication we have come across a paper containing intermediate-coupling model
calculations by B. F. Sherman and D. G. Ravenhall [Phys. Rev. 103,949 (1956) ] for ground-state 0% to 7.68-Mev 0" inelastic scattering
on C%, and another report by R. A. Ferrelland W. M. Visscher, Bull. Am. Phys. Soc. Ser. II, 1, 17 (1956).



SCATTERING OF HIGH-ENERGY ELECTRONS

and

813

((1)*(2p)"INJLTS T MM | L ; exp(—iK- RD)7_P[ (15)*(2p) "N IL'T"S", ' Mz M)

n
= ‘SSS’BMM’E Z[a(\P,\T’P)d(\I’I,q’P) { STT"—‘/;[

X{ﬁLL'&n'(B'i- (\/10)[

In (3a), T can have the common values of 73 and
T’'+%. A similar remark holds for S. In (3b), a(¥,¥p)
and ¢(¥',¥p) are single-particle-type fractional parent-
5 [ g g

my My m
stands for the Clebsch-Gordan coefficient corresponding
to the coupling of j; and j, to form j; my, ms, m denote
the magnetic quantum numbers going with ji, fs, 7,
respectively. The function U is the same as that
defined and tabulated in reference 10. The radial
integrals @, ®, and @ for an isotropic oscillator potential
of well-parameter @, are given by

age coefficients tabulated in reference 1

a= [ ¥ iuKRY (1),
®= f V¥ (29) jo(KRW (29, @

e= f V*(29) jo(KR)W(2p)dp, o=R/as

where ¥(1s) and ¢(2p) are the oscillator wave functions
belonging to the 1s and 2p shells given by Swiatecki'?
and 7o(KR), j2(KR) are the spherical Bessel functions
given by Schiff 18 Using explicit forms of these functions,
one gets

Q= CXP(—%K&),

®=(1—3K") exp(—1K"), ®)

C=§K"?exp(—1K"?), K'=aK.

To evaluate (2b), we first obtain the commutator of
the operator V and ¢~*® using the familiar commuta-
tion rules between the components of R and momentum
P(=—inv). We get

[V, &R]= —jKe KR

(6a)
(6b)

Since the single-particle operator V connects the single-
particle state / with the state /41, e -RV will have
all the matrix elements vanishing, and we obtain finally

expression (2b)= (%/2Mc)K -expression (2a). (7)
17 W, J. Swiatecki, Proc. Roy. Soc. (London) A205, 238 (1951).

181, 1. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), p. 77.

or
ve—iK-R= e—iK -Rv — 'iKe“iK‘R.

/ T

UTT»‘«l;lT’]
TOMT] (TT31;4T)
14

27 )
o M]U(SJL’Z s LINU(LL12; 1L')e}]. (3b)

With the help of these general matrix elements, one
can write (la) and (1b) for given M and M’. The
averaging over M’ and summation over M, as required
by Eq. (1) of reference 7, can be carried out in the
following way:

air(0)=

oMM (6).
AR 2 A ®

o(0) denotes the differential cross section per unit solid
angle (sometime written do/dw) about angle 6.

III. APPLICATION TO Be? AND Ci2

For Be? we have assumed the nuclear Hamiltonian
to be of the form

e—riilro

+g
rij/To

—re d griilro

¥ij dfﬁ fij/ro

H=V, Z[PijM{1+gtSij}

i<i
X (0it0;) - (ti—1) X (pi— Pf)], )

where 7, 7 denote any two of the nucleons; Vo denotes
the depth of the central potential; P;; is the Majorana
exchange operator; g: and g, are the depth parameters
for tensor and spin-orbit interactions, respectively;
ro is the range parameter assumed to be equal for
central, tensor, and spin-orbit terms; S;; is the tensor
interaction operator as given in reference 14.

With the strong Majorana term in the Hamiltonian
(9), it may be assumed that the lowest few energy
states can be constructed by superposing LS-coupling
states belonging to the [41] symmetry alone (see the
calculation for BY in reference 14). The LS-coupling
states belonging to this symmetry are taken from
reference 9. The two-particle-type and single-particle-
type fractional parentage coefficients have been ob-
tained from the tables given in references 12 and 13,
respectively. With their help, energy matrices have been
constructed corresponding to different values of J and
T, which are good quantum numbers, by using Eq. (37)
of reference 12 and Eqs. (11), (13), and (17) of reference
14.

Figure 1 shows the calculated energy level sequence
for two different sets of potential parameters. Only one
value of 7o has been used and this was chosen equal to
that assumed by Elliott.* The value of the oscillator
well-parameter g has been determined by the formula
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F16. 1. Calculated and observed energy level diagrams of Be®.
The experimental values are taken from F. Ajzenberg and T.
Lauritsen, Revs. Modern Phys. 27, 77 (1955).

given by Swiatecki.’” In the level diagram (b), we tried
to reproduce the excited levels /=%~ and J=4§—, 2.43
Mev and 6.8 Mev, respectively, above the ground level.
This made V, extremely high. The wave functions
corresponding to this choice of parameters gave a larger
cross section for inelastic scattering from the ground
level to the 6.8-Mev level than for inelastic scattering
from the ground level to the 2.43-Mev level. In ob-
taining the level sequence (a), we have chosen Vj in
conformity with low-energy #-p and p-p scattering
data to correspond to the value assumed for 7o. This,
with the specified value of g,, produces the /=%~ and
J=4%"levels at 2.43 Mev, but fails to give any level at
6.8 Mev. Since the energy of the level involved in
inelastic scattering is very small compared to the
energy of the electrons (190 Mev), in the formula for
oir(6) the energy loss of the electron can be neglected
to a first approximation.” Consequently it seems
plausible that the displacement of a level by a few Mev
will not matter much in scattering calculations if its
spin identification is correct. We have, therefore, used
the level scheme (a) to calculate the scattering cross
sections for Be®. The results are shown in Fig. 2 together
with the experimental curves of McIntyre et al.?

To the first approximation our theory predicts that
the inelastic scattering cross section for levels having a
J value different from that of the ground state will
have the form

Z%* cos?(6/2)
NC*E:H),

4E? sin*(6/2) (10

i (@)=

where NC?(E,,0) arises from the square modulus of the
nuclear matrix element p;;. IV is a numerical constant
whose value differs for inelastic scattering corresponding
to the excitation of the nucleus to its different levels.
On a logarithmic plot, therefore, for all such inelastic
scattering, the o(6) s @ curves should run parallel, the
constant /V determining only the vertical position of
the particular curve on the diagram. It may be men-
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tioned here that the curves B and D of Fig. 4 in Fregeau
and Hofstadter’s paper® corroborate this conclusion.
In the same figure, curve C corresponds to the excitation
of the nucleus to the 7.68-Mev J=0% level, which has
the same J value as the ground level. In this case the
term in the nuclear matrix elements involving the
radial integrals @ and ® also contribute to o(f), and
therefore the above simple consideration does not hold.

In Be?, however, the same conclusion leads us to
expect parallelism of the two inelastic curves corre-
sponding to the excitation of Be® to the 2.43- and
6.8-Mev levels. This is contrary to the experimental
curves shown by Mclntyre et al.2 To test this point a
little more closely, we have shifted our inelastic curves
vertically (solid curve with filled-in triangles) to match
the lower inelastic curve of McIntyre ef al.2 at 90°. It
will be seen from our Fig. 2 that this procedure causes
our theoretical curve to coincide exactly with the
experimental one. However, the upper experimental
inelastic curve, having a more rapid fall with increasing
6, will not match simultaneously. We tried a different
value of @ to match the theoretical curve with the
upper inelastic curve. The value required for this was
2.0X10™ cm. However, with the same value the
elastic curve deviated considerably from the experi-
mental one. Lastly we also observe that since the
experimental curves do not show errors, we could not

10 zer‘ —— Calculated
(a)Elastic
(b)Inelastic-2.43 Mev
(c)/nelastic-5.04Mev
---- Experimental
@) Elastic
(b)[nelastic -2.24 Mev
(@) (c)inelastic -6.96 Mev
A — Theoretical curve (6) |
shifted to mateh experi-
mental curve(c)at 90°

/0-29 L

~ -

©
10 1 1 1 L 1 J

=32

o

30

o CJ

50° 60° 70° 80° 90

o —>

40

Fic. 2. Elastic and inelastic differential cross-section curves for
Be?®. The experimental curves are those of McIntyre et al.2
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try to make an accurate determination of @o from them
in the above-mentioned way.

We do not ascribe any importance to the vertical
position of our inelastic curves on the logarithmic plot.
This is because the simplified approach of our calcu-
lations, i.e., the consideration of only the [41] sym-
metry states, does not allow us to claim any accuracy
for the multiplying factor N. That the states belonging
to [41] symmetry are inadequate can be inferred from
the following qualitative arguments. It is known at
the present time that both the tensor and spin-orbit
interaction should be present simultaneously in the
nuclear Hamiltonian. But the states of [41] symmetry
of Be® have only one value, i.e., 3, of S and hence a
spin tensor of second rank, like the one appearing in
the tensor interaction S;;, will have vanishing matrix
elements between any two of these states. This means
a total absence of the tensor interaction, though we
have included it formally in the Hamiltonian (9).

As regards C?, we have already discussed the
parallelism of two of the inelastic curves. In this case
we have made a choice of @ by trying to fit the two
curves, parallel to the abscissa, in Fig. 9 of reference 3.
Though the errors indicated in this figure give some
freedom in this choice, it seems that ao=1.582X10"1
cm gives a better fit than the value a¢=1.692X10—%
cm obtained from Swiatecki’s formulas. In this connec-
tion we observe that Swiatecki’s criterion for the

0 (6) (4.43 Mev)/o-(6)Point

1 1 1
.6 .8 1.0 12 1.4
K—w (units of 107)

Fic. 3. Comparison of the @2 vs K curve for C*? with the
experimental o (0)4.43 Mev/0 () point ¥s K curve of Fregeau and
Hofstadter.3

¥ M. K. Banerjee, Ph.D. dissertation, Calcutta University
(unpublished) ; W. M. Visscher and R. A. Ferrell, University of
Maryland, Physics Department, Technical Report No. 19
(September, 1955) (unpublished).
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Fi1c. 4. Comparison of the inelastic (J'J) ¢ () vs 8 curve for Ci2
with the experimental data of Fregeau and Hofstadter.?

determination of ao, i.e., that the value of » at which
|%2,(r) |2 reduces to half of its maximum value is the
nuclear radius, is to some extent arbitrary.

With ¢=1.582X10" cm, we have plotted @2 as a
function of K. From Eq. (10) it can be easily seen that
the points on this curve will differ by a constant factor
from the corresponding points on the curve in Fig. 8 of
reference 3. To show this, we have given our Fig. 3
which shows side by side the ©? plot and the above-
mentioned experimental curve. Below the point K=1.2
X108 cm™, the ordinates on our curve can be divided
by the same constant factor 1.8 to get the corresponding
ordinates of the experimental curve. As regards the
drop in the @? curve beyond K=1.2X10% cm™, we
cannot say anything conclusively because the experi-
mental errors permit one to alter the trend of the
smooth curve drawn by Fregeau and Hofstadter.?

With the same value of @), we have plotted the
inelastic (J's£J) ¢(0) vs 0 curve for C in Fig. 4. The
constant &N, which should be determined by the level
concerned, has been arbitrarily chosen to fit the experi-
mental value at 90° on curve D of Fig. 4 of reference 3.
It can be seen that the experimental points at other
angles agree fairly well with the trend of our curve.

Exact calculations for C? are in progress and we
reserve any quantitative conclusions until these are
completed.

IV. SUMMARY OF RESULTS AND DISCUSSIONS

In the case of Be® the wave function of the ground.
state within the [41] symmetry alone, as found by us,
has reproduced the observed elastic scattering to a
tolerable extent. But the wave function for the level
J=%", not to mention the next higher level, has
produced much lower scattering than that observed.
Moreover, our formulation predicts a parallelism of the
two inelastic curves, which does not agree with the
experimental data. By trying to match the 6 dependence
of the inelastic (J's%J) ¢(0) vs € curve by a vertical
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shift of our inelastic curves, we have seen that our
calculations agree with the lower inelastic curve for a
value of a9 equal to 1.537X107*® cm calculated from
Swiatecki’s formula. For the same ao the elastic curve
agrees tolerably well with the experimental one. For a
choice of 2.0)X10~% cm for ao, the 8 dependence of our
inelastic curve can be matched with that of the upper
inelastic curve. For the same a the elastic cross-section
curve gives poorer agreement. Finally, since the errors
in the experimental curves are not indicated, it seems
that we cannot determine ao very accurately in the
above way.

For C? we have determined ao=1.582X10"2 cm,
which is considerably lower than the value ao=1.692
X108 cm obtained from Swiatecki’s formula. We
observe that this determination of @ is not unique in
view of the experimental errors. The above choice of
ao has reproduced the experimentally observed trend
of @2 vs K curve below K=1.2X10"% cm™; above this
value the theoretical curve drops while the smooth
curve drawn in reference 3 does not show any such
trend. We remark that the large errors in the experi-
mental data allow much freedom in altering the experi-
mental curve in this region, and hence no definite
conclusions can be made. With the same value of a,
we have found the trend of our inelastic (J'#J) o(8)
vs  curve to agree fairly well with the observed data
within experimental errors.

1 We emphasize that all our calculations for C2 have
been directed to testing the qualitative features of the
inelastic curves, and the deliberate simplifications we
have made in finding the wave functions of Be® do not
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permit us to claim anything quantitatively there also.
Further limitations of our method of calculation have
been pointed out in the introductory section. The
neglect of interaction through the magnetic moment,
which will increase the cross section, has also been
mentioned in an earlier section.

The calculations reported here have been made
principally with a view to testing whether, without
going into the detailed procedure of wave-function
calculation, we get any evidence from the experimental
data contradicting some qualitative feature of our
formula. Fortunately we have not obtained any such
evidence. To test quantitatively the cross-section
formulas, especially those for inelastic scattering, we
are at present determining exact wave functions for C*?
by reproducing the known energy levels after an exact
diagonalization of the energy matrices. The nuclear
Hamiltonian assumed is in conformity with two-body
binding and scattering data. The scattering cross
section obtained with such wave functions will be
reported elsewhere in due time.

Pending such detailed quantitative testing, we make
a passing observation that the inelastic (J'£J) o(0) vs 0
curve calculated by our formula allows a more satis-
factory determination of ao than is obtained by the
method of Swiatecki.'
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An analysis of the elastic scatters of K* mesons in emulsion shows that the data favor a repulsive nuclear
potential. A description of the analysis of the experimental results is given.

AN analysis of the elastic scattering of K+ mesons
in emulsion has been made using the Born ap-
proximation. It is found that the data favor a repulsive
nuclear potential when compared with the theoretically
predicted curves.!

The Born approximation gives the differential cross
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section for K+ mesons as

do/dQ=[Zf,+ (A —2Z) fa=Z fc*F? (elastic or coherent)
+[Z(fe f)*+ (A —2) f-2][1—F2]

(inelastic or incoherent),

where f¢, f», and f. are the Coulomb, proton, and
neutron scattering amplitudes and F is the nuclear form
factor. The plus or minus sign is chosen depending on
whether the nuclear and Coulomb forces are of the
same or opposite sign, i.e., whether the nuclear potential



